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Dissipation-driven dynamical topological phase transitions in two-dimensional superconductors
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We induce and study a topological dynamical phase transition between two planar superconducting phases.
Using the Lindblad equation to account for the interactions of Bogoliubov quasiparticles among themselves
and with the fluctuations of the superconducting order parameter, we derive the relaxation dynamics of the
order parameter. To characterize the phase transition, we compute the fidelity and the spin-Hall conductance
of the open system. Our approach provides crucial information for experimental implementations, such as the
dependence of the critical time on the system-bath coupling.
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Introduction. Phase transitions (PTs) emerge as an effect
of fluctuations, both thermal [1] or quantum [2], involving
collective degrees of freedom in many-body systems. Typi-
cally, a PT is characterized by the divergence of the correlation
length as the temperature and/or another control parameter is
tuned from the outside and with the corresponding power-law
scaling of the physical quantities, with “universal” critical
exponents. The usual approach to PTs in systems at equilib-
rium involves methods, such as looking for singularities and
for critical scaling in the free-energy functional describing
the system, as the control parameters are tuned close to their
critical values.

A continuously increasing interest, both on the theoretical
as well as on the experimental side, has been recently gained
by “dynamical” PTs (DPTs) in closed many-particle quantum
systems, prepared in a nonequlibrium state and then evolving
in time with a pertinent Hamiltonian [3–5]. In a DPT, it is
the time t that drives the system across criticality and the PT
is evidenced by singularities in the matrix elements of the
time evolution operator. To date, DPTs have been theoretically
predicted and experimentally seen in various isolated quantum
systems, in which nonequilibrium is induced by quenching
some parameter(s) of the system Hamiltonian [6–15]. In a
closed system, the DPT is analyzed by looking at the singular-
ities in the Loschmidt echo (LE) L(t ) = |〈ψ (0)|ψ (t )〉|2, with
|ψ (t )〉 being the state of the system at time t and |ψ (0)〉 the
prequench initial state [3–6,16]. While this approach has been
also extended to the case in which the system has not been
prepared in a pure state [17–19], it does not apply to DPTs
in open systems. The latter are described by a time-dependent
density matrix ρ(t ), whose dynamics is determined by solving
the pertinent evolution equation.

In the context of superconducting electronic systems,
nonequilibrium dynamics can be induced, for instance, by
suddenly quenching the interaction parameter in a BCS
Hamiltonian, and by encoding the following dynamical

evolution of the system into an explicit dependence of
the superconducting order parameter on t , by means of
a time-dependent generalization of the self-consistent BCS
mean-field (MF) approach [20].

In this Letter we substantially extend and generalize the
approach of Ref. [20], so as to induce a DPT between dif-
ferent superconducting phases realized in a planar, interacting
fermionic model with an attractive interaction. In particular,
we allow for the coexistence of x2 − y2 (d-wave) and xy
(id-wave) superconducting gaps. Then, after quenching the
interaction strength(s) at time t = 0, we let the supercon-
ductor behave as an open system by exchanging Bogoliubov
quasiparticles with the bath. In this way, we account for
the dissipative dynamics induced by the interactions between
quasiparticles not captured by the BCS approximation and/or
by the coupling between the fluctuations of the order pa-
rameter and the quasiparticle continuum [9,21–23] and/or
for the coupling to an external metallic contact [24] [a de-
tailed discussion is provided in the Supplemental Material
(SM) [25] as well as Refs. [21,23,24,26]]. In particular, fol-
lowing Refs. [26,27], we do so within the Lindblad master
equation (LME) approach to the time evolution of the su-
perconductor density matrix ρ(t ). Our systematic approach
naturally emerges from the microscopic model of Ref. [24].
Moreover, it is perfectly consistent with the one introduced
in Ref. [23] on phenomenological grounds, as discussed in
Ref. [28], where we also estimate typical experimental values
of the coupling between the system and the bath.

Here, we focus onto the DPT between a (topologically triv-
ial) id and a d + id planar superconducting phase, the latter of
which is known to describe the class C of topological planar
superconductors, characterized by particle-hole conjugation
and broken time-reversal symmetry [29–34]. Therefore, we
realize a topological DPT (TDPT), to characterize which
we first of all look at the transition in time of the super-
conducting order parameter, between the asymptotic values
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(at t = 0 and t → ∞), respectively corresponding to the id
and to the d + id phase. Then, rather than the LE, we ap-
proach the DPT by using the fidelity F (t ) between the initial
pure state and the one described by ρ(t ), which is more
suitable for an open system [28]. Finally, to make a rigorous
statement on the topological properties of the phases separated
by the DPT, we compute the spin-Hall conductance of the
system as a function of t , σ (t ). In a stationary state, σ (t ) is
proportional to the topological invariant whose nonzero value
is a signal of a nontrivial topological phase [32,35]. Further-
more, it is well defined even when the system goes through
the DPT [35]. In addition to defining a protocol to monitor a
DPT in an open system, a topic that has recently become of the
utmost relevance [36], our approach provides remarkable re-
sults of practical interest in a possible experimental realization
of the system that we study (e.g., in ultracold atom lattices),
such as the variation of the “critical time” t∗ as a function of
the system-bath coupling.

Model Hamiltonian. Our main reference Hamiltonian HMF

stems from the self-consistent mean-field (SCMF) approx-
imation of the Hamiltonian describing interacting spinful
fermions on a two-dimensional (2D) square lattice introduced
in Ref. [28], with a nearest-neighbor and a next-to-nearest
neighbor density-density interaction, both attractive in the
spin singlet channel, respectively, with interaction strengths
V and Z (both >0). We therefore set [20,28]

HMF =
∑

k

[c†
k,↑, c−k,↓]

[
ξk −�k

−[�k]∗ −ξk

][
ck,↑

c†
−k,↓

]
, (1)

with k summed over the full Brillouin zone and with ck,σ and
c†

k,σ being the fermion operators in k space. The k-dependent
gap in Eq. (1) takes, in general, a nonzero imaginary part. The
two parameters take the form

ξk = −2[cos(kx ) + cos(ky)] − μ,

�k = 2�x2−y2{cos(kx ) − cos(ky)} − 4i�xy sin(kx ) sin(ky),

(2)

with the chemical potential μ = 0 (half filling) and �x2−y2 and
�xy determined by the SCMF equations [28]

�x2−y2 = V

4N
∑

k

[cos(kx ) − cos(ky)]�k

εk
,

�xy = iZ

2N
∑

k

sin(kx ) sin(ky)�k

εk
, (3)

N being the number of lattice sites, εk =
√

ξ 2
k + |�k|2 and

the lattice constant = 1. Our model calculation encompasses
all the relevant features that should characterize a TDPT,
both in solid-state [24], as well as in quantum-optical open
systems [36–38]. In Fig. 1(a) we plot the phase diagram of
our system in terms of V and Z (which we regard as our
physically tunable parameters) as determined by Eqs. (3). For
small, though finite, values of V and Z the system lies within a
normal phase (N). Keeping Z (V ) small and increasing V (Z),
our system undergoes a phase transition, with a gap �x2−y2

(�xy) continuously developing a nonzero value for V > Vc

(Z > Zc), with Vc ≈ 0.35 (Zc ≈ 0.7), and with the gaps in-
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FIG. 1. (a) Equilibrium phase diagram in the V -Z plane. The
cyan (magenta) dot corresponds to (V (0), Z (0) )(V (1), Z (1) ) (see text).
[Inset: Same as in (b) but with g = 0.002.] (b) Time-dependent gap
�x2−y2 (t ) (blue curve) and �xy(t ) (green curve), for V (1) = Z (1) =
1.5, g = 0.2, and prepared, at t = 0, in a state with �(0)

xy ≈ 0.03.
[Inset: Zoom of the plot of �xy(t ) for 0 � t � 20.]

creasing with V and Z , according to Eqs. (3). At large enough
values of both V and Z , the system undergoes a topological
phase transition, at which a d + id phase opens, where both
�x2−y2 and �xy are 
=0. The latter phase exhibits nontrivial
topological properties. We now show how to realize a TDPT
between the id and the d + id phase, along the dissipative
dynamics of the nonequilibrium superconductor.

Dynamical phase transition. To induce a DPT in our sys-
tem, we prepare it in the ground state of HMF with �

(0)
x2−y2 =

0 and �(0)
xy 
= 0. At time t = 0, we quench the interaction

strengths to (V (1), Z (1) ), corresponding to both �
(1)
x2−y2 and

�(1)
xy being 
=0. The induced nonequilibrium dynamics makes

�k to explicitly depend on t . To describe the time evolution
of the open system, we extend the time-dependent SCMF
approach of Ref. [20] by allowing the system to exchange Bo-
goliubov quasiparticles with an external bath, thus resorting to
the LME approach to the density matrix dynamics (see Sec. III
of SM [25]). Following Refs. [9,21–23,26,27], we therefore
write the LME for ρ(t ) as

dρ(t )

dt
= −i[HMF(t ), ρ(t )] + g

∑
λ=±

∑
k

× [ f (−λεk(t ))(2	k,λ(t )ρ(t )	†
k,λ(t )

−{	†
k,λ(t )	k,λ(t ), ρ(t )})

+ f (λεk(t ))(2	
†
k,λ(t )ρ(t )	k,λ(t )

−{	k,λ(t )	†
k,λ(t ), ρ(t )})]. (4)
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In Eq. (4) g is the strength of the system-bath coupling and,
consistently with the detailed balance principle, recovering
the Boltzmann distribution as a stationary solution of the LME
is assured by our setting of the coupling strength correspond-
ing to the Bogoliubov quasiparticle annihilation and creation
operators, 	k,λ and 	

†
k,λ, to be proportional to f (−λεk ) and

to f (λεk ), respectively, with f (ε) being the Fermi distribu-
tion function [note that we employ particle-hole symmetry
to set 1 − f (ε) = f (−ε)] [39,40]. The time dependence of
�k(t ) makes HMF(t ) in Eq. (4) as well as its eigenvalues

[±εk(t ) = ±
√

ξ 2
k + |�k(t )|2] and eigenmodes [	k,±(t )], to

acquire an explicit time dependence, as well (see SM [25] and
Refs. [20,26] for further details).

To complete the SCMF approach, we need the relation
between �k(t ) and ρ(t ). To recover it, we follow the deriva-
tion of Ref. [20] by generalizing Eqs. (3) to self-consistent
relations between �k(t ) and fk(t ) = Tr[ρ(t )c−k,↓ck,↑], as we
discuss in detail in SM [25].

In Fig. 1(b) we plot �x2−y2 (t ) and �xy(t ) in a system
prepared in the ground state |ψ (0)〉 of HMF with (V (0), Z (0) ) =
(0, 1.0), corresponding to �

(0)
x2−y2 = 0,�(0)

xy = 0.03. At t >

0 we quench the interaction strengths to (V (1), Z (1) ) =
(1.5, 1.5), corresponding to �

(1)
x2−y2 = 0.15,�(1)

xy = 0.05, and
let the system evolve according to Eqs. (4), with g = 0.2 (main
figure) and g = 0.002 [inset of Fig. 1(a)]. Given (V (0), Z (0) )
and (V (1), Z (1) ), the time evolution of the superconducting
gaps is directly determined by Eqs. (4) and by the time-
dependent generalizations of Eqs. (3) [see Eq. (4) of SM
[25]]. We see that there is a finite interval of time [0, t∗], with
t∗ ≈ 40, within which �xy(t ) stays finite, and basically con-
stant, while �x2−y2 (t ) remains pinned at 0. As t goes across
t∗ (vertical, dashed line), �xy(t ) almost suddenly lowers its
value, while �x2−y2 (t ) switches from zero to a finite value,
which keeps roughly constant for any t > t∗. t∗ is determined
by the finite time required for the fk(t )’s to take the appropri-
ate threshold value to trigger the onset of the two-component
order parameter. The sharp change in �k(t ) across t = t∗
corresponds to a transition, in real time, of the system between
two different phases characterized by different values of the
superconducting order parameter, that is, to a DPT [3–5]. The
relatively high value of g (although still quite smaller than
any other energy scale in the system) induces a sharp switch
in the values of the two different symmetry components of
the order parameter at the DPT. To highlight the effects of
varying g, in the inset of Fig. 1(a) we show the same plots
as in the main figure, but with g = 0.002. In this case, t∗
becomes much larger than before and �xy(t ) oscillates and
monotonically increases, starting from �(0)

xy , as long as t < t∗.
At the same time, �x2−y2 (t ) = 0. At t � t∗, both �xy(t ) and
�x2−y2 (t ) undergo a discontinuous jump, after which they
start to oscillate around the values they take in the asymptotic
(t → ∞) state. Again, we conclude that, at t = t∗, our system
goes across a DPT, triggered by the mismatch between the
initial and the asymptotic state of the system.

We evidence the onset of the DPT by looking at nonanalyt-
icities in the fidelity F (t ) between the initial state |ψ (0)〉 and
the state described by ρ(t ), F (t ) = 〈ψ (0)|ρ(t )|ψ (0)〉. Indeed,
as pointed out in Refs. [41,42], at a DPT F (t ) is expected
to show nonanalyticities similar to what one would obtain in
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FIG. 2. ω(t ) as a function of time t computed with the time-

dependent MF Hamiltonian with parameters �x2−y2 (t ) and �xy(t ),
as in Fig. 1(b), for g = 0.2 (blue curve) and g = 0.002 (red curve).
The dashed vertical lines mark the DPT.

the LE, computed in a closed system. In fact, while the LE
at time t is defined if the system lies in a pure state at any t ,
when the system state is described in terms of a density matrix
ρ(t ), F (t ) shows to be the pertinent quantity to evidence the
DPT. In particular, we look for nonanalyticities in the rate
function ω(t ) = − 1

N log[F (t )] [3–5,7] (see Ref. [28] for the
mathematical derivation). In Fig. 2 we plot ω(t ) as a function
of t in both cases corresponding to the plots in Fig. 1. Aside
from the different scale t∗ at different values of g, we note that,
for 0 � t < t∗, ω(t ) takes a mild dependence on t , with ω(t ) ∼
0.1–0.2, denoting an appreciable overlap between |ψ (0)〉 and
the state at time t . This basically evidences the persistence
of the system within the same phase [3–5,43,44]. At t = t∗,
the sudden change in the slope of ω(t ) demonstrates how
t = t∗ corresponds to a nonanalyticity tied to the DPT. The
subsequent rapid increase in ω(t ) for t > t∗ corresponds to a
drastic reduction in F (t ) (by orders of magnitude), which is
a clear signal that, moving across t = t∗, the system has gone
through a DPT.

Topological phase transition. To physically ground the
topological nature of the DPT, we now review the cal-
culation of the spin-Hall conductance σ (t ) across the
DPT of our system (for details, see SM [25] as well as
Refs. [15,29,31,32,35,37,38,45]). In an equilibrium state σ (t )
is proportional to the Chern number C: In the trivial phase,
C = 0, while in a topologically phase, C = ±2 [29,30]. Ap-
parently, C is ill defined across the DPT. Instead, σ (t ) is
perfectly well defined and can be computed at any finite
t within linear (in the applied voltage bias) response the-
ory. Following the derivation of Ref. [25], we note that
Fig. 1(b) suggests that, for g = 0.2, �x2−y2 (t ) and �xy(t )
can be well approximated as �x2−y2 (t ) = θ (t − t∗)�(1)

x2−y2 ,

and �xy(t ) = θ (t∗ − t )�(0)
xy + θ (t − t∗)�(1)

xy , with θ (t ) being

Heaviside’s step function, �
(0)
x2−y2 = 0, �(0)

xy = 0.03, �
(1)
x2−y2 =

0.15, and �(1)
xy = 0.05. In Fig. 3 we plot σ (t ) computed ac-

cordingly. As expected, for t < t∗, σ (t ) = 0. Passing across
the DPT at t = t∗, σ (t ) jumps to a finite value, and then,
for t > t∗, it shows damped oscillations [∼(t − t∗)−1] toward
the asymptotic value σ∞ = limt→∞ σ (t ) = 2(2π )−1. This is
exactly what is expected for a TDPT. In addition, we have
also verified that σ∞ does not change on varying �

(1)
x2−y2 and

�(1)
xy , provided we stay within the d + id phase in Fig. 1(a).

L041107-3



ANDREA NAVA et al. PHYSICAL REVIEW B 109, L041107 (2024)

FIG. 3. σ (t ) [in units of (2π )−1] computed in the sudden jump
approximation (see SM [25]), with �(0)

xy = 0.09, �
(1)
x2−y2 = 0.15,

�(1)
xy = 0.05, and g = 0.2. The dashed vertical line marks the DPT at

t = t∗, and the dashed horizonal line marks the value of σ∞. [Inset: t∗
computed in the same system for different values of g (red squares)
between g = 0.0005 and g = 0.2 (the dashed lines are a guide to the
eye).]

While our sudden jump approximation only applies for g
as large as 0.2, from the inset of Fig. 1(a) we see that, even
for g = 0.002, the main features of Fig. 1(b) still persist, that
is, a sharp reduction in �xy(t ) and a corresponding jump in
�x2−y2 (t ) from 0 to a finite value at t = t∗. From the qualita-
tive point of view, we can still get some hints by enforcing
the approximation of �k(t ) with a piecewise function, al-
though along small time intervals (depending, of course, on
the frequency of the superimposed oscillations). This would
allow us to map out the full time dependence of σ (t ) on t .
Eventually, we expect that σ (t ) will asymptotically converge
to the value dictated by the asymptotic value of �x2−y2 (t )
and of �xy(t ) as t → ∞. Again, these correspond to a d + id
superconducting state and, therefore, we find that σ (t ) →t→∞
2(2π )−1, even at values of g smaller than 0.2 by two orders of
magnitude.

Conclusions. In this Letter we have shown that a DPT can
take place in an open nonequilibrium planar superconduct-
ing system, described by a LME that is determined by the
tunnel coupling to an external metallic lead [24], or mim-
ics the residual quasiparticle interaction beyond BCS theory
[23]. To monitor the system across the DPT, we synoptically
looked at the self-consistently computed superconducting
gap, at the fidelity, and at the spin-Hall conductance. In
particular, this last quantity is crucial in evidencing the
topological nature of the DPT, as it crosses over from be-

ing zero for t < t∗ to an asymptotic value σ∞, as t →
∞, which corresponds to a topologically nontrivial d + id
phase.

Within our derivation, we explicitly show clear evidence
that a DPT can take place in an open solid-state system,
in particular between two phases with different topological
properties. In doing so, we also highlight the importance of the
system-bath coupling in stabilizing a DPT transition between
two selected phases with given properties. We do so by means
of a combined use of the LME and of the time-dependent
SCMF approach, thus defining a systematic framework to
discuss the peculiar properties of a DPT in an open system.
Due to our minimal set of assumptions, we believe that the
range of applicability of our approach is much wider than
just the one that we discuss here. For instance, it would be
important to study whether the topological DPT takes place at
any finite g, or whether there is a critical value gc such that, for
g < gc, it is washed out by the uncontrolled oscillations in the
superconducting order parameter that arise at small values of
g [20]. Along this direction, in the inset of Fig. 3 we report the
results of a preliminary calculation of t∗ at selected values of g
between g = 0.0005 and g = 0.2. We check that a power-law
fit of the dependence of t∗ on g such as t∗ = Ag−B, with A ≈
7.2 and B ≈ 0.65 fits the data reasonably well. In addition, the
strong increase of t∗ as g → 0 is consistent with the absence
of any DPT in the closed quenched superconductor studied
in Ref. [20]. However, providing a certain answer on those
issues requires developing a model calculation of t∗ at a given
g, which is an interesting topic for future research.
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