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Quantum viscosity and the Reynolds similitude of a pure superfluid
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The Reynolds similitude, a key concept in hydrodynamics, states that two phenomena of different length
scales with a similar geometry are physically identical. Flow properties are universally determined in a unified
way in terms of the Reynolds number R (dimensionless, ratio of inertial to viscous forces in incompressible
fluids). For example, the drag coefficient cD of objects with similar shapes moving in fluids is expressed by
a universal function of R. Certain studies introduced similar dimensionless numbers, that is, the superfluid
Reynolds number Rs, to characterize turbulent flows in superfluids. However, the applicability of the similitude
to inviscid quantum fluids is nontrivial as the original theory is applicable to viscous fluids. This Letter proposes
a method to verify the similitude using current experimental techniques in quantum liquid He II. A highly precise
relation between cD and Rs was obtained in terms of the terminal speed of a macroscopic body falling in He
II at finite temperatures across the Knudsen (ballistic) and hydrodynamic regimes of thermal excitations. The
Reynolds similitude in superfluids proves the quantum viscosity of a pure superfluid and can facilitate a unified
mutual development of classical and quantum hydrodynamics; the concept of quantum viscosity provides a
practical correspondence between classical and quantum turbulence as a dissipative phenomenon.
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The Reynolds number R is a dimensionless parameter
that characterizes fluid flows on different length scales in
a unified manner [1]. It is the ratio of inertial to viscous
forces in the Navier-Stokes equation R = ud

ν
, where ν is

the kinematic viscosity, and u and d are the characteristic
speed and length, respectively. The Reynolds law of dynamic
similarity or Reynolds similitude states that two fluid flows
around similar structures with different length scales are hy-
drodynamically identical provided they exhibit the same R
value [2]. Considering the drag force on a body moving in
a fluid, the drag coefficient cD is universally described as a
function of R from a laminar flow with low R to a high-R
flow with turbulent wake. The similitude provides a universal
view of flow phenomena in nature and is applicable to flows
at any length scales such as global air movement and blood
circulation in the body. However, it is yet to be applied to
superfluids. The Reynolds number is ill defined in superfluids
owing to the lack of viscosity due to the quantum effect, called
superfluidity [3].

Consequently, the concept of a superfluid Reynolds num-
ber has garnered attention in the fields of quantum gases
and liquids. Nore and collaborators introduced this concept
in their earlier works on superfluid turbulence in the Gross-
Pitaevskii model [4,5]. They observed an energy spectrum
compatible with the Kolmogorov law in the inertial range
where fluid viscosity does not affect turbulent eddies on length
scales larger than the Taylor microscale ∼ d√

R [6]. The su-
perfluid Reynolds number Rs is then defined by its quantum
counterpart λ = d√

Rs
. Neglecting the difference in number
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factors, it is defined as

Rs = ud

νs
, (1)

where the quantum kinematic viscosity νs is in the order of
h/m with Planck constant h and mass m of the constituent
particles of the superfluid. The quantum viscosity implies ef-
fective dissipation on length scales smaller than λ at absolute
zero, while normal viscosity due to thermal excitations can
occur only at finite temperatures. Subsequently, Eq. (1) is
applied to different superfluids accompanied with the phys-
ical identification of νs using the circulation quantum κ of
the quantum vortex considering that a collection of quantum
vortices mimics a classical vortex with continuous vorticity;
superfluid turbulence on the length scale considerably ex-
ceeding the mean distance between quantum vortices obeys
the Kolmogorov law of classical turbulence [7]. Although
such a continuum approximation of vortices is considered
intuitively reasonable and the Kolmogorov spectrum has been
realized [8] in the dissipationless inertial range, the validity of
Eq. (1) is quite nontrivial owing to the lack of experimental
justification. Recently, Reeves et al. proposed a correction
of Rs, wherein u in Eq. (1) was replaced as u → u − uc

incorporating the critical velocity uc for vortex generation [9].
Despite the qualitative consistency of these predictions with
experiments [10–13], a dynamic similarity has not been es-
tablished because of the uc dependence on the system details.
Thus, a universal description of complicated flows interacting
with moving bodies in superfluids remains elusive, in contrast
to the considerable research on the Reynolds similitude in
classical hydrodynamics.

Therefore, we theoretically propose a protocol for verify-
ing the Reynolds similitude in superfluid He II. The similitude
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FIG. 1. Schematics of the wake behind a sphere moving from the
right to left in quantum liquid He II. (a) Drag is zero without quantum
vortices at T = 0. (b) Coarse-grained quantum vortices reproduce a
turbulent wake with high R(= Rs ) according to the Reynolds simili-
tude extended to superfluids. The inset represents a microscopic view
of quantum vortices in the turbulent wake. (c) At finite temperatures
in the hydrodynamic regime (lMFP � d), quasiparticles form a Stokes
flow in the presence of a turbulent wake in the superfluid component.
(d) Quasiparticles form a dilute gas and the drag is caused by their
ballistic scattering in the Knudsen regime (lMFP � d).

could be examined through a terminal speed measurement of
a body falling in the superfluid at finite temperatures. The
combined analyses of classical and quantum hydrodynamics
confirm a relation between the drag coefficient cD and Rs

in terms of the terminal speed by considering the thermal
correction below 1.5 K. The proposed theory is also consistent
with the observation of a complicated motion of 4He crystals
falling in He II [14], which is caused by a turbulent wake
in the superfluid with high Rs. Establishing the similitude in
superfluids is an essential step to unify classical and quantum
hydrodynamics.

Drag coefficients. Consider a rigid body of size d falling
with a constant speed u in He II at finite temperatures.
This situation is realized when the drag force FD on the
body by a quantum liquid balances the net force FG = (γ −
1)ρVRg of gravity and buoyancy. Here, ρ is the fluid den-
sity, g the gravitational acceleration, MR = γ ρVR the body
mass with volume VR ∼ d3, and γ = MR/(VRρ) the mass
density ratio of the body and liquid. He II comprises two
independent fluid components: a normal fluid and superfluid
components in a two-fluid model [3]. The former is a con-
ventional fluid with viscosity, comprising thermal excitations
(quasiparticles) such as phonons and rotons. The latter be-
haves as an ideal inviscid fluid. Accordingly, FD is divided
into two contributions, Fn and Fs, from the normal fluid
and superfluid components, respectively; FD = Fn + Fs. The
kinematic viscosity νn of the normal fluid component has
been well studied [15–29] and the normal Reynolds number
is Rn = ud

νn
.

At zero temperature (T = 0), only the superfluid com-
ponent exists with the body never experiencing the drag
force FD = 0, which is known as the D’Alembert’s para-
dox [2] [Fig. 1(a)]. This is not true when quantum vortices
appear leading to the quantum viscosity νs. The forces are
formulated as

Fn,s = 1
2 cn,sρn,sSRu2, (2)

with the normal fluid density ρn, the superfluid density ρs =
ρ − ρn, and the project area SR ∼ d2 of the body. To perform
quantitative analyses, an empirical form of the drag coefficient

cn ≡ cD(Rn) [30–32] was applied,

cD(R) = 24

R c1 + 4√
R

c2 + c3, (3)

with c1,2,3 = O(1) up to Rn ∼ 105, e.g., (c1, c2, c3) =
(1, 1, 0.4) for spheres. The applicability of this law to cs

is nontrivial as the quantum viscosity νs is a hypothetical
concept here [Fig. 1(b)]. Hereafter, we assume νs = κ = h/m
with the atomic mass m of 4He.

Thus, this Letter proposes a method to test the validity
of cs = cD(Rs). The relation between cs and Rs can be in-
vestigated by observing the terminal speed of the body with
certain corrections. At finite temperatures, the normal fluid
component causes a thermal correction. Even at zero tem-
perature, certain nonthermal corrections can occur in Eq. (1),
u → u + δu and d → d + δd , which hinder the extraction of
the universal behavior of the dynamic similarity because the
corrections are dependent on extrinsic factors related to the
details of the systems.

The velocity and size corrections, δu and δd , are related
to various mechanisms associated with the vortex genera-
tion and the micro- and mesoscopic structures on the body
surface [33]. The roughness of the surface can facilitate the
size correction primarily. According to Ref. [34], quantum
vortices form a boundary layer at a distance lrough, the height
of the highest “mountain” on the rough surface of a ma-
terial, resulting in δd = lrough ∼ 10−6 m. As the drag force
works only when quantum vortices exist, the velocity cor-
rection may be in the order of the vortex-generation velocity
uc, δu ∼ −uc, as proposed in Ref. [9]. The criterion uc can
be much smaller than u for a macroscopic body in He II.
The smallest value of uc ∼ 0.001 m/s has been reported for
large-scale objects [35,36]. Inherently, the turbulence tran-
sition by vortex generation is an event of the first-order
phase transition involving hysteresis and thus the critical
velocity varies depending on fluctuations [37–40]. Such a
variation does not affect the drag in the final turbulent state,
suggesting that uc could be irrelevant to the drag provided
turbulent wakes are realized for u � uc. Regardless, these
corrections may be negligible in our system when δd/d � 1
and |δu|/u � 1, in contrast to the systems of atomic
quantum gases [11,12], where the corrections cannot be
neglected.

Terminal speed. By neglecting the above nonthermal cor-
rections, the terminal speed is derived from FD = FG as

u = (1 − δth )ūT , (4)

with the thermal correction

δth = 1 −
√

1 + ρn/ρs

1 + Fn/Fs
, (5)

and the terminal speed without any correction

ūT =
√

2g(γ − 1)

cD(Rs)

VR

SR
. (6)

For reference, the relation of Rs to d and ūT is shown in Fig. 2,

where we used VR/SR = 2d/3 and d (Rs) = [ 3κ2csR2
s

4g(γ−1) ]1/3 for
spheres. An iron ball (γ = 45.8) of diameter d = 0.9 mm
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FIG. 2. Plots of the relation of Rs to the diameter d (solid) and
the terminal speed ūT (dashed) for spheres in He II under vapor
pressure at T = 0 K. Blue, yellow, and green curves correspond to
the results for γ = 1.11 (4He crystal), γ = 4, and γ = 45.8 (iron),
respectively.

can realize Rs ∼ 104 with uT = 1.1 m/s, thus satisfying our
requirements of δd/d � 1 and δu/u � 1 to neglecting the
nonthermal corrections. These estimations do not change es-
sentially provided regularly shaped bodies with VR/SR ∼ d
are considered.

Moreover, the above estimation explains the observation
[14] quantitatively, yielding a result of uT ≈ 0.06 m/s and
Rs = 103 for a 4He crystal with d ≈ 1.56 mm and γ = 1.11
[41]. Thus, the chaotic property of the turbulent wake with
many vortices for Rs = 103 results in the complicated motion
of the falling 4He crystal. This consistency suggests that the
Reynolds similitude is applicable to quantum liquid He II even
when neglecting the thermal correction.

Thermal correction. To systematically examine the
Reynolds similitudes including the thermal correction, we
formulate the reduced quantities of Rs and cD in terms of the
observables u and δth as follows,

R̄s = Rs

1 − δth
= ud

(1 − δth )κ
, (7)

c̄s = 2g(γ − 1)

u2

VR

SR
(1 − δth )2. (8)

These are the fundamental equations of this Letter; the simil-
itude is established if the plot of (R̄s, c̄s) coincides with the
hypothetical relation of c̄s = cD(R̄s). The thermal correction
δthmust vanish without thermal excitations and is small com-
pared with unity in a wide range of experimental parameters
as shown later, which is determined by the factors ρn

ρs
and Fn

Fs
.

The temperature dependence of ρn

ρs
= ρn

ρ−ρn
is well known both

experimentally and theoretically and can be computed pre-
cisely by regarding the normal fluid component as a sum of the
thermal distributions of phonons and rotons (ρn = ρph + ρro)
[3]. The main task is to compute Fn

Fs
, which is determined by

T and Rs.
To solve the problem step by step, first, we evaluate the

ratio

Rn

Rs
= νs

νn
= ηs

ηn

ρn

ρs
, (9)

10−4

10−3

10−2

ℛ /ℛ phro

ph

FIG. 3. Temperature dependence of (left) Rn/Rs, lph, and (right)
η′

n with C = 3/5 for spheres of radius d = 10−4, 10−3, and 10−2 m.
For reference, we also plot ηn,ph,ro,s and η′

n. We have η′
n ∝ T 4 in the

Knudsen limit (lph � d).

with the normal dynamic viscosity ηn = ρnνn and ηs ≡ ρsκ .
Within our restriction of Rs � 105 we have Rn � 1 with
Rn/Rs � 10−4 for T � 0.7 K [Fig. 3 (left)]. Subsequently,
the normal fluid component is considered as laminar and
the Stokes-type law Fn = FH ≡ 12c1ηnSRu/d is applied with
cD(Rn) ≈ 24

Rn
c1 below 0.7 K [Fig. 1(c)].

A misassumption may be that the thermal correction is
negligible as the effect of the normal fluid component is
typically neglected compared with the superfluid component
under such low temperatures (e.g., ρn/ρs � 0.1 for T < 1 K
[33]). However, ηn is known to diverge to infinity for T → 0
and thus Fn can increase rapidly with decreasing T . This
unphysical divergence is owing to the breakdown of the hy-
drodynamic description for the normal fluid component in
the Knudsen regime (K ≡ lMFP/d � 1) with the mean free
path (MFP) lMFP of quasiparticles. As measured for oscillating
objects [42,43], the normal drag force actually decreases with
T in the Knudsen regime because quasiparticles are dilute
and they rarely collide with the body at lower temperatures
[Fig. 1(d)]. These contrasting temperature dependences be-
tween two regimes render the quantitative description of the
thermal correction from the Knudsen regime to the hydrody-
namic one (K � 1) challenging.

To formulate the Knudsen-hydrodynamic crossover of
Fn, we propose an empirical method, which has succeeded
quantitatively in a similar problem regarding the drag force
on a porous media immersed in Landau-Fermi liquid 3He
[44,45]. The method for fermionic quasiparticles was ex-
tended to our system of bosonic quasiparticles. The crossover
is characterized by the Knudsen number K, and ηn is
replaced by

η′
n = 1

1 + CKηn, (10)

where C is the Cunningham constant. The normal drag force
is expressed as

Fn = 12c1η
′
nSRu/d, (11)

which reduces FH in the hydrodynamic limit K → 0. If the
analysis is confined to a macroscopic body of d � 10−4 m,
the crossover (K ∼ 1) occurs below T � 0.7 K, where lMFP

is well described by the lifetime τph of phonons as lph =
uphτph with the phonon velocity uph = 238 m/s [Fig. 3 (left)].
Subsequently, C = 12c1

5
SR
σtr

because of the constraint that, for
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= 10−4 m = 10−3 m = 10−2 m

FIG. 4. Plot of thermal correction δth for d = 10−3 m. The solid
curves shows the contour of δth = 0.1 for d = 10−4, 10−3, and
10−2 m.

K → ∞, Fn coincides with FK ≡ uphρnσtru, where σtr (∼ d2)
is the transport cross section in the kinetic theory of quasipar-
ticle gases.

Here, Eq. (10) is quantitatively validated via plots of η′
n

in Fig. 3 (right) with a fixed value of σtr/SR = 4 (C = 3/5).
They were consistent with the existing observations of the
“effective” viscosity associated with the drag force [29]. An
estimation of ηn was adopted from the preceding studies
[15–29], which is divided into the contributions from phonons
and rotons, ηn = ηph + ηro [33]. While the roton part ηro

is dominant and independent on T for 1 < T � 1.5 K, the
phonon part ηph is important below 0.7 K and increases
with decreasing temperature, ηph = 1

5ρnu2
phτph with ρn ∝ T 4

and τph ∝ T −5 for T → 0. However, in the Knudsen limit,
Eq. (10) yields η′

n → ηph

CK ∼ duphρn → 0 for T → 0. Accord-
ingly, a peak is obtained at the crossover (lph = d) and the
peak of η′

n is shifted upper left as d increases. These behaviors
are consistent with the size dependence reported in Ref. [29].

Finally, we evaluated the thermal correction δth. By substi-
tuting Rn = Rsκρn/η

′
n into Fn/Fs = cn

cs

ρn

ρs
with cn = cD(Rn),

we plotted δth for d = 10−3 m, as in Fig. 4. Although rotons
are dominant over phonons and ρn/ρs is not negligible at
temperatures above 0.7 K, the correction was small owing to
the cancellation between ρn/ρs and Fn/Fs as δth ≈ (Fn/Fs −
ρn/ρs)/2. The thermal correction δth has a characteristic struc-
ture at lower temperatures. For Rs ∼ 1 with Fn

Fs
≈ Rsρn

Rnρs
≈ η′

n
ρκ

,
δth exhibits a structure similar as η′

n by taking the maxi-
mum around 0.5 K. The dependence on Rs is characterized
by cn

cs
≈ 24c1

24c1+4c2
√
Rs+c3Rs

η′
n

κρn
; δth ≈ cnρn

2csρs
decreases as Rs in-

creases. Further, the position of the peak of the contour (δth =
0.1) shifts from the lower right to upper left with increasing

d . This behavior is similar to a shift of the peak of η′
n in

Fig. 3 (right).
Summary and prospects. This Letter theoretically proposes

a verification of the Reynolds similitude based on the terminal
speed measurements of a body falling in superfluid He II.
The proposed theory is widely applicable from the Knudsen
to hydrodynamic regimes below 1.5 K. If the observables
of Eqs. (7) and (8) could reproduce the empirical law
(3) with R = Rs, the Reynolds similitude is considered
valid in pure superfluids with quantum kinetic viscosity κ .
Spherical objects are preferred as the falling body for a more
reliable verification as its drag coefficient is best known in
classical hydrodynamics. For example, the drag coefficient for
Rs � 105 can be examined for iron balls with a diameter
from 10 µm to 5 mm, yielding a terminal speed range of
10−4–2 m/s (Fig. 2) with a small thermal correction below
and above 0.2 and 1 K, respectively (Fig. 4). Although
the drag coefficients of spheres falling in liquid helium
I and II were measured in Refs. [46,47], the concept of
quantum viscosity was absent at that time and therefore
the drag coefficients should be reexamined by separating
the contributions from the superfluid and normal fluid
components below 1.5 K. The technique to control uniform
rectilinear motions of a superconducting sphere [48] will be
useful for testing our hypothesis.

The accuracy of our theory will be improved through fu-
ture measurements of the drag force or the effective dynamic
viscosity η′

n on an object with various shapes in a wide range
of temperatures. Furthermore, more experimental data under
higher pressures is required to facilitate the precise extension
of the theory to the systems of a 4He crystal [14,49–52].
As in the experiments, we can track the detailed motion of
falling objects in He II and extract more useful information
regarding the terminal speed and the property of the chaotic
motion owing to the turbulent wake of the superfluid compo-
nent. The concept of quantum viscosity facilitates a universal
description of the hydrodynamics of superfluids owing to
the considerable research data of classical hydrodynamics
through the Reynolds similitude. The Reynolds similitude will
be useful for investigating turbulent flow in different geome-
tries in quantum liquids He II and 3He-B and characterizing
superfluid wakes by a moving potential in Bose and Fermi
gases of ultracold atoms [9,11,12,53,54].
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