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Topological flat bands, which are regarded as the cornerstone of various topological states induced by the
many-body interaction, have aroused great interest in the fields of physics and material science. To date, most of
the established topological flat bands have been employed in Euclidean space. Here, we report on an observation
of hyperbolic topological flat bands in non-Euclidean space. By introducing magnetic flux into the hyperbolic
octagon-kagome lattice, energy bands in four-dimensional k space with the nontrivial Chern vector can be created
via the formalism of hyperbolic band theory. The bandwidth of hyperbolic topological bands can be significantly
reduced by tuning the next-nearest-neighbor coupling strength. Numerical results of finite hyperbolic models
with fully and partially open boundary conditions clearly demonstrate the existence of topological boundary
states induced by hyperbolic topological flat bands. Moreover, we design and fabricate electric circuits to
observe hyperbolic topological flat bands in experiments. Site-resolved impedance responses and robust voltage
dynamics demonstrate the coexistence of flat-band dispersion and topological boundary states. This letter may
act as a foundation for exploring exotic hyperbolic fractional Chern insulators.

DOI: 10.1103/PhysRevB.109.L041109

Introduction. Flat bands with nontrivial topology have been
receiving a lot of attention in recent years and are believed to
be key components for the realization of fractional topolog-
ical states. One pioneering example is the two-dimensional
(2D) electron gas in a perpendicular magnetic field, where the
flat-band Landau levels with nonzero Chern numbers appear.
When a certain fractional number of Landau levels is filled,
the system turns into an insulator with nontrivial topology,
corresponding to the fractional quantum Hall effect [1-3].
Except for the Landau levels induced by magnetic fields
in continuum systems, many investigations have shown that
various Abelian and non-Abelian fractional Chern insulators
with distinct properties can be realized in tight-binding lat-
tice models with topological flat bands [4—14]. Up to now,
the construction of topological flat bands has been widely
investigated in different types of lattice models, including a
kagome lattice [4], a checkerboard lattice [5,6], the Haldane
model on a honeycomb lattice [7-10], a buckled honeycomb
lattice [11], and so on. However, to date, all the studies on
topological flat-band lattices have been focused on Euclidean
space.

On the other hand, the non-Euclidean geometry widely
exists in natural and artificial systems [15] and plays important
roles in various scientific fields. The recent groundbreaking
implementations of 2D hyperbolic lattices in circuit quan-
tum electrodynamics [16] and topolectrical circuits [17] have
stimulated numerous advances in hyperbolic physics [18-39].
It is noted that highly degenerated flat bands in hyperbolic
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lattices have been proposed [16,26,27], where the fraction
of flat bands is captured exactly by real-space topology
arguments and hyperbolic band theory. Beyond flat-band
physics, there are many investigations on the construction
of hyperbolic topological states [28-39]. For example, the
non-Euclidean analog of the quantum spin Hall effect in
hyperbolic lattices has been reported [28]. The boundary-
dominated hyperbolic Chern insulator has been theoretically
proposed and experimentally fulfilled by electric circuit
networks [29]. Furthermore, motivated by the hyperbolic
band theory [30-32], hyperbolic topological band insulators
with nontrivial first/second Chern numbers and hyperbolic
graphene have also been theoretically created and experimen-
tally realized in electric circuits [33-35]. It is important to note
that the genus of hyperbolic clusters with periodic boundary
conditions grows linearly with the size of the system. In
this case, if the hyperbolic topological flat bands living in a
large-genus momentum space can be created, the hyperbolic
fractional Chern insulators with a large degree of topologi-
cal ground-state degeneracy are expected to appear. Inspired
by these fascinating phenomena and potential interests, it is
important to ask whether topological flat bands in hyperbolic
lattices exist and how to realize hyperbolic topological flat
bands in experiments.

In this letter, we create topological flat bands in non-
Euclidean space with a constant negative curvature. By in-
troducing magnetic flux into the hyperbolic octagon-kagome
lattice and changing the strength of next-nearest-neighbor
(NNN) coupling, the hyperbolic topological flat bands with
nontrivial Chern vectors in four-dimensional (4D) k space can
be generated. In experiments, the electric circuit is designed
and fabricated to observe hyperbolic topological flat bands,
where the site-resolved impedance responses and robust

©2024 American Physical Society


https://orcid.org/0000-0003-0716-3147
https://orcid.org/0000-0002-7725-8814
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.L041109&domain=pdf&date_stamp=2024-01-24
https://doi.org/10.1103/PhysRevB.109.L041109

YUAN, ZHANG, PEI, AND ZHANG

PHYSICAL REVIEW B 109, L041109 (2024)

voltage dynamics prove the coexistence of flat-band disper-
sion and topological boundary states. We suggest a way to
engineer topological flat bands in the non-Euclidean space
and provide a foundation for exploring exotic hyperbolic frac-
tional Chern insulators.

The theory of hyperbolic topological flat bands. We start to
design the 2D hyperbolic lattice model with low-energy topo-
logical flat bands. The octagon-kagome lattice, which is the
line graph of a regular {8,3} hyperbolic lattice, is considered.
Figure 1(a) displays the associated unit cell, which is a reg-
ular 8-sided hyperbolic polygon that contains 24 sublattices
marked by black dots. Based on the hyperbolic crystalline
symmetry, the translational symmetry of a {8,8} hyperbolic
tiling exists, where eight translational directions are labeled by
V1> V25 V3» Vs yl’l, yz’l, y;l, and )/4’1. The nearest-neighbor
(NN) coupling ;¢ and NNN coupling #, exist, as illustrated
by blue arrow and brown dotted lines. The complex NN
couplings can produce the effective magnetic flux of 8¢ and
3¢ in each octagon and triangle. Using the hyperbolic band
theory, our proposed lattice model in 2D hyperbolic space
can be described in 4D momentum space k; (i = 1, 2, 3, 4),
where phase factors e’ along directions given by y; (i = 1, 2,
3, 4) are introduced. The detailed formalism of the k-space
Hamiltonian H (k) is given in Note 1 in the Supplemental
Material [40].

Then we calculate hyperbolic Bloch bands in the (k;, k3)
space with the NNN coupling strength being #, = 0.1, 0.5,
and 1, as shown in Fig. 1(b). Other parameters are set as
ki =057, k, =0, 1, =1, and ¢ = 0.57. It is shown that
the low-energy bandwidth is significantly changed with dif-
ferent values of r,. To further clarify this effect, we calculate
variations of the low-energy bandwidth (AE}), the size of the
lowest band gap (AE,) and the ratio of AE,/AE, as a function
of 1, as shown in Figs. 1(c)—1(e). The narrowest bandwidth of
low-energy bands and the smallest ratio of AE,/AE, appear
at t, = 0.5. Due to the intersection of different hyperbolic
bands, a composite Chern number is shared by multiple
bands [41]. By calculating composite Chern numbers, we find
that low-energy flat bands possess a nontrivial Chern vector
of C=(-1,1,1,—-1,1,—-1), with C=1 (C = —1) in 2D
sub-torus spanned by two momentum coordinates of (ks, k4),
(k1, k4), (k1, k2) [(k2, ka), (k2, k3), (k1, k3)] (see Note 2 in the
Supplemental Material [40] for details). It is important to note
that hyperbolic topological flat bands can also be generated
by tuning the ratio between NN and NNN coupling strengths
with other different values of magnetic flux (see Note 3 in the
Supplemental Material [40]).

To further illustrate key properties of hyperbolic topo-
logical flat bands, we calculate eigenspectra of finite-sized
hyperbolic clusters with periodic (Abelian cluster) and par-
tially open boundary conditions, as shown in Figs. 1(f) and
1(g). The color map corresponds to the localization degree of
associated eigenstates on boundary lattice sites, whose coor-
dination numbers are less than that of bulk sites. Here, we set
ty =1,¢ =m/2,and t, = 0.5, and details of hyperbolic clus-
ter are presented in Note 4 in the Supplemental Material [40].
We can see that the eigenspectrum of the hyperbolic model
with periodic boundary conditions is matched to hyperbolic
Bloch bands, where the low-energy topological flat bands and
nontrivial band gaps exist. As for the hyperbolic cluster with
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FIG. 1. Topological flat bands in hyperbolic octagon-kagome
lattice. (a). The schematic diagram of hyperbolic octagon-kagome
lattice with nontrivial topological flat bands. (b). Numerical results
of hyperbolic Bloch bands in (k,, k3) space with the next-nearest-
neighbor (NNN) coupling strength being £, = 0.1, 0.5, and 1. (c)—(e).
Numerical results on variations of AEj, AE,, and AE,/AE, as a
function of 7,. Other parameters are set as #; = 1 and ¢ = 0.57.
(f) and (g) Eigenspectra of finite-sized hyperbolic clusters with peri-
odic and partially open boundary conditions at #, = 0.5. The color
map corresponds to the localization degree of all eigenstates on
boundary lattice sites.

partially open boundary conditions, it is shown that midgap
boundary states appear in nontrivial band gaps, showing the
nontrivial topology of low-energy flat bands.

Now we turn to the planar hyperbolic lattice with open
boundary conditions. The calculated energy spectrum is
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FIG. 2. Topological flat bands and edge states in the octagon-
kagome lattice with open boundary condition. (a) and (b) The
calculated energy-spectrum and real-space Chern numbers of hyper-
bolic lattice model with open boundary conditions. (c)—(e). Spatial
profiles of eigenmodes with energies being ¢ = —3.30, —0.86, and
—4.02. (f). Time-domain dynamics of hyperbolic lattice model at
different times ¢t = 130, 150, and 170.

shown in Fig. 2(a). The color map represents the localiza-
tion of eigenstates on lattice sites at the outermost layer.
Figure 2(b) displays the calculated real-space Chern num-
ber. We can see that hyperbolic topological states exist in
nontrivial energy regions marked by red and yellow blocks,
which are matched to topological band gaps evaluated by
hyperbolic band theory. To further illustrate the distribution
of hyperbolic topological edge states, we plot spatial profiles
of eigenmodes with energies being ¢ = —3.30 and —0.86, as
shown in Figs. 2(c) and 2(d). We can see that these midgap

eigenmodes possess the significant edge localization, which
is a crucial property of nontrivial topological boundary states.
In addition, the spatial profile of eigenstate at the flat-band
energy of ¢ = —4.02 is presented in Fig. 2(e), where the
probability amplitudes are concentrated in the bulk.

Furthermore, it is widely known that one-way edge states
should exist in energy regions with nontrivial real-space
Chern numbers. Thus, we numerically investigate the robust
evolution of edge states by launching a wave packet ¢;,(¢) =
exp[—(t — t0)2/100]sin(8ct), with #p = 120 and &, = —3.30,
into an edge site. Spatial distributions of |g;(¢)| at different
times t = 130, 150, and 170 are shown in Fig. 2(f). It is clearly
shown that the wave packet moves unidirectionally along
the edge of the hyperbolic lattice. These numerical results
show that the unidirectional edge states exist in the hyperbolic
octagon-kagome lattice model.

Experimental observation of hyperbolic topological flat
bands in electric circuits. Motivated by recent experimen-
tal breakthroughs in topolectrical circuits [42-59], we focus
on the design of a hyperbolic electric circuit to observe
the hyperbolic topological flat bands. Figure 3(a) illustrates
the photograph image of circuit sample, and the inset shows
the mapped lattice model. The unit cell of hyperbolic octagon-
kagome lattice is enclosed by the red block, where the NN
and NNN couplings are illustrated by arrow and dotted lines.
Details on the sample fabrication are provided in Note 5
in the Supplemental Material [40]. Here, four circuit nodes
connected by capacitors C are considered to form an effective
lattice site. Voltages on these four nodes are defined by V; i,
Vi.2, Vi3, and V; 4, which could be suitably formulated to con-
struct a pair of pseudospins Vy; | =V, 1 £iVio — Viz FiVis
for realizing required site couplings. Schematic diagrams for
the realization of different intercell couplings are shown in
Fig. 3(b). To simulate the negative NNN hopping 7, four
capacitors C, are used to crossly link adjacent nodes. As
for NN couplings with hopping phases e*"/2, two groups
of adjacent nodes are connected crossly via four capaci-
tors Ci. Each circuit node is grounded by an inductor L.
Through the appropriate setting of grounding and connecting,
the circuit eigenequation is identical to that of the hyperbolic
octagon-kagome lattice model. The probability amplitude at
the lattice site i is mapped to the voltage pseudospin. The
effective tight-binding parameters are expressed ast; = C;/C,
¢ =0.57, and r, = C,/C. The eigenenergy of the hyper-
bolic lattice model is directly related to the eigenfrequency
of electric circuit as & = foz/f2—2 — (4C, +4Cy)/C, with

fo = Qm, /CLg)fl. Note 6 in the Supplemental Material [40]
provides details on the derivation of the circuit eigenequa-
tion. Here, circuit parameters are set as C = 2nF, C; = 2nF,
G, =1nF,and L, = 1uH.

To illustrate the flat-band dispersion, we measure the
impedance response of bulk node [the green pentagram in
Fig. 3(a)], as shown by the green line in Fig. 3(c). It is
shown that there is no impedance peak in frequency ranges
of [1.258, 1.383 MHz] and [1.59, 1.776 MHz] (shaded
regions), corresponding to the existence of band gaps. There
are multiple bulk impedance peaks in two frequency re-
gions of [1, 1.258 MHz] and [1.383, 1.59 MHz] that clearly
show energy bands with large widths in ¢ = [1.506, 2.786]
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FIG. 3. Impedance responses of topological flat bands and edge
states. (a) The photograph image of the circuit sample. The inset
shows the mapped lattice model. (b) The schematic diagram for
the realization of nearest-neighbor (NN) and next-NN (NNN) cou-
plings. (c¢) and (d) Measured and simulated impedance responses
of bulk (green lines) and edge (red and blue lines) nodes. (e)—(g)
The measured spatial impedance distributions at 1.332, 1.644, and
1.791 MHz.

and [—2.758, —1.342]. In addition, the bulk node exhibits
a large-value impedance peak at 1.791 MHz. The relatively
large impedance peaks within an extremely narrow frequency
range that is spectrally separated from other eigenfrequen-
cies signify that different bulk modes possess nearly identical
eigenfrequencies, thereby confirming their adherence to prop-
erties exhibited by flat bands. For comparison purposes, we
also compute the impedance responses of bulk nodes for
two circuits lacking flat bands (see Note 7 in the Supple-
mental Material [40] for details). It is evident that more

impedance peaks within much wider frequency ranges appear
in the high-frequency domain, thereby distinguishing them
from the narrow-frequency impedance spectra of flat bands.
To further detect the spatial profile of flat bands, we mea-
sure the impedance distribution at 1.791 MHz, as presented
in Fig. 3(g). It is clearly shown that the spatial profile of
impedance is matched to the probability amplitude of a flat-
band bulk mode.

Then we turn to the demonstration of nontrivial topolog-
ical properties of low-energy flat bands. For this purpose,
the impedance responses of two edge nodes [red and blue
pentagrams in Fig. 3(a)] are measured, as shown by red and
blue lines in Fig. 3(c). It is seen that the two edge nodes ex-
hibit significant impedance responses in nontrivial band gaps,
manifesting the existence of midgap edge states. Impedances
of these two edge nodes possess different amplitudes in two
band gaps that result from different local densities of states.
Figure 3(d) presents simulation results of impedance re-
sponses. A good consistency between simulations and mea-
surements is obtained. To further illustrate spatial profiles of
hyperbolic edge states, we measure impedance distributions
at 1.332 and 1.644 MHz, as presented in Figs. 3(e) and 3(f).
We can see that the spatial impedance profiles are matched to
the corresponding edge modes.

Except for the impedance response, we further
measure voltage dynamics of bulk and edge nodes
to demonstrate the coexistence of the flat-band dis-
persion and nontrivial topology. Here, four voltage
packets, which are expressed as [V;1,Vi2, Vi3, Via]l =
Vo, Vo, —Vo, —iVo]exp[—(':#]sin(anct), are used to
excite the voltage pseudogpin. Details of experimental
technologies are provided in Note 7 in the Supplemental
Material [40]. To effectively excite the hyperbolic boundary
state, the time delay, packet width, and central frequency
of voltage packets are set as tp = 30us, t; = 9.69 us, and
fe =1.642 MHz, respectively. The frequency spectrum
of the injected voltage packet is plotted in Fig. 4(a).
It is shown that all frequency components of the input
voltage packet are located in the nontrivial region sustaining
topological edge states. In this case, the midgap edge
state can be dominantly excited by the voltage packet.
Figure 4(b) presents the measured time tracks of the voltage
pseudospin (normalized to V) at two edge nodes (red and
blue lines) and two bulk nodes (green and black lines) along
clockwise and counterclockwise directions. As we can see,
the clockwise boundary node possesses a large voltage signal.
Meanwhile, voltage signals at the counterclockwise boundary
node and two bulk circuit nodes are very small. These
experimental results indicate that the voltage packet can
propagate unidirectionally along the boundary, ensuring the
existence of midgap one-way edge states. This phenomenon
demonstrates that the low-energy bulk bands indeed possess
nontrivial topology based on the bulk-edge correspondence.

Additionally, it is well known that the flat band can in-
duce the spatial localization within the bulk region due to
the zero-valued group velocity of bulk flat bands. To further
demonstrate the flat-band effect, a bulk node (marked by
pink dot in insets) is excited by three voltage packets with
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FIG. 4. Observation of the voltage dynamics in the octagon-
kagome lattice. (a), (c), (), and (g) The frequency spectra of injected
voltage packets for exciting edge and bulk states. (b), (d), (f), and
(h) Measured time tracks of voltage signals at different circuit nodes
with exciting the boundary state and flat-band bulk state.

fe = 1791 MHz (tp = 1 ms and #; = 355us), f. = 1.5 MHz
(to = 1.5 msand t; = 424 ps) and f. = 1.2 MHz (f) = 1.5 ms
and 7; = 531 us). The associated frequency spectra are plotted
in Figs. 4(c), 4(e), and 4(g). It is shown that the frequency
spectra can only cover the low-energy flat band and two high-
energy dispersive bands with f, = 1.791, 1.5, and 1.2 MHz.
Figures 4(d), 4(f), and 4(h) present experimental dynamics
of voltage packets with f. =1.791, 1.5, and 1.2 MHz. It
is shown that the voltage packet is concentrated around the
excitation node with . = 1.791 MHz due to the extremely
low group velocity of flat bands. In contrast, the input voltage
packet is less concentrated around the input node under the
excitation of high-energy dispersive bands.

In conclusion, we have realized topological flat bands in
hyperbolic space both in theory and experiments. By intro-
ducing the magnetic flux into hyperbolic octagon-kagome
lattices and tuning the strength of NNN couplings, hyperbolic
topological flat bands with a nontrivial Chern vector can be
generated. Numerical results clearly show that topological
boundary states appear in finite hyperbolic lattices with fully
and partially open boundaries. In experiments, we have de-
signed and fabricated electric circuits to detect hyperbolic
topological flat bands, where the site-resolved impedance
responses and robust voltage dynamics demonstrate the co-
existence of flat-band dispersion and topological boundary
states. In this letter, we suggest a way to engineer topological
flat bands in non-Euclidean space, which may provide a foun-
dation for exploring hyperbolic fractional Chern insulators.
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