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Giant nonreciprocity of current-voltage characteristics of noncentrosymmetric
superconductor–normal metal–superconductor junctions
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We develop a theory of nonreciprocal current-voltage (I-U) characteristics in noncentrosymmetric
superconductor-normal metal-superconductor junctions. We show that at small voltages the nonreciprocal
features of the I-U characteristics can be expressed entirely in terms of the dependence of the nonreciprocal
part of the quasiparticle density of states in the normal metal part of the junction on the order parameter phase
difference χ across the junction. The amplitude of the nonreciprocity in this regime is proportional to the inelastic
quasiparticle relaxation time τin, and can be much larger than that in normal materials, where it is proportional
to the elastic relaxation time τel . At low bias the I-U characteristics possess additional symmetry not present in
normal conductors; they remain invariant under simultaneous reversal of current, voltage, and the magnetic field.
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Due to Onsager’s principle, the linear two-terminal con-
ductance of time-reversal invariant systems, Gl (H), must be
an even function of the magnetic field H [1,2]:

Gl (H) = Gl (−H). (1)

Beyond the linear in U regime, the current-voltage (I-U )
characteristics in noncentrosymmetric systems can be nonre-
ciprocal: J (U, H) �= J (U,−H).

In noncentrosymmetric normal conductors this phe-
nomenon has been investigated in several articles, see for
example Refs. [3–10]. In this case, at small H and U , the de-
gree of nonreciprocity is proportional to the elastic relaxation
time τel ,

δJ = J (H) − J (−H) ∼ ητelU
2H. (2)

Here η is a material dependent parameter.
The shapes of the current-voltage (I-U) characteristics

in superconductor-normal metal-superconductor (SNS) junc-
tions are more complicated than those of normal metals.
The reciprocal part of the I-U characteristics of SNS junc-
tions have been studied in many articles, see for example
Refs. [11–15]. It was shown in Ref. [15] that the shape of
I-U characteristics at small and large bias are qualitatively
different, as illustrated in Figs. 1 and 2. At relatively large
bias, the I-U characteristics are controlled by the elastic mean
free time τel . As a result, the degree of nonreciprocity in this
regime is expected to be of order of that of the normal part of
the junction, which is relatively small and featureless. These
parts of the I-U characteristics are shown in Figs. 1 and 2
by dashed black lines. At small bias the I-U characteristics
are controlled by the long quasiparticle inelastic relaxation
time τin � τel , which is typically much longer than the elastic
relaxation time. Therefore, the nonlinear conductance of the
junctions turns out to be much larger than the normal state
conductance. These parts of the I-U characteristics are shown
in Figs. 1 and 2 by green and blue lines.

There is extended literature about the nonreciprocity of
supercurrent in superconductors in general, and the nonre-
ciprocity of the critical current of Josephson junctions in
particular (see for example Refs. [8,16–31], and references
therein). On the other hand, the nonreciprocity of the dissi-
pative part of nonlinear I-U characteristics has attracted much
less attention. The goal of this article is to develop a theory of
nonreciprocity of I-U characteristics of noncentrosymmetric
SNS junctions in this regime. We will show that at small volt-
ages the degree of the nonreciprocity of the I-U characteristics
of SNS junctions turns out to be much larger than in normal
metals.

At small voltages eU � ET , the quasiparticle spectrum,
and the I-U characteristics of the junction can be calculated
in the adiabatic approximation, treating the phase difference
χ (t ) as a slowly varying parameter [15]. Here ET is the
Thouless energy, which is inversely proportional to the char-
acteristic time required for quasiparticles to travel between the
two superconducting banks of the junction. For simplicity we
assume that the transmission coefficient of superconductor-
normal metal boundary is of order one and focus on the
case of long diffusive junctions, where ET � �. In this case
the charge transport through SNS junction can be expressed
entirely in terms of the dependence of the density of states
ν(ε, χ ) on χ and the quasiparticle energy ε.

In the presence of the voltage, the phase difference across
the junction χ (t ) evolves in time according to the Josephson
relation,

χ̇ ≡ dχ

dt
= 2eU (t ). (3)

Due to Andreev reflection at the normal metal-superconductor
boundaries the low energy quasiparticles (ε < �) are trapped
inside the normal region, and the spectrum of these quasi-
particles depends on the phase difference χ . At nonzero
temperature T , the quasiparticles occupying these levels move
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FIG. 1. The I-U characteristics of a nonreciprocal SNS junction
at low voltage bias for opposite signs of the magnetic field are
sketched in blue and green. The dashed lines correspond to the high
voltage regime.

in energy space together with the levels. This motion creates
a nonequilibrium quasiparticle distribution, which relaxes via
inelastic scattering producing a dissipative contribution to the
current. The physical mechanism of this contribution is simi-
lar to the Debye mechanism of microwave absorption in gases
[32], the Mandelstam-Leontovich mechanism of the second
viscosity in liquids [33], the Pollak-Geballe mechanism of mi-
crowave absorption in the hopping conductivity regime [34],
and the mechanism of low frequency microwave absorption in
superconductors [35–37].

A quantitative description of the current in the low bias
regime can be obtained as follows (see for example [15]
and references therein). If eU � 1/τel , ET the quasiparticle
distribution function depends only on the energy. In the adi-
abatic approximation, contributions to the current related to
transitions between energy levels can be neglected, and the
current may be expressed as

J (t ) = − 2e
∫ ∞

0
dεν(ε, χ (t ))Vν (ε, χ (t ))[n(ε, t ) − nF (ε)]

+ Js(χ (t )). (4)

Here ν(ε, χ ) is the total density of states which includes spin
degree of freedom, n(ε, t ) is the nonequilibrium occupancy of
quasiparticle levels with energy ε, nF (ε) is the Fermi distri-
bution function at temperature T (which we will assume to
be much smaller than the superconducting gap in the banks
of the junction, T � �), and Vν (ε, χ (t )) is the sensitivity of
quasiparticle energy levels to changes in χ . The latter can be
expressed in terms of the density of states as

Vν (ε, χ ) ≡ − 1

ν(ε, χ )

∫ ε

0
d ε̃

∂ν(ε̃, χ )

∂χ
. (5)

Finally the supercurrent Js(χ ), which contains contributions
from both the ground state and the equilibrium quasiparticle
excitations, can be written as

Js(χ ) = −2e
∫ ∞

0
dε tanh

( ε

2T

)
ν(ε, χ )Vν (ε, χ ), (6)

(see for example Ref. [38]).

FIG. 2. A qualitative picture of the I-U characteristics of a non-
reciprocal SNS junction at fixed current. The blue and green curves
correspond to the low voltage regime of the I-U characteristics for
opposite signs of magnetic field. The dashed lines correspond to the
high voltage regime.

The time evolution of the distribution function is described
by the kinetic equation,

∂t n(ε, t ) + χ̇ · Vν (ε, χ (t )) ∂εn(ε, t ) = nF (ε) − n(ε, t )

τin
, (7)

where τin is the inelastic relaxation time. Equation (7) can
be derived both phenomenologically or more rigorously using
Green’s functions [15].

Equations (3)–(7), together with the expression for the
density of states, provide a complete description of charge
transport through SNS junctions provided the phase evolution
rate is sufficiently slow (eU � ET ). Thus, in this regime the
I-U characteristics of the junctions are determined by ε and χ

dependence of the density of states.
In general, both the current and voltage across junctions ex-

hibit oscillations in time. We will be interested in the shape of
the I-U characteristics averaged over the period of oscillations,
and will indicate the time-averaged quantities by overline,
e.g., J̄ , and Ū .

In nonmagnetic systems the density of states is invariant
under the change of sign of both χ and H , ν(ε, χ, H) =
ν(ε,−χ,−H), which implies

Vν (ε, χ, H) = −Vν (ε,−χ,−H) (8)

for the level sensitivity.
It follows from Eqs. (3)–(8) that in the low bias regime con-

sidered here the I-U characteristics in SNS junctions possesses
a symmetry, which is not present in devices based on normal
conductors (see e.g., Ref. [39]), and is independent of the de-
vice geometry. Namely, it is invariant under the simultaneous
reversal of the magnetic field, current, and voltage,

J̄ (−Ū ,−H) = −J̄ (Ū , H). (9)

Thus, at low bias one can equivalently define nonreciproc-
ity as part of the I-U characteristic, which is odd under the
reversal of current and voltage for a fixed magnetic field,
δJ̄ = J̄ (Ū , H) − J (Ū ,−H) = J̄ (Ū , H) + J (−Ū , H).

The nonreciprocity of the I-U characteristics in the low bias
regime described by Eqs. (3)–(8) arises from the odd in H de-
pendence of the density of states, δν(ε, χ, H) = ν(ε, χ, H) −

L020501-2



GIANT NONRECIPROCITY OF CURRENT-VOLTAGE … PHYSICAL REVIEW B 109, L020501 (2024)

ν(ε, χ,−H). The latter depends on the orientation of the
H relative to the current. It is important to note that in the
special case where the influence of H on ν(ε, χ, H) reduces a
constant phase shift φ(H),

ν(ε, χ, H) = ν0(ε, χ + φ(H)), (10)

the I-U characteristics remain reciprocal. Indeed, the phase
shift χ + φ(H) → χ removes the magnetic field from the
problem and does not change the voltage in Eq. (3). Fur-
thermore, it follows from Eq. (6) that in this case the critical
current of the junction is also reciprocal [26]. We note how-
ever, that if different junctions obeying Eq. (10) are connected
in parallel [40,41], the critical current and resistance at current
bias are nonreciprocal.

The shapes of I-U characteristics of SNS junctions depends
on the external circuits; we will consider below two limiting
cases of voltage and current biased junctions.

Voltage bias: We begin the consideration of nonreciprocity
with the voltage bias setup. The I-U characteristic in this case
has an N shape [15], sketched in Fig. 1. At low bias, where
the rate of phase evolution obeys the inequality χ̇ (t )τin � 1,

the solution to Eq. (7) may be expressed as a series in the
small parameter χ̇ (t )τin. To second order, we obtain for the
instantaneous current,

J (t, T, H) = Js(χ (t ), T, H) + g1(χ (t ), H)(χ̇ (t )τin)

+ g2(χ (t ), H)(χ̇ (t )τin)2, (11)

where

g1(χ, H) = − 2e
∫ ∞

0
dε∂εnF (ε)ν(ε, χ, H)V 2

ν (ε, χ, H),

(12a)

g2(χ, H) = e
∫ ∞

0
dε

{
∂εnF (ε)∂χ

[
ν(ε, χ, H)V 2

ν (ε, χ, H)
]

+ ∂2
ε nF (ε)ν(ε, χ, H)V 3

ν (ε, χ, H)
}
. (12b)

At χ̇ (t ) = 2eU = const, the average current can be obtained
by averaging Eq. (11) over the phase χ . The supercurrent av-
erages to zero. The linear conductance arises from the second
term on the RHS and has the form

Gl (H) = 2eτin〈g1(χ, H)〉, (13)

where 〈. . .〉 denotes averaging over the phase χ . Using
Eqs. (8) and (12a) it is easy to see that the linear conductance
is an even function of H in accordance with the Onsager
symmetry principle.

The nonreciprocal part of the dc current δJ̄ (U, H) =
J̄ (U, H) − J̄ (U,−H) arises from the third term on the RHS
of Eq. (11), and has the form

δJ̄ (U, H) = 2 〈g2(χ, H)〉(2eUτin)2. (14)

It follows from Eq. (8) that

〈g2(χ,−H)〉 = −〈g2(χ, H)〉
is an odd function of H, in agreement with Eq. (9). It is inter-
esting that the linear conductance in Eq. (13) is proportional to
τin, while the nonreciprocal current in Eq. (14) is proportional
to τ 2

in.

In the voltage bias setup it is possible to obtain closed-
form expressions for the I-U characteristic for arbitrary values
of 2eUτin. The results are presented in the Supplemental
Material [42]. Here we summarize their main features. The
magnitude of the current reaches its maximum at eUτin ∼ 1,
and the values of the maximum current Jmax(H) and its nonre-
ciprocity δJmax(H) = Jmax(H) − Jmax(−H) may be estimated
as

Jmax(H) ∼ 〈g1(χ, H)〉, δJmax(H) ∼ 〈g2(χ, H)〉. (15)

We note that at sufficiently large temperatures the critical
current becomes exponentially small in T , while according to
Eqs. (15) and (12a), the maximal current Jmax does not have
such strong temperature dependence. Therefore, Jmax can be
much larger than Jc [15].

At relatively large voltages eUτin � 1 the solutions of
Eqs. (3)–(7) yield an expression for the current which de-
creases with voltage,

J̄ (U, H) ∼ C1(H)

eUτin
+ C2(H)

(eUτin)2
. (16)

Here to within a factor of order unity, C1 ∼ 〈g1(χ, H)〉 and
C2 ∼ 〈g2(χ, H)〉. In this high frequency regime, the period of
oscillations of the energy levels 1/eU is much smaller than the
typical relaxation time τin. As a result, quasiparticles excited
by the motion of the energy levels are unable to undergo
inelastic scattering, and the dissipative current is suppressed.

Eventually, at large voltages the I-U characteristics are
controlled by the contribution to the current which is beyond
the adiabatic approximation and is of order GNU . Here GN

is the conductance of the normal metal part of the junction.
As the voltage approaches this regime, the current reaches a
minimum at U = Umin. At this point, the contribution to the
conductance proportional to τin and τel are of the same order.
The position of the minimum is approximately given by

Umin(H) ∼ 1

τin

√
Gl (H)

GN
+ 〈g2(H)〉

〈g1(H))〉
Gl (H)

GN
. (17)

At U � Umin the I-U characteristics of the system (including
its nonreciprocity) is roughly the same as that of the normal
part of the SNS junction.

Equations (14)–(17) show that the general key features
of nonreciprocity of the I-U characteristics of voltage-biased
junctions are determined by the parameters 〈g1(χ, H)〉 and
〈g2(χ, H, )〉. Note that the first term on the RHS of Eq. (12b)
is a total derivative and averages to zero. In many physical
situations, the relevant quasiparticle energies are of order of
the Thouless energy ET . For example, in the diffusive case the
level sensitivity V (ε, χ, H) decays exponentially at energies
larger than ET [15]. In this case, for � � T � ET Eq. (12)
simplifies to

〈g1(χ, H)〉 = e

2T

∫ ∞

0
dε

〈
ν(ε, χ, H)V 2

ν (ε, χ, H)
〉
, (18a)

〈g2(χ, H)〉 = e

32πT 3

∫ ∞

0
dε ε

〈
ν(ε, χ, H)V 3

ν (ε, χ, H)
〉
,

(18b)
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and we get

〈g2(χ, H, T )〉
〈g1(χ, T )〉 = γ (H)

E2
T

T 2
, (19)

where γ (H) is an odd function of H, which is determined by
the sensitivity of the phase-dependent quasiparticle spectrum
on the magnetic field. The different temperature dependence
of 〈g1(χ, H)〉 and 〈g2(χ, H)〉 in Eq. (18) arises because the
second term in Eq. (12b) requires going to higher order in the
Sommerfeld expansion.

Current bias: Let us now turn to the consideration of
nonreciprocity in the current-bias setup. The shape of the
I-U characteristic in this case [15] is illustrated in Fig. 2.
The nonreciprocity of the critical current Jc of SNS junctions
has been studied in several articles [8,16–26,28–30]. Here we
study the I-U characteristics Ū (J ) at currents larger than the
critical current.

Similarly to the voltage bias case, the dissipative part of
the I-U characteristics at current bias can be separated into
two regimes: (i) At low bias currents J , where the average
voltage is small, Ū < 1/(eτin), the adiabatic approximation is
valid, and dissipation is controlled by the inelastic relaxation
time; (ii) As J is increased past a threshold value which was
denoted by Jjump in Ref. [15], the system transitions into a
different regime where the adiabatic approximation becomes
invalid and the dissipation is determined by the elastic relax-
ation time. This transition is accompanied by a sharp jumplike
increase of the bias voltage over a small range of bias cur-
rent J ∼ Jjump. The degree of nonreciprocity in the high bias
regime (ii) is expected to be relatively small, roughly the same
as in the normal state. Below we consider nonreciprocity in
the low bias regime (i).

In the current bias setup the phase difference χ (t ) increases
monotonically with time, but at a varying rate. Using the
Josephson relation Eq. (3) we can relate the average voltage
across the junction to the duration tp of the time interval during
which χ increases by 2π ,

Ū = π

etp
. (20)

To evaluate tp, we must determine the dynamics of χ (t ).
When the current is close to the critical current, J −

Jc(H) � Jc(H), the dominant contribution to the period tP
comes from the interval of phase where χ (t ) is near the phase
χm(H), at which the supercurrent reaches its maximum value
(see [15]). In this interval χ̇ (t ) � 1/τin, and Eqs. (11) and
(12) can be used, leading to

tp ≈ τin

∫ π

−π

g1(χm(H), H)dχ

J − Js(χ, H, T )
. (21)

Using the quadratic phase dependence of Js(χ, H, T )
near χ = χm(H), Js(χ, H, T ) ≈ Jc(H, T ) +
(χ−χm (H))2

2 ∂2
χJs(χ, H, T )|χ=χm (H) we can express the average

voltage as

Ū (J, H) ≈ A(H)
√

(J − Jc(H, T )), (22)

where

A(H) =
√

−∂2
χJs(χ, H, T )|χ=χm (H)

25/2eτing1(χm(H), H)
. (23)

The voltage in Eq. (22) has the standard square root depen-
dence on the excess current J − Jc(H, T ). The nonreciprocity
in this regime is characterized by the nonreciprocity of the
critical current Jc(H, T ) and the coefficient A(H).

Equation (23) shows that nonreciprocity of A(H) is de-
termined not only by the sensitivity of the phase-dependent
supercurrent to the magnetic field but also by the dissipative
parameter g1(χ ). Indeed, the phase χm(H) at which the su-
percurrent attains the maximal value in the direction of the
bias shifts linearly with H. Since g1(χ ) does not have an
extremum at χm(H) the denominator in Eq. (22) contributes
to nonreciprocity of A(H).

It was shown in Ref. [15], that

Jjump ∼ Jmax, (24)

where Jmax was determined for the voltage bias case. Inter-
estingly, it follows from our equations that at T > ET the
degree of nonreciprocity for current bias, δJjump = Jjump(H) −
Jjump(−H), is enhanced with respect to the voltage bias case,
Eqs. (15) and (19), by the factor T 2/E2

T

δJjump

δJmax
∼

{
1, T � ET ,

T 2

E2
T
, T > ET .

(25)

The reason for this can be traced to the nonconstant phase
evolution rate χ̇ (t ). Because of this the leading term in the
Sommerfeld expansion of g2(χ, H) [first term in Eq. (12b)]
can no longer be written as a total derivative of some function
of χ , and its contribution to the average voltage does not
vanish.

The results presented above assume that the low-energy
quasiparticles are trapped inside the normal region of the
junction by insulating boundaries and Andreev reflection from
the S-N boundaries, and the only channel of quasiparticle
relaxation is inelastic scattering. In situations where escape of
quasiparticles from the normal region is possible, τin should
be replaced by the characteristic time of quasiparticle escape
from the normal region.

The above consideration can also be extended to the cases
where the nonreciprocity of the I-U characteristics is asso-
ciated with existence of a spontaneous magnetization M (or
spontaneous valley symmetry breaking in twisted graphene
[18,22,43]) in the normal region of the junction at H = 0. In
this case the nonreciprocal part of the I-U characteristics can
be expressed in terms of δν = ν(ε, χ, M) − ν(ε, χ,−M).

To estimate the magnitude of the effect, below we apply the
general results obtained above to a planar junction of length L
and width L1(shown in Fig. 3), in which the normal region is
described by the following Hamiltonian:

H = p2/2m − EF + βαi piσα + Vimp(r) + gμ0H · σ. (26)

Here EF is the Fermi energy, m is the electron mass, σi are
the Pauli matrices in spin space, g is the g factor, μ0 is the
Bohr magneton, and Vimp(r) is the random impurity potential.
For Rashba spin-orbit coupling βαi = αRεαi j n̂ j , where n̂ is
a unit polar vector, and for Dresselhaus spin-orbit coupling
βαi = αDδαi.

The direction of the magnetic field is chosen to be parallel
to the film, as depicted in Fig. 3. Therefore, it enters the
Hamiltonian, Eq. (26), only via the Zeeman term.
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FIG. 3. Top down view of a planar SNS junction. The junction
is aligned along the x̂ direction, there is a parallel magnetic field
H directed in the ŷ direction, and there is an out of plane vector n̂
pointing in the ẑ direction which breaks inversion symmetry.

Below we will focus on linear in H contribution to the
nonreciprocity of the I-U characteristics. We consider a case
of weak spin-orbit coupling βpF � τ−1

el and focus on the
diffusive regime, L � √

Dτso. Here D = v2
F τel/2 is the typical

value of the electron diffusion coefficient in the normal region,
τso is the spin relaxation time, and vF is the Fermi velocity. We
also assume that the distance between the superconductors, L,
is much larger than the coherence length in the superconduc-
tors, and therefore the order parameter �(r) has a constant
modulus � in the superconducting leads, and vanishes in the
normal region, see Fig. 3.

After averaging over the random impurity potential, the
density of states in the SNS junction ν(ε, χ, H) is obtained
by solving Usadel’s equation in the presence of spin-orbit
coupling and a magnetic field [10,23,44]. Here we present
the main results leaving the details of the calculations to
Supplemental Material [42].

The main feature of the density of states of a diffusive
SNS junction is the existence of a mini gap at χ = 0 of order
ET ∼ D/L2 [45–48] (for simplicity we restrict ourselves to
the case where the S-N boundaries of the junction are trans-
parent). The density of states ν(ε, χ, H) exhibits a significant
χ dependence only for energies of the order of the mini gap.
This means that the level sensitivity, Eq. (5), is peaked in the
energy interval ε � ET .

We show in Supplemental Material [42] that if the diffusion
coefficient D(x) and the strength of spin-orbit coupling βαx(x)
depend only on the x coordinate, the density of states at H �= 0
can be written in the form of Eq. (10) with

φ(H) =
∫ L/2

−L/2
dx

2τsogμ0β
αx(x)Hα

D(x)
. (27)

Therefore, in this idealized 1D model the I-U characteristics
are reciprocal. However, in the general case where D(r) and
β(r) are functions of the two coordinates, x and y, or the shape

of the normal metal part of the junction is not rectangular, the
I-U characteristics of the junction are nonreciprocal.

Below we estimate the degree of nonreciprocity of the
I-U characteristics in the case where L � L1, the amplitude
of fluctuations the diffusion coefficient in the y -direction is
of order δD, and the correlation length of such fluctuations is
of order L1. In this case we get the following estimates for 〈g1〉
and 〈g2〉:

〈g1〉 ∼ eνN
E3

T

T
, 〈g2〉 ∼ 〈g1〉β(gμ0H )τsoET

LT 2

(
δD

D

)2

, (28)

where τ−1
so = 4p2

F β2τel . For the nonreciprocal part δA ≡
[A(H) − A(−H)] of the coefficient A(H) in Eq. (23), we find

δA ∼
√

Jc(0, T )

eτin〈g1〉
τsoβ(gμ0H )

LET

(
δD

D

)2

. (29)

The parameters in Eqs. (28) and (29), together with Eqs. (14)
and (22), characterize the degree of nonreciprocity of I-U
characteristics of SNS junctions with weak spin-orbit cou-
pling in both the voltage and current bias cases.

We note that transport in diffusive junctions in which the
normal region is formed by a surface of a topological insulator
can also be analyzed using Usadel’s equation. This is done in
Supplemental Material [42]. The magnitude of nonreciproc-
ity in this case is obtained by setting in Eqs. (28) and (29)
τso → τel and β → v, where v is the velocity of the relativistic
dispersion.

We conclude by summarizing our main results. We have
shown that at low bias (eU < ET ) the nonreciprocal features
of the I-U characteristics in SNS junctions can be expressed
in terms of the nonreciprocal part of the density of states,
δν = ν(ε, χ, H) − ν(ε, χ,−H). This leads to an a symmetry
not present for normal conductors (9); the I-U characteristics
remain invariant under a simultaneous reversal of current,
voltage, and magnetic field. At low bias all features of I-U
characteristics are controlled by the inelastic relaxation time.
This leads to a much stronger nonreciprocity in comparison to
normal conductors. Although the maximal current Jmax in the
voltage bias setup and the threshold current Jjump, at which the
voltage rapidly rises in the current bias setup, are of the same
order (24), their nonreciprocity turns out to be parametrically
different at T > ET [see Eq. (25)].
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