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An interface connecting two distinct conformal field theories hosts rich critical behaviors. In this paper, we
investigate the entanglement properties of such critical interface theories for probing the underlying universality.
As inspired by holographic perspectives, we demonstrate vital features of various entanglement measures
regarding such interfaces based on several paradigmatic lattice models. Crucially, for two subsystems adjacent
at the interface, the mutual information and the reflected entropy exhibit identical leading logarithmic scaling,
giving an effective interface central charge that takes the same value as the smaller central charge of the two
conformal field theories. Our paper demonstrates that the entanglement measure offers a powerful tool to explore
the rich physics in critical interface theories.
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Entanglement offers an exotic path to characterize the
universal information about conformal symmetry at quantum
critical points [1–6]. Especially, when conformal symmetry
is partially broken by boundaries and defects into a subset,
entanglement is sensitive to their presence and can capture
their intrinsic features [7–14]. In this Letter, we explore an
interface gluing two distinct conformal field theories (CFTs)
with different values of the central charge: c(I) for CFT(I)

and c(II) for another CFT(II), and focus on possible universal
entanglement signatures about the interface. Such kinds of
interfaces can naturally appear in various scenarios, like the
junction of two quantum wires [15,16], renormalization group
(RG) interfaces between QFTs [17–22], and evaporation of
black holes [23–25], just to name a few.

When two CFTs are glued in a scale-invariant way [26],
the theory is called an interface CFT (ICFT). Existing at-
tempts on ICFT are mainly based on a simple folding picture
[26–28] which converts the interface to a boundary condition
of the folded theory. While this tool is powerful for inves-
tigating two-point functions and transmission properties, the
entanglement properties are, in general, not under analytical
control and more difficult to access [29–34], especially for
our interested case of c(I) �= c(II). This problem is particularly
challenging in the context of CFT, and therefore motivates us
to consider a holographic estimation and lattice simulations.

Here, we consider two distinct CFTs with the same length
L glued into a circle with length 2L through an interface.
To access the entanglement structure of its ground state,
we start by investigating a holographic thin-brane model
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[25,35–41] for realizing ICFT2. While such a construction is
extremely special, it might be the simplest example of ICFTs
with nontrivial interfaces whose entanglement properties are
analytically tractable. Based on the insights from the holo-
graphic ICFT, we numerically study two paradigmatic lattice
models. As shown in Fig. 1(a), a symmetric entanglement-
cut configuration allows us to extract universal information
about the interface. In particular, we uncover a selection rule
of an effective interface central charge ceff = min{c(I), c(II)}
from the reflected entropy (RE), which offers a peek into the
underlying physics of interface.

Insights from AdS/ICFT. The gravity dual of a holographic
ICFT2 can be constructed in a bottom-up fashion using the
thin brane model [25,40,42]. As shown in Figs. 1(b) and 1(c),
two 3D anti–de Sitter (AdS3) spacetime M(I) and M(II) with
different AdS radii α(I) and α(II) are joined on a tensile brane
Q, to mimic an ICFT2 of gluing two distinct CFTs. The AdS
radii on the gravity side and the central charges on the ICFT2

side are related by [43]

c(I,II) = 3α(I,II)/2GN , (1)

where GN is the Newton constant, and we let c(I) < c(II) in
the following. Meanwhile, the location of the brane Q is
determined by solving a junction condition between M(I) and
M(II), which reflects nontrivial interaction between CFT(I)

and CFT(II). For a discussion on the standard AdS/CFT corre-
spondence and the thin-brane model for realizing ICFT2, see
Supplemental Material [44] and also Refs. [25,45–48].

The holographic ICFT2 can be considered to be living
on the asymptotic boundary of the current AdS3 setup. In
AdS/ICFT, the EE for a subsystem A in the ICFT can be
computed from the length of the geodesic γA which connects
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FIG. 1. A schematic of ICFT and the corresponding holographic
model. (a) Two distinct CFTs with length L are glued into an ICFT
on a circle with length 2L. Two subsystems A (blue shade) and B
(green shade) are located on two sides of the interface (red). (b),
(c) The thin-brane model for realizing a holographic ICFT2 contains
two AdS3 manifolds M(I) and M(II) with different AdS radii α(I)

and α(II) joined by a 2D thin brane Q in gray. For convenience, we let
c(I) < c(II), and hence α(I) < α(II). Yellow lines in (b) represent the
RT surface of A/B for calculating the holographic EE, and purple
line in (c) is the entanglement-wedge cross section �AB of A and B.

the endpoints of A as [49,50]

SA = Length(γA)

4GN
. (2)

Here, γA is called the Ryu-Takayanagi (RT) surface of A.
Figure 1(b) shows what the RT surfaces look like for a single
interval A in M(I) and a single interval B in M(II). Note
that it is possible for an RT surface to penetrate the brane,
which results in a diverse behavior of the EE. However, for an
interval A living in CFT(I), γA always lies inside M(I) and we
find

SA∈CFT(I) = c(I)

3
ln

(
2L

πε
sin

(
π l

2L

))

= c(I)

3
ln

l

ε
+ O

((
l

L

)2
)

, (3)

where l is the length of A and ε is a UV cutoff corresponding
to the lattice distance. We can also get a clean result when A
is an interval with length 2l and is symmetric with respect to
the interface. Let us call the EE in this case the symmetric EE,
and it turns out to be

Ssymm = c(I) + c(II)

6
ln

(
2L

πε
sin

(
π l

L

))
+ const. (4)

This relation is not only accessible via a holographic calcula-
tion but also can be derived by using the folding trick and the
Cardy-Tonni approach [51] in the context of CFT, see details
in Supplemental Material [44].

Another useful correlation measure that reflects entangle-
ment structures to study is the RE. Initially proposed in the
context of AdS/CFT [52], the RE has attracted considerable
attention [53–63]. For a (generally mixed) state ρAB on sub-
system A ∪ B, we can diagonalize it as ρAB = ∑

i pi|ϕi〉〈ϕi|.
The canonical purification of ρAB is accordingly defined as
|√ρAB〉 = ∑

i
√

pi|ϕi〉|ϕ∗
i 〉, where for each |ϕi〉 ∈ HA ⊗ HB,

|ϕ∗
i 〉 ∈ HA∗ ⊗ HB∗ is its CPT conjugate. The RE between A

and B is defined as the EE of the canonical purification:

SR
A:B = SAA∗ (|√ρAB)〉. (5)

Notably, as shown in Fig. 1(c), in holographic theories, RE
can also be computed geometrically as [52]

SR
A:B = 2Length(�AB)

4GN
, (6)

where �AB is the minimal surface crossing the region sur-
rounded by the entanglement wedge [64–66] γAB ∪ A ∪ B of
subsystem A ∪ B, so-called the entanglement-wedge cross-
section [52,56,67–70]. For two adjacent subsystems A and B
with size l = lA = lB that touch at the interface, �AB always
locates inside M(I) and one finds [40,44]

SR
A:B = c(I)

3
ln

(
2L

πε
tan
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π l

2L

))

= min{c(I), c(II)}
3

ln
l

ε
+ O
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L

)2
)

, (7)

which depends only on the smaller central charge. Note that,
compared to previous results [25,39–41] where the setups
were on an infinite line, we present the very first analysis
of holographic entanglement entropy in holographic ICFT
defined on a compact space constructed by the thin-brane
model. Although we have just presented analytic formulas
for some special choices of the subsystem, results for generic
subsystems can be found in Supplemental Material [44]. In
the analysis for generic subsystems, taking into account the
nontrivial saddle points, where the RT surface crosses the
thin-brane twice [25], turns out to be very important.

Below, we will introduce two paradigmatic lattice models
and numerically test if the behaviors observed above also hold
in them. Before proceeding, we would like to note that, while
it is natural to expect that Eq. (4) holds generically [39], it
would be very surprising to find Eqs. (3) and (7) hold in
generic cases. To see this, we may consider a trivial ICFT with
no interaction between CFT(I) and CFT(II). In this case, for
an interval A lying in CFT(I) and ending at the interface, the
leading order of SA would be (c(I)/6) ln l , which is roughly
half of Eq. (3). As for the RE, since ρAB = ρA ⊗ ρB in this
case, SR

A:B would be zero which differs a lot from Eq. (7). On
the other hand, Eq. (4) still holds. Therefore, up to this point, it
is natural to expect that Eqs. (3) and (7) reflect the uniqueness
of the interface interaction exhibiting in AdS/ICFT. However,
surprisingly, we will see that all of Eqs. (3), (4), and (7) hold
in the lattice models studied below, which suggests that they
may generically hold in nontrivial ICFTs.

Lattice models and numerical method. In what follows, we
consider two lattice models for realizing ICFT2. The first one
is the O’Brien-Fendley (OF) model [71] with an inhomoge-
neous coupling constant

H1 = HTFI + gL

∑
n�−1

Hint (n) + gR

∑
n�0

Hint (n), (8)

where HTFI = ∑
n σ x

n σ x
n+1 − σ z

n , Hint = σ x
n−1σ

x
n σ z

n+1 +
σ z

n−1σ
x
n σ x

n+1, and the site index n run over [−L, L − 1].
The anisotropy between gL and gR creates an interface at
the bond connecting spins at site −1 and site 0. Since we
are considering a periodic chain, there is another symmetric
interface bond between site −L and site L − 1. In the
homogeneous case of g = gL = gR, the OF model realizes a
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(a) (b) (c) (d)

(e)

FIG. 2. The bipartite EE in a fermionic model of gluing the real fermion CFT (c(I) = 1
2 ) at left and the complex fermion CFT (c(II) = 1) at

right, under a periodic boundary condition. (a)–(c) The dependence of EE on the subsystem size l , with fixed total system size 2L = 1000. The
insets show corresponding entanglement-cut configurations: fix one end (a) at the interface, (b) in the middle of CFT(I), and (c) in the middle
of CFT(II). The red dashed lines represent the phase boundaries that one end of the subsystem touches the interface, which hosts a jump on the
bulk degrees of freedom. (d) The dependence of EE on the total system size 2L, where both ends of the subsystem A lie on the interface. (e)
The dependence of symmetric EE on the subsystem size l , with fixed total system size 2L = 1000. These numerical results are consistent with
holographic calculations (see Supplemental Material [44]).

tricritical Ising fixed point at g = gc that separates a phase
with Ising universality class for g < gc and a gapped phase
for g > gc.1. In the context of CFT, tuning the coupling
constant g away from gc can be understood as adding a 
1,3

operator that triggers an RG flow from tricritical Ising CFT to
Ising CFT or massive IR, depending on the sign of 
1,3 [72].
Setting gL = 0 and gR = gc, the lattice Hamiltonian in Eq. (8)
offers an appropriate playground for an interface of gluing
the Ising CFT at the left part (with c(I)

1 = 1
2 ) and the tricritical

Ising CFT at the right part (c(II)
1 = 7

10 ).
The second one is a noninteracting fermionic model with

inhomogeneous pairing

H2 =
∑

n�−1

HRF(n) +
∑
n�0

HCF(n), (9)

where HRF(n) = HCF(n) + ( fn fn+1 + H.c.) − 2 f †
n fn and

HCF(n) = − f †
n fn+1 + H.c. Here, the left half chain with

pairing terms realizes a real (Majorana) fermion CFT
with c(I)

2 = 1
2 , but the right half chain realizes a complex

(Dirac) fermion CFT with c(II)
2 = 1. Again, an interface of

gluing two distinct CFTs is created between site −1 and
site 0. Up to a Jordan-Winger transformation, this model
is dual to a spin model of gluing an Ising chain and an
XX chain.

For accessing entanglement properties of these lattice mod-
els, we perform a numerical simulation based on matrix
product states (MPS) techniques [73].2 First, the ground state
of the model is solved by the density matrix renormalization
group algorithm [76] with a bond dimension χ . At this step,
one can easily obtain the bipartite EE. Second, for calculat-
ing mutual information (MI) and RE, we need to evaluate

1Theoretically, one can confirm gc < 0.5, but the exact value of gc

can only be numerically obtained and would be modified by finite
size or the interface setting. In the homogeneous case, we find the
previously reported critical value gc ≈ 0.428 in Ref. [71] is faithful,
but it is modified in the interface case as gc ∼ 0.41 for our considered
total system size.

2Here we note that the second fermionic model is noninteracting
and Gaussian, which allows an exact solution of the EE and MI from
the correlation matrix techniques [74,75].

reduced density matrices for a continuous region (the sub-
systems A, B and their complement A ∪ B), for which the
computational complexity grows exponentially. An efficient
simulation requires further compressing the dimension of lo-
cal Hilbert space of the cutting subsystem (the dimension
of reduced density matrix ρA) to d̃A by applying a standard
MPS coarse-graining procedure to the physical leg of the
subsystem’s local wave function (see Supplemental Material
[44]). Through this approach, we are able to calculate the
multipartite entanglement measures—MI and RE with high
accuracy and affordable computational complexity: χ = 100
and d̃A = 100 for the Hamiltonian in Eqs. (8) and (9) with
total system size 2L up to 300 under a periodic boundary
condition.

Entanglement entropy. Let us begin with inspecting the
dependence of EE on the subsystem size. In Fig. 2, we present
the result on the fermionic Hamiltonian of Eq. (9), as its
noninteracting nature allows an exact solution of the EE (see
inhomogeneous OF model in Supplemental Material [44]).
Remarkably, we find good agreement between these lattice
results and a holographic calculation on the thin-brane model
(see Supplemental Material [44]) for various entanglement-
cut configurations. The subsystem-size dependence of EE
shows a clear change in bulk degrees of freedom across
the interface, corresponding to the two distinct bulk cen-
tral charges on each side of the interface. Moreover, when
both ends of the subsystem lie on the interface (subsystem
A = {−L,−L + 1, · · · ,−1}), we find that the corresponding
EE exhibits a logarithmic scaling SA,inter ∝ ln L, as shown
in Fig. 2(d). This provides strong evidence that a mas-
sive RG flow is not triggered in our lattice model, while
the prefactor of logarithmic EE of cutting along the inter-
face is generally not of universal meaning in the case of
CFT(I) �= CFT(II) [77].

We now try to extract possible universal information about
the interface from the finite-size scaling forms obtained from
holographic derivation. In the case of cutting a subsystem A
in CFT(I), holographic calculation on the thin-brane model
gives the result shown in (3), as a pure CFT(I). In lattice
simulations, we find that this scaling form is valid at l  L,
even when A = [−l,−a], a → 0 is very close to the inter-
face. Another solvable case is the symmetric EE of cutting a
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FIG. 3. The scaling behavior of MI IA:B and RE SR
A:B for two adjacent subsystems A and B, of which the touching point is located at the

interface, for (a) the inhomogeneous OF model of gluing the Ising CFT (c(I) = 1
2 ) and the tricritical Ising CFT (c(II) = 7

10 ), and (b) a fermionic
model of of gluing the real fermion CFT (c(I) = 1

2 ) and the complex fermion CFT (c(II) = 1), with total system size 2L = 300. The dashed lines
represent linear fits in the form of SR

A:B ∼ IA:B = ceff
3 ln l + b under l  L. (c) A finite-size scaling of the extracted ceff (L) from RE and MI,

under various total system size 2L ∈ [100, 300]. The dashed lines represent linear fits in the form of ceff (L) = k/L2 + ceff (L → ∞), giving
ceff,1(L → ∞, MI) ≈ 0.501, ceff,1(L → ∞, RE) ≈ 0.499 for the OF model and ceff,2(L → ∞, MI) ≈ 0.491, ceff,2(L → ∞, RE) ≈ 0.489 for
the fermionic model. (d) A schematic of the entanglement-cut configuration, where two adjacent subsystems A and B with the same length l
touch at the interface.

subsystem A = [−l, l] that is symmetrically around the inter-
face at x = 0. Holographic calculation suggests the scaling
form in a finite system is given by (4). This scaling form
also appears in numerical simulation on lattice models with
high accuracy [see Fig. 2(e)]. For characterizing the interface,
one may consider extracting the interface entropy (see Supple-
mental Material [44] for a definition) from lattice simulations.
However, different from the case of gluing two identical CFTs
[31,32,34,78,79], here we do not have a simple way to sep-
arate the interface entropy from the nonuniversal correction
in the subleading term of EE. Moreover, it is worth noting
that the discussion in this section focuses on the logarithmic
dependence of EE on the subsystem size l . This is, in general,
different from considering the logarithmic dependence on the
UV cutoff ε, for which a universal relation of the prefactor is
expected [39,41,80].

Reflected entropy and mutual information. Let us then
move on to study the RE and MI. In pure CFTs, a symmet-
ric entanglement-cut configuration of separating two adjacent
subsystems A and B with the same length l leads to SR

A:B ∼
IA:B ∼ c

3 ln l . By putting the touching point of A and B onto the
interface (see a schematic in Fig. 3), holographic calculation
suggests that the RE remains the same logarithmic scaling in
ICFTs, as shown in Eq. (7). The only difference appears in the
prefactor with replacing the central charge c to an effective
value ceff = min{c(I), c(II)}. While this behavior was observed
in a simple thin-brane model, we will see that, surprisingly,
it also precisely holds in both of the two lattice models
considered here.

As shown in Figs. 3(a) and 3(b), for a given finite total
system size 2L, the RE SR

A:B exhibits a logarithmic dependence
on l . A further finite-size scaling [see Fig. 3(c)] on the pref-
actor of logarithmic RE suggests ceff,1 ≈ 0.499, approaching
min{ 1

2 , 7
10 }, and ceff,2 ≈ 0.489, approaching min{ 1

2 , 1}, in
the thermodynamic limit L → ∞. Moreover, holographic
calculation implies that the MI IA:B = SA + SB − SAB (and,
consequently, the Markov gap SR

A:B − IA:B [81]) in ICFTs has
a convoluted dependence on the subsystem size l , since SB

involves a nontrivial phase of EE scaling (see details in Sup-
plemental Material [44]). Numerically, we also find that the

RE and MI exhibit distinct scaling behaviors on the subsystem
size l when l becomes comparable with the total system size
2L. Nevertheless, we behold a logarithmic MI IA:B ∼ c′

eff
3 ln l

under l  L, sharing the same selection rule of ceff = c′
eff =

min{c(I), c(II)} [a finite-size scaling gives c′
eff,1(L → ∞) ≈

0.501 on the OF model and c′
eff,2 ≈ 0.491 on the fermion

model]. To summarize, we conclude that there is a uni-
versal scaling of tripartite entanglement measure in critical
interface theories as SR

A:B ∼ IA:B ∼ ceff
3 ln l , with a single ef-

fective central charge satisfying the universal selection rule of
ceff = min{c(I), c(II)}.

Discussions and outlooks. We have explored possible uni-
versal entanglement signatures in ICFTs through numerical
simulations on the representative lattice models. Some ini-
tiations were provided from a holographic perspective by
considering a simple brane construction in AdS3 to mimic the
ICFT2. Surprisingly, numerical results obtained from lattice
models resemble a lot of observations in AdS/ICFT. One of
the most important features is that the effective central charge
appearing in the RE is given by ceff = min{c(I), c(II)}.

These common features between lattice models and
AdS/ICFT are surprising because they do not hold, in general,
ICFTs, and one can easily construct a counterexample, e.g.,
by considering an ICFT without interaction between the two
sides. In general, the value of 1

3 min{c(I), c(II)} is expected to
be the upper bound for the prefactor of RE, and the condition
of saturating it is not clear. Intuitively, saturating the upper
bound requires (almost) perfect transmission associate with
the interface. On lattice models, this means that we should
let the (dominate) bond coupling at the interface take the
same value as in the bulk of the connected two half-spaces.
Otherwise, the transmission rate of the interface would be
strongly reduced. Both of the two considered lattice models
are constructed based on this consideration. Moreover, it is
tested that local perturbations on the interface do not lead to a
qualitative change of the universal logarithmic scaling of MI
and RE, which indicates an RG stability of our critical theo-
ries. It motivates us to conjecture that the observed features
are universal for a class of critical interface theories with an
RG stability, which needs further study to demonstrate.
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Moreover, we would like to point out that the inhomo-
geneous OF model realizes a specific case of RG interfaces
between nearby minimal models (tricritical Ising CFT at UV
and Ising CFT at IR) [18,22]. Universal information about the
RG flow is expected to be traceable through two-point corre-
lations [17–19,22], which was investigated by a recent work
[82] with introducing a different lattice model. Our results are
potentially helpful for extracting this information from the en-
tanglement structure. Another free fermionic interface model
provides a particular approach to study symmetry breaking in
ICFTs, where the U (1) symmetry of Dirac fermion is broken
to Z2 of Majorana fermion on half-space. In addition, it would
also be interesting to explore other interface models with more
complicated structures, e.g., an interface separating a unitary

CFT from a nonunitary CFT (e.g., Ising to Lee-Yang fixed
point [29,83]). We leave these to future investigations.
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