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We present a theoretical study of an interaction-driven quantum phase diagram of twisted bilayer MoTe, at
hole filling factor v, = 1 as a function of twist angle 6 and layer potential difference V,, where V, is generated by
an applied out-of-plane electric field. At V, = 0, the phase diagram includes quantum anomalous Hall insulators
in the intermediate 6 regime and topologically trivial multiferroic states with coexisting ferroelectricity and
magnetism in both small and large 6 regimes. There can be two transitions from the quantum anomalous
Hall insulator phase to topologically trivial out-of-plane ferromagnetic phase, and finally to in-plane 120°
antiferromagnetic phase as |V,| increases, or a single transition without the intervening ferromagnetic phase.
We show explicitly that the spin vector chirality of various 120° antiferromagnetic states can be electrically
switched. We discuss the connection between the experimentally measured Curie-Weiss temperature and the
low-temperature magnetic order based on an effective Heisenberg model with magnetic anisotropy.
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Introduction. Coulomb interactions between electrons in
topological flat bands can drive exotic quantum states of mat-
ter, as exemplified by fractional quantum Hall insulators in
Landau levels. Moiré systems with different combinations of
layered van der Waals materials become a versatile platform
to study nearly flat moiré bands with nontrivial topology
[1-24]. It was theoretically predicted [4] that twisted tran-
sition metal dichalcogenide (TMD) homobilayers can host
topological moiré bands that effectively realize the Kane-Mele
model [25,26] for quantum spin Hall insulators. A series of re-
cent experiments reported convincing observations of not only
integer but also fractional quantum anomalous Hall insulators
in twisted bilayer MoTe, (tMoTe,) [27-31]. Spectroscopic
evidence of the integer quantum anomalous Hall insulators
was also found in twisted bilayer WSe, [32]. These exciting
discoveries open up many opportunities in condensed matter
physics [33], and attract active theoretical study on the nature
of interaction-driven states in twisted TMD homobilayers at
integer and fractional filling factors [34—46].

In this Letter, we report the quantum phase diagram of
tMoTe, at v, =1 (i.e., one hole per moiré unit cell) tuned
by twist angle 6 and layer potential difference V,, which is
obtained by a mean-field study of an interacting continuum
model in the plane-wave basis. The phase diagram shown in
Fig. 1(a) hosts the quantum anomalous Hall insulator (QAHI)
in the intermediate 6 and small |V,| regime. The QAHI has
spontaneous valley (out-of-plane spin) polarization, and the
topology of the state arises from the winding of layer pseu-
dospin in the moiré band. A finite V, potential induces layer
polarization and therefore drives phase transition from the
QAHI state to topologically trivial magnetic states with holes
primarily localized within one layer. Our phase diagram is
consistent with available experimental findings [27-31] and
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related theoretical studies of the v, = 1 phase diagram based
on different approaches [36-38]. Our main results are sum-
marized as follows. First, we present a global phase diagram
using a self-consistent Hartree-Fock approximation without
projecting to a few selected moiré bands. Details of the phase
transitions from the QAHI to topological trivial magnetic
insulators are revealed. There can be two transitions from
the QAHI phase to the topologically trivial ferromagnetic
phase with out-of-plane spin polarization, and finally to the
in-plane 120° antiferromagnetic (120°AF) phase, or a single
transition from the QAHI phase to the 120°AF phase, as |V|
increases. Second, the phase diagram clearly shows that the
spin vector chirality of various 120°AF phases is controlled
by the sign of V.. Third, the topologically trivial magnetic
phases at large |V, | can be effectively described by a Heisen-
berg model with magnetic anisotropy on a triangular lattice.
The Curie-Weiss temperature T, relevant to the out-of-plane
magnetic susceptibility x. is given by —3J,/(2kg), where
J; is the out-of-plane spin coupling constant [see Eq. (5)].
The value of J, extracted from numerical results changes sign
near the phase boundary between the out-of-plane ferromag-
netic phase and in-plane antiferromagnetic phase. Therefore,
T.w, as measured above the magnetic ordering temperature,
provides a strong indication of the magnetic order at low
temperature.

Moiré Hamiltonian. The moiré Hamiltonian for valence
band states in rfMoTe, is given by [4]

" Rt LA Az (r)
AL L) S NG,
1({V. O
A0
where H, is formulated in the 2 x 2 layer pseudospin space,
T == is the spin (equivalent to valley) index, k = —io,
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is the momentum operator, and m* = 0.62m, is the effec-
tive mass (m, is the electron rest mass). The vectors k. =
[47 /Bapy (=3 /2, F1/2) account for the rotation-induced
momentum shift, where the moiré period ays is ap/0, with
ap = 3.472 A being the monolayer lattice constant. The in-
tralayer potentials A;(r) and the interlayer tunneling Az . (r)
are periodic functions of position r,

Afr) =2V ) cos(g; - r+ 1Y),

j=1.3.5

Aro(r) = w(l + ™7 4 78T, ©)

where [ is +1 and —1, respectively, for the bottom (b) and
top (¢) layers, g; = \%ZM (cos ”(’3_1), sin ”(’3_1)) are the first-
shell moiré reciprocal lattice vectors, and (V, ¥, w) are model
parameters.

The diagonal terms £V,/2 in H, are generated by an
out-of-plane electric displacement field. In the absence of
the electric field (V, = 0), the moiré superlattices have D3
point-group symmetry with C3; and C,, operations, where
C,; is the n-fold rotation about the j axis. The C,, symmetry
exchanges the two layers and is broken by a finite electric field
(V, # 0). A sufficiently large potential difference V, tends to
polarize low-energy carriers into a single layer and effectively
decouples the two layers.

The topology of moiré bands is characterized by the valley
contrast Chern numbers C, -, where n is the band index. Due
to time-reversal symmetry, C, ; = —C,. .. The value of C, .
depends on the model parameters [5]. In this work, we focus
on the parameter regime where C; ; of the first moiré valence
band is nontrivial at V, = 0. In this case, the first moiré band
in each valley can be understood as a coherent superposition
of two states that are, respectively, localized at A and B sites of
the moiré superlattice [see Fig. 1(b)] and polarized to opposite
layers [4]. The A and B sites form a buckled honeycomb lattice
since the two sites are also associated with different layers.
The out-of-plane electric field produces a staggered potential
on this honeycomb lattice. Therefore, the potential V, can
drive the first moiré band from a layer-coherent state on a
honeycomb lattice to a layer-polarized state on a triangular
lattice, and further generate a transition from a topological
band (C; ; # 0) to a topologically trivial band (C; ; = 0).

Coulomb interaction. To study many-body physics, we
construct the full Hamiltonian A = H; + H,, where H; and
H, describe, respectively, the single-particle and interacting
Hamiltonians. In the second quantization formalism, ﬁl is
expressed as

H, = Zzzhg)kpckz K1

kk LI T

- Z Z Z[h(r)]kz s z,fbk,l’,rs 3)

kk LI T

where c,i It (cy' p.) is the electron creation (annihilation)
operator of a plane-wave state with momentum k (k') in layer
[ (I') and valley T, and 4™ is the matrix representation of H,
in the plane wave basis. Since we study holes doped to the
valence bands, it is more convenient to use the hole operator
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FIG. 1. (a) Quantum phase diagram at v, = 1 as a function of V,
and 0. The color map represents the layer polarization P. (b) Moiré
superlattices of tMoTe,, where O, A, and B are three high-symmetry
sites. (c¢) Schematic illustration of the four 120° antiferromagnetic
states with different spatial occupations and spin vector chiralities.

b = c,: 1. In the second line of Eq. (3), a constant term is
dropped.
The hole-hole Coulomb interaction is described by

Z Y V@biygr b grobrrobire @)
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where A is the area of the system. Here we use the gate-
screened Coulomb potential V (g) = 2me® tanh(|q|d )/ (€lql),
where € is the dielectric constant and d is the gate-to-sample
distance. The system has a weak dependence on d for the
typical case of d > ay,. We take d to be 20 nm in our study.
The full Hamiltonian A respects the point-group symmetry of
the system, the time-reversal symmetry, and the valley (spin)
U(1) symmetry.

Phase diagram. We study the interaction-driven quan-
tum phase diagram as a function of 6 and V, at the
hole ﬁlling factor v, = 1. Here v, = n, + n,, where n; =
}VZ,” %.1.<Dk1r) is the number of holes per moiré unit
cell in layer /, and N is the number of cells. We take model
parameters to be V = 10 meV, ¢ = —89.6°, w = —8.5 meV,
and € = 15 based on our related study in Ref. [36]. This
previous work studied the V, = 0 phase diagram based on
a three-orbital model with the Hamiltonian projected to the
first three moiré bands [36], where the above set of model
parameters was found to correctly capture the v, = 1 QAHI,
experimentally observed at 6 around 4°. We note that low-
energy holes are confined to the B (A) site in the b (¢) layer for
Y = —89.6°.

We perform a mean-field study of the Hamiltonian A using
Hartree-Fock approximation in the plane-wave basis follow-
ing the procedure developed in Ref. [22] and present the
phase diagram at v, = 1 in Fig. 1(a), which includes several
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FIG. 2. [(a)—(d)] Left panel: £+ V,/2 of various competing
states at v, = 1 as a function of V,, where £ is energy per moiré
unit cell. The inset in (a) plots the relative energy £ — Ez_py, . Right
panel: Charge gap E, and layer polarization P in the v, = 1 ground
state as a function of V;. The vertical black dashed lines mark phase
transitions. Four representative values of 6 are (a) 2.5°,(b) 3°,(c) 4°,
and (d) 5°.

magnetic phases as we will describe. The phase diagram is
obtained by comparing the energies of multiple competing
states, as illustrated in Fig. 2. The color map of Fig. 1(a)
encodes the layer polarization P = n;, — n,. Here, P of a given
state is related to its energy per unit cell £ by P = —29E/9V,
following the Hellmann-Feynman theorem.

We start by describing the 6 dependence of the phase
diagram in Fig. 1(a) at V; = 0. (i) For 6 < 2.6°, there are
two types of ground states, labeled as A-FM, and B-FM,,
which have (spontaneous) opposite layer polarization and fer-
romagnetism along the out-of-plane z direction (FM;). Holes
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FIG. 3. [(a)-(d)] The v, = 1 mean-field band structure at 6 =
3.4° for different V,. The band structure is presented in the basis
defined by c,z,,,r and ¢ . operators. The solid (dashed) lines plot
bands with 7 = +(—). The color encodes the layer polarization of
Bloch states. The middle of the interaction-induced gap is marked
by the horizontal black dashed line. The band structure describes the
QAHI state in (a) and (b), but the B-FM state in (c) and (d). The layer
polarization of the unoccupied band above the chemical potential
varies dramatically over the moiré Brillouin zone in the QAHI state
and indicates the winding of layer pseudospin, but barely changes in
the B-FM, state.

in A-FM; (B-FM;) reside primarily in A (B) sites and are
spontaneously polarized to the ¢ (b) layer. The FM, order
results from spontaneous valley polarization. These states can
be understood as charge density waves (generalized Wigner
crystals) driven by the Coulomb repulsion between A and
B sublattices on the honeycomb lattice [24,36] and belong
to type-I multiferroics [47], where ferroelectricity and mag-
netism are nearly independent. (ii) For 6 € (2.6°,4.2°), the
ground state realizes QAHI, which has spontaneous valley
polarization but no layer polarization. The QAHI carries a
quantized total Chern number C with |C| = 1, which is a
result of the valley polarization and the band topology, as
demonstrated by the mean-field band structure in Fig. 3(a).
(iii) For 6 € (4.2°,5.0°), there are also two types of ground
states labeled as O-120° AF*, which are intervalley coherent
states with opposite valley ordering wave vector [5,36]. In real
space, the O-120° AF™ states have 120° AF order developed
mainly on O sites [see Fig. 1(c)], which leads to an enlarged
V3 x +/3 magnetic unit cell. The O-120° AF* phases are dis-
tinguished by the spin vector chirality x = (Sg X Sr+ays) * %>
which is the cross product between spin vectors located at
two neighboring O sites. x is &1 for 0-120° AF*, as illus-
trated in Fig. 1(c). Since x changes sign under C,, rotation,
the 120° AF* order spontaneously breaks the C,, symmetry
and results in spontaneous layer polarization P that is locked
to x, which is confirmed by numerical results in Fig. 2(d).
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Therefore, the 0O-120° AF* states are type-II multiferroics
[47-49], where ferroelectricity is generated by the magnetic
order. Finally, we note that the phase diagram at V, = 0 in
Fig. 1(a) is quantitatively consistent with that obtained from
the three-orbital model [36].

We now turn to the V, dependence of the phase diagram
in Fig. 1(a), which is symmetric with respect to the V, =0
line in the sense that states at £V, are related by the G,
rotation. (i) For 6 < 2.6°, an infinitesimal V, potential splits
the degeneracy between A-FM, and B-FM, states due to
their opposite layer polarizations. A positive (negative) V,
potential favors the B-FM, (A-FM,) state, and can further
drive a transition into the B-120° AF™ (A-120° AF™) state
at a critical V,, where the magnetic order at B (A) sites of
the b (¢t) layer changes from FM, to 120° AF with positive
(negative) spin vector chirality. (ii) For 6 € (2.6°,4.2°), the
QAHI state is robust up to some critical values of V,. There
are two ranges of 6. In the first range of 6 € (2.6°,3.7°),
there are transitions from the QAHI state to the B-FM,
(A-FM,) state, and finally to the B-120° AF" (A-120° AF™)
state as |V;| increases. By contrast, there is a single transi-
tion from the QAHI state to the B-120° AF' (4-120° AF ")
state at a critical V, for the second range 0 € (3.7°,4.2°).
(iii) For 6 € (4.2°,5.0°), an infinitesimal V, potential again
splits the degeneracy between O-120° AF® states because
of the ferroelectricity. A positive (negative) V, potential sta-
bilizes the O-120° AF™ (0-120° AF™) state, and therefore,
the spin vector chirality x is controlled by the electric field.
The V, potential drives the 0-120° AF"™ (0-120° AF ™) state
to the reentrant QAHI state, and finally to the B-120° AF"
(A-120° AF™) state for 6 € (4.2°, 4.5°), but generates a single
transition from the O-120° AF™ (O-120° AF™) state to the
B-120° AFt (A-120° AF") state for § € (4.5°,5.0°).

The phase boundaries in Fig. 1(a), as determined by energy
competition of various states (Fig. 2), mark first-order phase
transitions. Physical quantities, such as charge gap E, and
layer polarization P, generally have discontinuities across the
phase boundaries, as shown in the right panel of Fig. 2. For
example, P jumps and changes sign across the V, = 0 phase
boundary that separates the O-120° AF* states. The QAHI
and B-FM, (A-FM,) states are distinguished by the Chern
number C, but they have the same symmetry breaking pattern
at V, # 0. We numerically find that the transition between the
QAHI and B-FM, (A-FM,) states is first order; the charge gap
has a dip at the transition, but does not need to fully close, as
plotted in Fig. 2(b).

We discuss our work in the context of literature. Previous
studies of the v, = 1 phase diagram in tMoTe, projected
interactions onto a few selected noninteracting moiré bands
[24,36-38], while our calculation is performed in the plane-
wave basis without the projection. Our results verify that
the two approaches can generate largely consistent phase
diagrams, particularly on the field-tuned transition from the
QAHI phase to topologically trivial magnetic phases [37,38].
In addition, we reveal the real-space pattern of different
phases. For example, the 0-120° AF and B-120° AF* phases
are both intervalley coherent states, but are distinguished by
the real-space charge distribution.

Effective Heisenberg model. In the phases with large layer
polarization, the doped holes primarily reside at the B (A)

(a) 0=3° (b) V== 30 meV
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FIG. 4. Numerical values of J, J,,, and Jp as functions of V;
at # = 3° in (a), and as functions of 6 at V, =30 meV in (b).
The vertical black dashed lines separate the B-FM, and B-120° AF*
phases. The inset in (b) is a zoom-in plot.

sites in the b () layer, and the physics is then captured by
a one-orbital Hubbard model on a triangular lattice [50]. At
v, = 1, the Hubbard model can be further mapped to an effec-
tive Heisenberg model. Without loss of generality, we focus
on the B-FM, and B-120° AF* phases at V, > 0, where the
Heisenberg model can be parametrized as

Hs =J, Z SiSiss, + oy Z (SicSiess, + SeSkas,)
R.i=1,3,5 R,i=1,3,5

+Ip Y (SkSkis — SiSkss): 5)
R,i=1,3,5

where Sg represents a spin-1/2 operator at a B site, and
8; = ay(cos #, sin @) connects nearest-neighbor B
sites. We include three types of nearest-neighbor spin inter-
actions allowed by the spin (valley) U(1) symmetry, where
the first two terms of Hg are spin-exchange interactions
in the XXZ Heisenberg model, while the last term is an
effective Dzyaloshinskii-Moriya (DM) interaction. The cou-
pling constants J;, Jyy, and Jp can be extracted from the
mean-field energies of the following competing states of the
continuum Hamiltonian H: B-FM,, B-FM,, and B-120° AF*,
which have, respectively, out-of-plane ferromagnetism, in-
plane ferromagnetism, and 120° antiferromagnetism at B
sites. We note that the DM interaction favors noncollinear in-
plane magnetism and generates the energy difference between
B-120° AF* states with opposite spin vector chiralities. The
values of spin coupling constants obtained from the fitting are
shown in Fig. 4. One important observation is that the sign
of J;, Jyy, and Jp changes near (but not exactly at) the phase
boundary between the B-FM, and B-120° AF™ phases. In the
B-FM; phase, J; < 0 is ferromagnetic, but J,, > 0 is antifer-
romagnetic. This is reversed in the B-120° AF" state away
from the phase boundary, where J, > 0 is antiferromagnetic
and J,, < 0 is ferromagnetic. Another observation is that the
values of the coupling constants grow by orders of magnitude
as 6 increases from 2° to 5° for a fixed large |V,|, as shown
in Fig. 4(b). This is expected since electron hoppings on the
effective triangular lattice grow exponentially with decreasing
ay (increasing 6).

In the limit of V, — 400, the ¢ layer in the system can
be neglected; the valley-dependent momentum shifts T« of
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the b layer in the moiré Hamiltonian . can be gauged away,
which leads to an emergent valley (spin) SU(2) symmetry. A
corresponding gauge transformation can be applied to the spin
model H, which leaves the J, term invariant but results in
an SU(2) symmetric Heisenberg model for V, — +oo. The
coupling constants in Hg with this hidden SU(2) symmetry
satisfy the constraint Jy,/J, = —1/2 and Jp/J, = ++/3/2.
Our numerical values of the coupling constants closely follow
this constraint at large V.

In theory, there are competing magnetic interactions, such
as antiferromagnetic superexchange and ferromagnetic inter-
site Hund’s interaction [51,52]. Therefore, both ferromagnetic
and antiferromagnetic states are possible. In experiments, the
magnetic interactions can be determined by measuring the
magnetic susceptibility through the Curie-Weiss (CW) behav-
ior [53]. Due to the spin-valley locking in TMDs, spins can
be coupled to an out-of-plane magnetic field B,, but have
negligible couplings to an in-plane magnetic field. There-
fore, available optical experiments based on magnetic circular
dichroism [53] can only measure the out-of-plane magnetic
susceptibility .. = limp, .0 M./B,, where M, = ﬁ D r(SR)-
Above the magnetic ordering temperature, the CW law indi-
cates that x,, o« 1/(T — T.y), where T is the temperature and
T.w is the CW temperature. Using the effective spin model
Hg in Eq. (5), we find that kg7, = —3J,/2. Therefore, the
experimentally measured CW temperature T, depends only
on J;, but not on the in-plane coupling constants J,, and Jp.
Based on our numerical results of J, in Fig. 4, we find that the
sign of T, indeed provides a strong indication of the magnetic
ordering at zero temperature.

Discussions. In summary, we present a rich phase dia-
gram with a plethora of topological and topologically trivial
magnetic phases that are tuned by 6 and V,. A recent exper-
imental study with both transport and optical measurement
revealed the field-induced two transitions from the QAHI
phase to the FM, phase, and finally to the AF phase at
vy = 1 [30]. Our phase diagram not only captures these two
transitions driven by V,, but also demonstrates the possibil-
ity of a single transition without the intervening FM, phase.
Moreover, our analysis based on the effective spin model Hy
provides the theoretical mechanism for why the out-of-plane
magnetic susceptibility measured optically by magnetic cir-
cular dichroism above the ordering temperature can indicate
the low-temperature magnetic order. We view our results as
qualitative instead of quantitative since complications such
as lattice relaxation effects [34,35] are not fully taken into
account. Nevertheless, given the consistency with available
experiments [27-31], we expect our phase diagram to be qual-
itatively correct. We employ mean-field theory, while more
exotic phases not captured by Hartree-Fock approximation,
such as spin liquid phases [54], could also appear in the phase
diagram.

Acknowledgments. This work is supported by the Na-
tional Key Research and Development Program of China
(Grants No. 2022YFA1402401 and No. 2021YFA1401300),
the National Natural Science Foundation of China (Grant No.
12274333), and the start-up funding of Wuhan University. The
numerical calculations in this paper have been performed on
the supercomputing system in the Supercomputing Center of
Wuhan University.

[1] R. Bistritzer and A. H. MacDonald, Moire bands in twisted
double-layer graphene, Proc. Natl. Acad. Sci. USA 108, 12233
(2011).

[2] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional superconduc-
tivity in magic-angle graphene superlattices, Nature (London)
556, 43 (2018).

[3] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi,
E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated
insulator behaviour at half-filling in magic-angle graphene su-
perlattices, Nature (London) 556, 80 (2018).

[4] E. Wu, T. Lovorn, E. Tutuc, I. Martin, and A. H. MacDonald,
Topological insulators in twisted transition metal dichalco-
genide homobilayers, Phys. Rev. Lett. 122, 086402 (2019).

[5] H. Pan, F. Wu, and S. Das Sarma, Band topology, Hubbard
model, Heisenberg model, and Dzyaloshinskii-Moriya inter-
action in twisted bilayer WSe,, Phys. Rev. Res. 2, 033087
(2020).

[6] Y.-H. Zhang, D. Mao, Y. Cao, P. Jarillo-Herrero, and T. Senthil,
Nearly flat Chern bands in moiré superlattices, Phys. Rev. B 99,
075127 (2019).

[7] M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K.
Watanabe, T. Taniguchi, L. Balents, and A. F. Young, Intrinsic
quantized anomalous Hall effect in a moiré heterostructure,
Science 367, 900 (2020).

[8] A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K.

Watanabe, T. Taniguchi, M. A. Kastner, and D. Goldhaber-

Gordon, Emergent ferromagnetism near three-quarters

filling in twisted bilayer graphene, Science 365, 605

(2019).

H. Polshyn, J. Zhu, M. A. Kumar, Y. Zhang, F. Yang, C. L.

Tschirhart, M. Serlin, K. Watanabe, T. Taniguchi, A. H.

MacDonald, and A. F. Young, Electrical switching of magnetic

order in an orbital Chern insulator, Nature (London) 588, 66

(2020).

[10] H. C. Po, L. Zou, A. Vishwanath, and T. Senthil, Origin of mott
insulating behavior and superconductivity in twisted bilayer
graphene, Phys. Rev. X 8, 031089 (2018).

[11] H. C. Po, L. Zou, T. Senthil, and A. Vishwanath, Faithful tight-
binding models and fragile topology of magic-angle bilayer
graphene, Phys. Rev. B 99, 195455 (2019).

[12] Z. Song, Z. Wang, W. Shi, G. Li, C. Fang, and B. A. Bernevig,
All magic angles in twisted bilayer graphene are topological,
Phys. Rev. Lett. 123, 036401 (2019).

[13] J. Liu, J. Liu, and X. Dai, Pseudo landau level representation
of twisted bilayer graphene: Band topology and implications
on the correlated insulating phase, Phys. Rev. B 99, 155415
(2019).

[14] J. Liu, Z. Ma, J. Gao, and X. Dai, Quantum valley Hall effect,
orbital magnetism, and anomalous Hall effect in twisted multi-
layer graphene systems, Phys. Rev. X 9, 031021 (2019).

[9

—

L041106-5


https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26154
https://doi.org/10.1103/PhysRevLett.122.086402
https://doi.org/10.1103/PhysRevResearch.2.033087
https://doi.org/10.1103/PhysRevB.99.075127
https://doi.org/10.1126/science.aay5533
https://doi.org/10.1126/science.aaw3780
https://doi.org/10.1038/s41586-020-2963-8
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevB.99.195455
https://doi.org/10.1103/PhysRevLett.123.036401
https://doi.org/10.1103/PhysRevB.99.155415
https://doi.org/10.1103/PhysRevX.9.031021

BOHAO LI, WEN-XUAN QIU, AND FENGCHENG WU

PHYSICAL REVIEW B 109, L041106 (2024)

[15] P. Stepanov, M. Xie, T. Taniguchi, K. Watanabe, X. Lu, A. H.
MacDonald, B. A. Bernevig, and D. K. Efetov, Competing
zero-field Chern insulators in superconducting twisted bilayer
graphene, Phys. Rev. Lett. 127, 197701 (2021).

[16] P. J. Ledwith, G. Tarnopolsky, E. Khalaf, and A. Vishwanath,
Fractional Chern insulator states in twisted bilayer graphene:
An analytical approach, Phys. Rev. Res. 2, 023237 (2020).

[17]1 Y. Xie, A. T. Pierce, J. M. Park, D. E. Parker, E. Khalaf, P.
Ledwith, Y. Cao, S. H. Lee, S. Chen, P. R. Forrester et al., Frac-
tional Chern insulators in magic-angle twisted bilayer graphene,
Nature (London) 600, 439 (2021).

[18] T. Devakul, V. Crépel, Y. Zhang, and L. Fu, Magic in twisted
transition metal dichalcogenide bilayers, Nat. Commun. 12,
6730 (2021).

[19] Y. Zhang, T. Devakul, and L. Fu, Spin-textured Chern bands
in AB-stacked transition metal dichalcogenide bilayers, Proc.
Natl. Acad. Sci. USA 118, 2112673118 (2021).

[20] Y.-M. Xie, C.-P. Zhang, J.-X. Hu, K. F. Mak, and K. T.
Law, Valley-polarized quantum anomalous Hall state in Moiré
MoTe,/WSe, heterobilayers, Phys. Rev. Lett. 128, 026402
(2022).

[21] T. Devakul and L. Fu, Quantum anomalous Hall effect from
inverted charge transfer gap, Phys. Rev. X 12, 021031 (2022).

[22] H. Pan, M. Xie, F. Wu, and S. Das Sarma, Topological phases
in AB-stacked MoTe,/WSe, : Z, topological insulators, Chern
insulators, and topological charge density waves, Phys. Rev.
Lett. 129, 056804 (2022).

[23] M. Xie, H. Pan, F. Wu, and S. Das Sarma, Nematic excitonic in-
sulator in transition metal dichalcogenide Moiré heterobilayers,
Phys. Rev. Lett. 131, 046402 (2023).

[24] A. Abouelkomsan, E. J. Bergholtz, and S. Chatterjee, Multi-
ferroicity and topology in twisted transition metal dichalco-
genides, arXiv:2210.14918.

[25] C.L. Kane and E. J. Mele, Z, topological order and the quantum
spin Hall effect, Phys. Rev. Lett. 95, 146802 (2005).

[26] C. L. Kane and E. J. Mele, Quantum spin Hall effect in
graphene, Phys. Rev. Lett. 95, 226801 (2005).

[27] E. Anderson, F.-R. Fan, J. Cai, W. Holtzmann, T. Taniguchi,
K. Watanabe, D. Xiao, W. Yao, and X. Xu, Programming cor-
related magnetic states with gate-controlled moiré geometry,
Science 381, 325 (2023).

[28] J. Cai, E. Anderson, C. Wang, X. Zhang, X. Liu, W. Holtzmann,
Y. Zhang, F. Fan, T. Taniguchi, K. Watanabe, Y. Ran, T. Cao, L.
Fu, D. Xiao, W. Yao, and X. Xu, Signatures of fractional quan-
tum anomalous Hall states in twisted MoTe,, Nature (London)
622, 63 (2023).

[29] Y. Zeng, Z. Xia, K. Kang, J. Zhu, P. Kniippel, C. Vaswani, K.
Watanabe, T. Taniguchi, K. E. Mak, and J. Shan, Thermody-
namic evidence of fractional Chern insulator in Moiré MoTe,,
Nature (London) 622, 69 (2023).

[30] H. Park, J. Cai, E. Anderson, Y. Zhang, J. Zhu, X. Liu, C. Wang,
W. Holtzmann, C. Hu, Z. Liu, T. Taniguchi, K. Watanabe, J.-H.
Chu, T. Cao, L. Fu, W. Yao, C.-Z. Chang, D. Cobden, D. Xiao,
and X. Xu, Observation of fractionally quantized anomalous
Hall effect, Nature (London) 622, 74 (2023).

[31] F. Xu, Z. Sun, T. Jia, C. Liu, C. Xu, C. Li, Y. Gu, K. Watanabe,
T. Taniguchi, B. Tong, J. Jia, Z. Shi, S. Jiang, Y. Zhang, X.
Liu, and T. Li, Observation of integer and fractional quantum
anomalous Hall effects in twisted bilayer MoTe,, Phys. Rev. X
13, 031037 (2023).

[32] B. A. Foutty, C. R. Kometter, T. Devakul, A. P. Reddy,
K. Watanabe, T. Taniguchi, L. Fu, and B. E. Feldman,
Mapping twist-tuned multi-band topology in bilayer WSe,,
arXiv:2304.09808.

[33] J. Jain, In a twist, composite fermions form and flow without a
magnetic field, Physics 16, 163 (2023).

[34] C. Wang, X.-W. Zhang, X. Liu, Y. He, X. Xu, Y. Ran, T.
Cao, and D. Xiao, Fractional Chern insulator in twisted bilayer
MoTe,, arXiv:2304.11864.

[35] A. P. Reddy, F. Alsallom, Y. Zhang, T. Devakul, and L. Fu,
Fractional quantum anomalous Hall states in twisted bilayer
MoTe, and WSe,, Phys. Rev. B 108, 085117 (2023).

[36] W.-X. Qiu, B. Li, X.-J. Luo, and F. Wu, Interaction-driven
topological phase diagram of twisted bilayer MoTe,, Phys. Rev.
X 13, 041026 (2023).

[37] J. Dong, J. Wang, P. J. Ledwith, A. Vishwanath, and D. E.
Parker, Composite fermi liquid at zero magnetic field in twisted
MoTe,, Phys. Rev. Lett. 131, 136502 (2023).

[38] T. Wang, T. Devakul, M. P. Zaletel, and L. Fu, Topological
magnets and magnons in twisted bilayer MoTe, and WSe,,
arXiv:2306.02501.

[39] X.-J. Luo, W.-X. Qiu, and F. Wu, Majorana zero modes in
twisted transition metal dichalcogenides homobilayers, Phys.
Rev. B 109, 1041103 (2024).

[40] H. Goldman, A. P. Reddy, N. Paul, and L. Fu, Zero-field com-
posite fermi liquid in twisted semiconductor bilayers, Phys.
Rev. Lett. 131, 136501 (2023).

[41] N. Morales-Duran, N. Wei, and A. H. MacDonald, Magic an-
gles and fractional Chern insulators in twisted homobilayer
TMDs, arXiv:2308.03143.

[42] X.-Y. Song, Y.-H. Zhang, and T. Senthil, Phase transitions out of
quantum Hall states in moiré tmd bilayers, arXiv:2308.10903.

[43] X. Liu, C. Wang, X.-W. Zhang, T. Cao, and D. Xiao, Gate-
tunable antiferromagnetic Chern insulator in twisted bilayer
transition metal dichalcogenides, arXiv:2308.07488.

[44] C. Xu, J. Li, Y. Xu, Z. Bi, and Y. Zhang, Maximally lo-
calized wannier orbitals, interaction models and fractional
quantum anomalous Hall effect in twisted bilayer MoTe,,
arXiv:2308.09697.

[45] A. Abouelkomsan, A. P. Reddy, L. Fu, and E. J. Bergholtz,
Band mixing in the quantum anomalous Hall regime of twisted
semiconductor bilayers, arXiv:2309.16548.

[46] J. Yu, J. Herzog-Arbeitman, M. Wang, O. Vafek, B. A.
Bernevig, and N. Regnault, Fractional Chern insulators vs. Non-
magnetic states in twisted bilayer MoTe,, arXiv:2309.14429.

[47] D. Khomskii, Classifying multiferroics: Mechanisms and ef-
fects, Physics 2, 20 (2009).

[48] S.-W. Cheong and M. Mostovoy, Multiferroics: A magnetic
twist for ferroelectricity, Nat. Mater. 6, 13 (2007).

[49] Q. Song, C. A. Occhialini, E. Ergecen, B. Ilyas, D. Amoroso, P.
Barone, J. Kapeghian, K. Watanabe, T. Taniguchi, A. S. Botana,
S. Picozzi, N. Gedik, and R. Comin, Evidence for a single-
layer van der Waals multiferroic, Nature (London) 602, 601
(2022).

[50] F. Wu, T. Lovorn, E. Tutuc, and A. H. MacDonald, Hubbard
model physics in transition metal dichalcogenide Moiré bands,
Phys. Rev. Lett. 121, 026402 (2018).

[51] N. C. Hu and A. H. MacDonald, Competing magnetic states in
transition metal dichalcogenide moiré materials, Phys. Rev. B
104, 214403 (2021).

L041106-6


https://doi.org/10.1103/PhysRevLett.127.197701
https://doi.org/10.1103/PhysRevResearch.2.023237
https://doi.org/10.1038/s41586-021-04002-3
https://doi.org/10.1038/s41467-021-27042-9
https://doi.org/10.1073/pnas.2112673118
https://doi.org/10.1103/PhysRevLett.128.026402
https://doi.org/10.1103/PhysRevX.12.021031
https://doi.org/10.1103/PhysRevLett.129.056804
https://doi.org/10.1103/PhysRevLett.131.046402
https://arxiv.org/abs/2210.14918
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1126/science.adg4268
https://doi.org/10.1038/s41586-023-06289-w
https://doi.org/10.1038/s41586-023-06452-3
https://doi.org/10.1038/s41586-023-06536-0
https://doi.org/10.1103/PhysRevX.13.031037
https://arxiv.org/abs/2304.09808
https://doi.org/10.1103/Physics.16.163
https://arxiv.org/abs/2304.11864
https://doi.org/10.1103/PhysRevB.108.085117
https://doi.org/10.1103/PhysRevX.13.041026
https://doi.org/10.1103/PhysRevLett.131.136502
https://arxiv.org/abs/2306.02501
https://doi.org/10.1103/PhysRevB.109.L041103
https://doi.org/10.1103/PhysRevLett.131.136501
https://arxiv.org/abs/2308.03143
https://arxiv.org/abs/2308.10903
https://arxiv.org/abs/2308.07488
https://arxiv.org/abs/2308.09697
https://arxiv.org/abs/2309.16548
https://arxiv.org/abs/2309.14429
https://doi.org/10.1103/Physics.2.20
https://doi.org/10.1038/nmat1804
https://doi.org/10.1038/s41586-021-04337-x
https://doi.org/10.1103/PhysRevLett.121.026402
https://doi.org/10.1103/PhysRevB.104.214403

ELECTRICALLY TUNED TOPOLOGY AND MAGNETISM IN ...

PHYSICAL REVIEW B 109, L041106 (2024)

[52] N. Morales-Duran, N. C. Hu, P. Potasz, and A. H. MacDonald,
Nonlocal interactions in Moiré Hubbard systems, Phys. Rev.
Lett. 128, 217202 (2022).

[53]1 Y. Tang, L. Li, T. Li, Y. Xu, S. Liu, K. Barmak, K.
Watanabe, T. Taniguchi, A. H. MacDonald, J. Shan, and
K. F Mak, Simulation of Hubbard model physics in

L041106-7

WSe, /WS, moiré superlattices, Nature (London) 579, 353
(2020).

[54] A. Szasz, J. Motruk, M. P. Zaletel, and J. E. Moore, Chiral spin
liquid phase of the triangular lattice Hubbard model: A density

matrix renormalization group study, Phys. Rev. X 10, 021042
(2020).


https://doi.org/10.1103/PhysRevLett.128.217202
https://doi.org/10.1038/s41586-020-2085-3
https://doi.org/10.1103/PhysRevX.10.021042

