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Braiding topology of symmetry-protected degeneracy points in non-Hermitian systems
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Degeneracy points in non-Hermitian systems are of great interest. While a homotopic framework exists for
understanding their behavior in the absence of symmetry, it does not apply to symmetry-protected degeneracy
points with reduced codimension. In this work, utilizing algebraic topology, we provide a systematic classifi-
cation of these symmetry-protected degenerate points and investigate the braid conservation rule followed by
them. Using a model Hamiltonian and circuit simulation, we discover that, contrary to simple annihilation,
pairwise-created symmetry-protected degeneracy points merge into a higher-order degeneracy point, which goes
beyond the abelian picture. Our findings empower researchers across diverse fields to uncover new phenomena
and applications harnessing symmetry-protected non-Hermitian degeneracy points.
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Introduction. Band degeneracies have played a significant
role in the topological band theory of Hermitian systems,
with their topology classified through homotopy theory [1–3].
Well-known instances, such as Weyl points, Dirac points, and
nodal lines [4–8], led to a plethora of exotic physics [9–15].
In recent years, the study of non-Hermitian systems has
gained momentum [16–22]. In non-Hermitian settings, de-
generacies can possess complex values and encompass more
exotic singularities, such as defective degeneracies known as
exceptional points [23–25], as well as unique nondefective
degeneracy points that do not have counterparts in the Her-
mitian regime [22,26,27]. Recent investigations have revealed
that non-Hermitian degeneracies without any symmetry can
be classified by the braid group Bn [28,29], which goes be-
yond the topological classification based on line or point
gaps [16,17]. Since Bn is a nonabelian group for n � 3
where n is the dimension of a Hamiltonian, the evolution of
non-Hermitian degeneracies follows a nonabelian conserva-
tion rule (NACR) [30–32]. Braided structures in Hermitian
systems have led to many exotic phenomena [1,14,33–39].
Consequently, the recent discovery of braid topology in non-
Hermitian systems without symmetry has further sparked
exploration in various fields including acoustics [40,41], pho-
tonics [21], and condensed matter physics [42].

Symmetry plays a vital role in topological phases. In
Hermitian systems, the ten-fold Altland-Zirnbauer symmetry
[43] unlocks the classification of symmetry-protected topo-
logical phases beyond the scenarios without any symmetry.
Similarly, in non-Hermitian systems, 38-fold symmetry en-
riches the classifications of wave-function topology based
on K-theory [16,19]. Symmetries also have important con-
sequences in the braid properties of spectral topology in
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non-Hermitian systems. Of particular importance are symme-
tries that can reduce the codimension of degeneracy points,
such as pseudo-Hermiticity (psH), parity-time symmetry
(PT), chiral symmetry (CS), and parity-particle-hole symme-
try (CP) [22–24,26,44–53]. Such symmetries can significantly
affect the braid topology. Specifically, for a system without
symmetry, the generic degeneracy point has codimension 2
and thus occurs as a isolated point in a two-dimensional (2D)
parameter space [the left panel of Fig. 1(a)]. The topology
of such a point can be characterized by the closed path en-
circling it, based on the homotopy theory. However, with the
above symmetries, the generic degeneracy has codimension 1
[45,54] and thus forms a nodal line in a 2D parameter space
[the right panel of Fig. 1(a)]. Consequently, its topology can
no longer be characterized by a closed path as the path would
unavoidably cross the singularities [53,55], disallowed in ho-
motopy theory [28–30,53,56]. As a result, the braid topology
classifying degeneracy points in non-Hermitian systems with
symmetry remains elusive.

In this work, we address this question by providing a
general theory to elucidate the braid topology associated with
symmetry-protected degeneracy points. We demonstrate that,
in the situation with reduced codimension, the eigenvalue
topology can be characterized by the braid group Bm, where
m is no longer the dimension of the system Hamiltonian. Fur-
thermore, a specific type of degeneracy points, distinct from
the ordinary degeneracy points in systems without symmetry,
contributes to the braid topology. Additionally, a NACR gov-
erns the parametric evolution of these degeneracy points. We
illustrate this NACR with exemplary systems. Our work not
only extends the scope of the braid topology to non-Hermitian
systems with symmetries, but also enables researchers to har-
ness and manipulate these symmetry-protected degeneracy
points in various physical domains, such as circuit systems
[49–51,57], acoustic cavities [40,41], and coupled ring res-
onators [23,52,58].
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FIG. 1. (a) A degeneracy point (the purple circle in the left panel)
without symmetry becomes a nodal line (the purple line in the right
panel) in the presence of certain symmetries. (b) A closed path (the
blue-black arrowed line) originating from Q0 enclosing two CPDPs
(red circles) and passing through a nodal line in a 2D parameter
space. This nodal line separates two areas (beige and gray) with prob-
ably different numbers of complex conjugate pairs of eigenvalues.
(c) An illustration of sorting eigenvalues of a 6 × 6 non-Hermitian
system with PT or psH symmetry at the beginning of the path �.
(d) An illustration of braiding of the eigenvalue strands along the
path � in (b). τi denotes the braid algebra.

Theory. We introduce the notations used in this Let-
ter. Z, R, R+, and C denote the sets of integers, real
numbers, nonnegative real numbers, and complex numbers,
respectively. C+(−) = {x ∈ C | Im(x) � (�)0} while C0

+ =
{x ∈ C | Im(x) > 0}. Let (a1, . . . , an) and [a1, . . . , an] be an
ordered and unordered list of n elements allowing repetition,
respectively. (a↓

1 , . . . , a↓
n ) stands for the ordered list obtained

by sorting [a1, . . . , an], ai ∈ C such that Im(a↓
i ) > Im(a↓

j )

[and Re(a↓
i ) � Re(a↓

j ) if Im(a↓
i ) = Im(a↓

j )] for i < j. We de-
note Confn(F ) (UConfn(F )) as the nth-ordered (unordered)
configuration space of topological space F (Confn(F ) =
{(m1, . . . , mn) ∈ Fn | mi �= mj for all i �= j}). Bn and Sn de-
note the braid group on n strands and the n-order symmetric
group, respectively. σi represents the Pauli matrix.

Consider a μ × μ Hamiltonian H (λ) that depends on d-
dimensional parameters λ ∈ Rd . We focus on the following
antiunitary symmetries:

PT: UPTH∗(λ)U −1
PT = H (λ), UPTU ∗

PT = ±1,

psH: GpsHH†(λ)G−1
psH = H (λ),

CP: UCPH∗(λ)U −1
CP = −H (λ), UCPU ∗

CP = ±1,

CS: GCSH†(λ)G−1
CS = −H (λ), (1)

where Us (Gs) are unitary (Hermitian) matrices and ∗ and †
denote the complex conjugate and conjugate transpose, re-
spectively. Based on these symmetries, we study the m-fold

degeneracy points, which correspond to the m-fold multiple
roots of the characteristic polynomial of H (λ):

Pλ(E ) = det[H (λ) − E ]

= aμ(λ)Eμ + · · · + a1(λ)E + a0(λ). (2)

The symmetries in Eq. (1) require that all the coefficients
of Eq. (2) ai are either real or imaginary. Thus, the codi-
mension of a two-fold degeneracy point equals 1 in general
[45] (see the Supplemental Material, Sec. I [59] for details).
Consequently, it is generally impossible for a closed path in
a 2D parameter space to enclose a degeneracy point without
encountering any other degeneracy points, as illustrated in the
right panel of Fig. 1(a) where the path (blue-black arrowed
line) unavoidably passes through a line of degeneracy (pur-
ple line). Previous studies introduced the winding number of
the resultant vector to address this issue [45]. However, the
winding number is abelian; thus, it generally cannot capture
the nonabelian topology intrinsic to non-Hermitian systems,
although there may be an exceptional case where the topology
is abelian.

In the main text, we primarily focus on PT symmetry. Other
symmetries in Eq. (1) are investigated in the Supplemental
Material, Sec. II [59]. The approach is summarized as follows:
CP symmetry and CS symmetry can be mapped onto PT
symmetry and psH symmetry, respectively, by transforming
H to iH . Furthermore, psH symmetry can be encompassed in
the subsequent discussion of PT symmetry.

For a Hamiltonian with PT symmetry, its eigenvalues are
real or appear in complex conjugate pairs. We begin by assum-
ing that, within a parameter region, the number of conjugate
pairs of eigenvalues remains constant and equals m. In this
case, the topological space of eigenvalues can be represented
as

X (m) = {[ε1, . . . , εm, ε∗
m, . . . , ε∗

1 , ε̃1, . . . , ε̃μ−2m]}, (3)

where Im(εi ) � 0, ε̃i ∈ R, ε̃i �= ε̃ j for all i �= j. The unordered
nature of the list arises from the equivalence of polynomials
under the permutation of roots, while the condition ε̃i �= ε̃ j

results from the assumption that m remains constant. It is
important to note that the length of the eigenvalue list does
not change at exceptional points according to our definition
[27]. Next, we identify the singularity within the eigenvalue
space. We define the complex conjugate pair degeneracy point
(CPDP) as a degeneracy point where εi = ε j and simultane-
ously there exist another two eigenvalues ε∗

i = ε∗
j for (i �= j).

The appearance of CPDP is a codimension 2 phenomenon (see
details in the Supplemental Material, Sec. III [59]). To remove
these singularities, we denote the space punctured by CPDPs
as

X (m)
0 = {(ε↓

1 , . . . , ε↓
m, (ε↓

m)∗, . . . , (ε↓
1 )∗, ε̃↓

1 , . . . , ε̃
↓
μ−2m)}, (4)

where ε
↓
i �= ε

↓
j for i �= j and we sorted the unordered eigen-

value list in Eq. (3), resulting in a unique representation. We
define a map g from X (m)

0 to Confm(C+) × Confμ−2m(R) as
follows:

g[(ε↓
1 , . . . , ε↓

m, (ε↓
m)∗, . . . , (ε↓

1 )∗, ε̃↓
1 , . . . , ε̃

↓
μ−2m)]

≡ (ε↓
1 , . . . , ε↓

m, ε̃
↓
1 , . . . , ε̃

↓
μ−2m). (5)
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The map g is injective and continuous and its inverse is also
continuous. Therefore, it is a homeomorphism between X (m)

0

and its image g(X (m)
0 ):

X (m)
0

∼= g
(
X (m)

0

)
= {(ε↓

1 , . . . , ε↓
m, ε̃

↓
1 , . . . , ε̃

↓
μ−2m)}

= {([ε1, . . . , εm], [ε̃1, . . . , ε̃μ−2m])}
= UConfm(C+) × UConfμ−2m(R). (6)

Consequently, we obtain the fundamental group of the punc-
tured eigenvalue space X (m)

0 (omitting the base point notation
Q) as

π1(X (m)
0 ) = π1(UConfm(C+) × UConfμ−2m(R))

= π1(UConfm(C+))

= Bm, (7)

where we use the fact that π1(UConfμ−2m(R)) is trivial
[60,61] and π1(UConfm(C+)) = Bm [62]. Therefore, the braid
group Bm can be utilized to capture the eigenvalue topology,
with its order being equal to the number of conjugate pairs of
eigenvalues.

For the PT2 = −1 (UPTU ∗
PT = −1) case, we have

〈ψr |UPTK|ψr〉 = −〈ψr |UPTK|ψr〉 = 0. (8)

Here |ψr〉 denotes a right eigenvector with eigenvalue ε, and
K is the complex conjugate operator. This equation indicates
that |ψr〉 and UPTK|ψr〉 are linearly independent [63]. Since
UPTK|ψr〉 is also an eigenvector with eigenvalue ε∗, we con-
clude that m = μ/2 (m ∈ Z) and the number of complex
conjugate pairs is equal to μ/2.

For the PT2 = 1 case (which also includes the psH case.
See Supplemental Material, Sec. II [59]), the number of com-
plex conjugate pairs of eigenvalues [roots of the characteristic
polynomial Pλ(E )] can vary. This number for a μ-order real
coefficient polynomial Pλ(E ) can be characterized by Zμ

2 , the
revised sign list of its discriminant sequence [64,65].

The revised sign list can be introduced as follows. First,
we consider a polynomial p’s discrimination matrix Discr(p).
This matrix is a variant of the Sylvester matrix, defined in
Eq. (S18) in the Supplemental Material, Sec. III [59]. We
denote the determinant of the submatrix of Discr(p) formed
by the first 2k rows and the first 2k columns as Dk for k =
1, . . . , n. The resulting n-tuple

(D1, D2, . . . , Dn) (9)

is referred as the discriminant sequence of the polynomial
p(x). Then, the corresponding sequence

(sign(D1), sign(D2), . . . , sign(Dn)) (10)

is termed the sign list of the discriminant sequence.
Given a sign list (s1, s2, . . . , sn), we construct a new list
(ϒ1, ϒ2, . . . , ϒn), namely, the revised sign list, as follows.

(1) If a section of the given list (si, si+1, . . . , si+ j ) meets
the condition where si �= 0, si+1 = si+2 = · · · = si+ j−1 = 0,
si+ j �= 0, then we replace (si, si+1, . . . , si+ j ) with

(si,−si,−si, si, si,−si,−si, si, si,−si, . . . , ).

TABLE I. The number of complex conjugate pairs of eigenvalues
(middle column) of a 6 × 6 non-Hermitian matrix exhibiting PT or
psH symmetry and the corresponding possible revised sign list of
the discriminant sequence (right column) is shown. The number of
complex conjugate pairs equals the number of sign changes in the
sign list.

Number of complex
Degree n conjugate pairs Possible revised sign list

6 3 (+,−, +, −, −, −)
2 (+,−, +, +, +, +)
1 (+,−, −, −, −, −)
0 (+,+, +, +, +, +)

Specifically, let ϒi+r = (−1)floor( r+1
2 ) · si for r = 1, 2, . . . , j −

1. Otherwise, ϒk = sk . For example, the revision of the
sign list (+,−, 0, 0,+) is (+,−,+,+,+), where the 0s are
replaced.

Now, with the revised sign list introduced, the number of
complex conjugate pairs can be analyzed: it equals the number
of sign changes in this revised sign list (see Theorem S1 in
the Supplemental Material, Sec. III [59] and Table I). For a
region with a constant number m of conjugate pairs, we can
apply directly the above analysis and use the braid group Bm

to capture the eigenvalue topology.
We proceed to consider the situation where the number of

complex conjugate pairs m varies. For simplicity, we assume
that μ = 2n and consider the eigenvalue space where m = n
or m = n − 1 denoted as

X (n,n−1) = {[ε1, . . . , εn−1, ε
∗
n−1, . . . , ε

∗
1 , εn, ε̂n]}, (11)

where when m = n, ε̂n = ε∗
n , Im(εi ) � 0; when m = n − 1,

Im(ε̂n) = Im(εn) = 0, Im(εi) > 0 and Re(ε̂n) �= Re(εn). So,
we have εn ∈ C+ and ε̂n ∈ C−. We define the following set
in X (n,n−1):

X̂ (n−1) = {[ε1, . . . , εn−1, ε
∗
n−1, . . . , ε

∗
1 , ε̃n, ˆ̃εn]

× |Im(εi ) > 0, ε̃n ∈ R, ˆ̃εn ∈ R}
= ((C0

+)n−1/Sn−1) × (R2/S2). (12)

The eigenvalue space X (n,n−1) is the union of X (n)

[defined in Eq. (3)], and X̂ (n−1). And X (n) ∩ X̂ (n−1) =
{[ε1, . . . , εn−1, ε∗

n−1, . . . , ε
∗
1 , ε̃n, ε̃n] | Im(εi) > 0, ε̃n ∈ R} =

[(C0
+)n−1/Sn−1] × R. We remove CPDPs from the

eigenvalue space (denoted with the subscript 0), resulting in
X (n)

0 = UConfn(C+), X̂ (n−1)
0 = UConfn−1(C0

+) × (R2/S2),
and X (n,n−1)

0 = X (n)
0 ∪ X̂ (n−1)

0 . These sets are open and
path-connected due to the half-disk topology. By the
Seifert–van Kampen theorem [56], the fundamental group
of X (n,n−1)

0 , with Q0 ∈ X (n)
0 ∩ X̂ (n−1)

0 as the base point, is
isomorphic to the free product of the fundamental group of
X (n)

0 , X̂ (n−1)
0 with an amalgamation of π1(X (n)

0 ∩ X̂ (n−1)
0 , Q0):

π1
(
X (n,n−1)

0 , Q0
)

= π1
(
X (n)

0 , Q0
) ∗

π1(X (n)
0 ∩X̂ (n−1)

0 ,Q0 ) π1
(
X̂ (n−1)

0 , Q0
)

= Bn, (13)

where ∗
π1(X (n)

0 ∩X̂ (n−1)
0 ,Q0 ) denotes the amalgamation. The de-

tailed proof of this result can be found in the Supplemental
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Material, Sec. IV [59]. Therefore, we can analyze the
eigenvalue topology for μ = 2n and m ∈ {n, n − 1}. The gen-
eralization to μ = 2n + 1 is detailed in the Supplemental
Material, Sec. V [59], where the order of the braid group is
also n. Thus, these two situations can be summarized as fol-
lows: when m varies between floor(μ/2) and floor(μ/2) − 1,
the order of the braid group n equals floor(μ/2).

In summary, CPDPs are classified by the braid group
Bn, where the order n corresponds to the number of com-
plex conjugate pairs of eigenvalues m for both the cases of
PT2 = ±1 and psH. However, in the case of PT2 = 1 and the
corresponding psH case with m ranging from floor(μ/2) to
floor(μ/2) − 1, the order n is floor(μ/2). We note that our
results are applicable to parameter spaces with dimensions
higher than 2 where CPDPs are manifest as lines.

The braid-invariant characterizing CPDP or a path can be
obtained using Artin braid word [68]. We consider a direc-
tional closed path with a base point, denoted as � in Fig. 1(b),
which encloses two CPDPs (represented by red open circles)
with a base point Q0 in a 2D parameter space. Initially,
the eigenvalues are sorted as (ε↓

1 , ε
↓
2 , . . . , ε↓

μ), as shown in
Fig. 1(c), and we focus on the first n eigenvalues [represented
by red dots in Fig. 1(c)]. Importantly, as the eigenvalues
evolve along �, we can consistently identify the eigenvalue
strands originating from these n eigenvalues as the first n
eigenvalues in the specified order. (See Supplemental Mate-
rial, Sec. II [59] for more details. The defective eigenspaces of
exceptional points are utilized there to identify the eigenvalue
strands). For example, in Fig. 1(d), we make such identifica-
tions as indicated by the orange arrows, resulting in the first
three eigenvalues being marked in red. Subsequently, we sort
these n eigenvalues along � and denote the crossing of the
ith eigenvalue over (under) the i + 1th eigenvalue as τi (τ−1

i ),
as shown in Fig. 1(d). The braid invariant of the path � is
then given by the sequence of τi (τ−1

i ) in the order they appear
along � [e.g., τ1τ

−1
2 in Fig. 1(d)]. τi satisfies the braid relations

[68] (see details in the Supplemental Material, Sec. VI [59]).
Examples. In this section, we present a model with PT

symmetry and its circuit simulation to illustrate our theories.
We confirm the occurrence of the path-dependent annihilation
of CPDPs, which is brought about by the braid group, as well
as an NACR that governs the behaviors of CPDPs. The NACR
can be summarized as follows: for a time-varying Hamiltonian
H (λ(t )) with braid topology, the braid invariants obtained
from a fixed path with a fixed base point are conjugate be-
tween initial time ti and final time t f , as long as there is no
CPDP passing through the path during this time period. This
can be expressed mathematically as

b� (t f ) = b−1
dynb� (ti )bdyn, (14)

where bi represents an element in the braid group and bdyn is
a dynamical factor that acts indiscriminately [29,30,56].

We consider a six-state model described by the following
Hamiltonian:

H =

⎛
⎜⎜⎝

H1 I2 0

I2 H2 
1


2 I2 H3

⎞
⎟⎟⎠, (15)

1,

2,

1

0

(c)

0
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= 0

Γ
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FIG. 2. (a) Electric elements used in our model: an LC-R res-
onant cavity as a state, the capacitor C0 as an identical coupling,
and four independently tunable elements for arbitrary coupling. Ci,inic

and Ri,inic represent a negative impedance converter with current in-
version (INIC) associated with a capacitor and a resistor [53,66,67],
respectively. (b) The circuit, where the subsystem enclosed by the
purple dashed box is equivalent to Hi in Eq. (16). (c) Path-dependent
annihilation of CPDP lines in the (R2,A, L1,A, t ) space. The blue-black
dashed line denotes the path � originating from point Q0. (d) At
t = t0, the blue-black path � enclosing the CPDP (the red open
circle), traverses two regions (gray and beige) with different numbers
of conjugate pairs of eigenvalues. (e) The first three eigenvalue
strands braiding along the path � in (c) at t = t0 and t = t1. Here the
green, blue, and orange lines represent eigenvalues with decreasing
imaginary parts at the beginning of �. Detailed parameters are pro-
vided in the Supplemental Material, Sec. VII [59] and their projective
trajectories are presented in Fig. S3.

where

Hi =
(

ωi + ili κi

κ∗
i ωi − ili

)
, (16)

with ωi, li ∈ R, κ ∈ C. Additionally, we have 
1 = I2 +
ξ (σ1 − σ2) and 
2 = p1σ1 + p2σ2. The Hamiltonian H in
Eq. (15) exhibits PT symmetry, where

ÛPT = I3 ⊗ σx, ÛPTÛ ∗
PT = 1. (17)

To realize this Hamiltonian, we employ the circuit system
depicted in Fig. 2. In this system, ωi,A(B) represents the LC
resonant frequency of the A(B) sublattice, and the complex
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voltage Vi,A(B) at the node of the A(B) resonators corresponds
to the wave function at the A(B) site [left panel of Fig. 2(a)].
The gain or loss in each cavity, denoted by li, can be achieved
using negative or positive resistors, while normal coupling
is introduced with a capacitor [middle panel of Fig. 2(a)].
Arbitrary nonreciprocal coupling is achievable with INICs
[right panel of Fig. 2(a)] [53,66]. Therefore, the Hamiltonian
in Eq. (15) can be realized using the circuit shown in Fig. 2(b)
with appropriately chosen circuit elements (see the detailed
discussion in Supplemental Material, Sec. VII [59]). For ex-
ample, the coupling of the circuit inside the purple dashed box
in Fig. 2(b) is given by the matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

ωi,A − i
2CiRi,A

i(Ri,inic−Ri,c )
2CiRi,inicRi,c

+ ωi,B
Ci,c−Ci,inic

2Ci

i(Ri,inic+Ri,c )
2CiRi,inicRi,c

+ ωi,B
Ci,c+Ci,inic

2Ci

ωi,B − i
2CiRi,B

⎞
⎟⎟⎟⎟⎟⎟⎠

, (18)

which has the same form as Hi in Eq. (16).
This system exhibits the path-dependent annihilation of

degeneracy points, a unique characteristic of systems with
nonabelian topology [1,30]. To observe this phenomenon, we
allow certain circuit parameters to vary with time while pre-
serving PT symmetry. Figure 2(c) illustrates the evolution of
CPDPs in the three-dimensional (3D) (R2,A, L1,A, t ) parameter
space. At t0, a pair of CPDPs emerges [green and red lines in
Fig. 2(c)]. We associate the red CPDP with the braid word
bred = τ1 and the green CPDP with the braid word bgreen =
τ−1

1 , both with respect to a base point Q0. On either side of
these CPDPs, there are two additional blue CPDPs associated
with the braid words bblue,l = τ2 and bblue,r = τ1τ

−1
2 τ−1

1 at t0.
As depicted in Fig. 2(d), the path � traverses two regions
with m = 2 and m = 3 conjugate pairs at t = t0. Accordingly,
we select the base point Q0 on the exceptional line [purple
line in Fig. 2(d)] that separates these two regions. As shown
in Fig. 2(c), the red and green CPDPs subsequently deviate
from their original paths and encircle the nodal line formed
by the blue CPDP along the t axis. When the blue nodal line
with the braid word bblue,r passes above the red nodal line,
the braid invariant of the red line becomes conjugate to the
blue line b̄red = b−1

blue,rbredbblue,r = τ2. Additionally, there is a

dynamical factor bdyn = τ1τ2τ1τ2 involved in this time evolu-
tion. According to the NACR in Eq. (14), the braid word of
the path � at t = t1 is given by b� (t1) = b−1

dynb̄redbgreenbdyn =
τ−1

2 τ1. Consequently, instead of annihilation, a third-order
CPDP appears when the red and green nodal lines merge at t1
before subsequently splitting again. As illustrated in Fig. 2(e),
the braid words of the same path � differ at t = t0 and t = t1:
1 (left panel) and τ−1

2 τ1 (right panel), respectively. (Detailed
algebra can be found in Supplemental Material Sec. VI [59].)

The example above verifies that CPDPs follow a NACR,
even when the number of conjugate pairs undergoes changes.
Consequently, the braid topology governing CPDPs grants
us the ability to manipulate and harness these singularities.
In comparison to the case without symmetry, the merge
point at t = t1 exhibits two third-order degeneracies, suggest-
ing potential applications in sensing devices [23,24,49,50].
The model with PT2 = −1 is provided in the Supplemental
Material, Sec. VIII [59].

Conclusion and discussions. In conclusion, we provided
a systematic investigation of the braid topology in non-
Hermitian systems where symmetries play a crucial role in
reducing the codimension of degeneracy points. Instead of
relying solely on the oversimplified winding number topology
[45], we uncovered the fascinating phenomenon of the path-
dependent coalescence of CPDPs. The existence of the NACR
under symmetries aligns with the nonabelian nature of non-
Hermitian multiband eigenvalue topology [28–31], providing
a more coherent picture. Moreover, the models we presented
can be experimentally realized in various platforms, such as
acoustic cavities [40,41], optical waveguides [69,70], and ring
resonators [21,71]. These findings empower researchers in
diverse fields to harness symmetry in non-Hermitian systems,
leading to significant implications and inspiring further inves-
tigations into symmetry-protected non-Hermitian degeneracy
points and their applications.

Note added. We become aware of a parallel work [72]
which overlaps with parts of this work.
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