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Experimental determination of the spin Hamiltonian of the cubic chiral magnet MnSi
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A thorough description of the physics of a magnetic compound requires the validation of its microscopic spin
Hamiltonian. Here, from the analysis of muon-spin rotation spectra recorded in the magnetically ordered state
at low temperature in zero and finite magnetic fields, we determine the minimal Hamiltonian for the chiral
binary intermetallic magnet MnSi, consistent with its high-temperature nonsymmorphic cubic space group
P213. The model provides constraints for the orientation of the Moriya vector characterizing the microscopic
Dzyaloshinskii-Moriya interaction, with respect to the Mn nearest-neighbor bonds. Small twist and canting of the
magnetic structure are revealed. Our result indicates that, within experimental uncertainties, the magnetoelastic
coupling is not strong enough to lower the paramagnetic crystal symmetry in the magnetically ordered state.
Additional implications from our work are discussed and complementary studies are suggested.
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Introduction. Helices appear in different systems of con-
densed matter and biology [1]. Sometimes rather complex
patterns are formed like in the blue phases of liquid crystals
[2] and the skyrmion textures in chiral magnets with B20
crystal structure [3] as first discovered for MnSi [4]. The
similarity in the physics of those systems is striking [5,6].

The binary intermetallic compound MnSi is an exciting
playground that is boosted by the availability of large and
high purity single crystals—see, for example, Ref. [7]—and
its properties can be studied in convenient temperature, mag-
netic field, and pressure ranges [8]. While still exotic with its
lack of inversion symmetry, MnSi is a relatively simple cu-
bic compound (nonsymmorphic space group P213) with four
symmetry-equivalent manganese atoms in the unit cell. This
explains the appreciable number of theoretical works pub-
lished since the 1980s which have been based on a continuum
description assuming a strong ferromagnetic interaction with
an additional weak chiral term described by a scalar parameter
[9–12]. Microscopic models have only been considered more
recently [6,13–16] in a more limited number of studies.

The compound has a long experimental history beginning
with the determination of its crystal structure at room tempera-
ture in 1933 [17]. Magnetic measurements indicate a magnetic
phase transition at temperature Tc � 30 K [18] with a weak
first order character [19,20]. The spin structure is helicoidal
according to nuclear magnetic resonance (NMR) [21].

Experimental and theoretical works [22–27] suggest MnSi
to be a dual system with itinerant and localized electronic
subsets. This dual picture seems to be widespread, since it
applies, for example, to the ferromagnetic superconductor
UGe2 [28–30], the strange metal regime of cuprate supercon-
ductors [31], or a Ce heavy fermion system [32]. In the weak
itinerant ferromagnet MnSi, the duality is thought in terms
of a Hund metal, in which interorbital exchange interactions
(Hund’s coupling) give rise to strong ferromagnetic correla-
tions betwen the electronic subsets [33,34]. This Hund metal

character could also apply to the sibling compound FeGe and
explain the failure of a single subset viewpoint for this system
[35].

The propagation wave vector k of the magnetic structure
is so small that it is most easily measured with small angle
neutron scattering (SANS) [36]. This technique evidences
equivalent magnetic satellites only in the vicinity of the recip-
rocal space origin. Hence, no conventional magnetic structure
refinement can be achieved [37]. Since the original NMR and
SANS measurements in 1976, the Mn magnetic moments had
been assumed to draw a helix around k in zero magnetic field
and to form a conical phase of axis k under a modest field.

This simple picture was shown in 2016 to be a first ap-
proximation to the actual structure in zero field (ZF) at low
temperature [38], and later on in the conical phase near
Tc [39]. This result was derived from the analysis of spec-
tra recorded with the muon-spin-rotation (μSR) technique,
within the framework of Bertaut’s representation theory for
magnetic structures [40]. In particular, a ZF double-helix
structure was unveiled with one of the four Mn magnetic
moments of the unit cell drawing an helix along k as one
moves from cell to cell, while the other three moments belong
to a second helix that is appreciably twisted relative to the first
one.

While Bertaut’s theory is nowadays a conventional tool
for the determination of magnetic structures using diffraction
patterns—see, for example, Refs. [41–44] for neutron data—
the number of remaining free parameters after its application
is still large.

Here, instead of the determination of parameters merely
describing the magnetic structure, we consider a minimum
nearest-neighbor spin Hamiltonian including the Heisenberg,
Dzyaloshinskii-Moriya (DM), and Zeeman interactions. As-
suming the possibility of small deviations from the regular
helical or conical structure, a minimization of the energy is
performed which imposes severe constraints on the actual
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TABLE I. Coordinates of the Mn atoms in MnSi, corresponding
to the equivalent sites of Wykoff position 4a in space group P213.
All the coordinates are expressed in unit of the lattice parameter.

γ dγ

I (xMn, xMn, xMn )

II (x̄Mn + 1
2 , x̄Mn, xMn + 1

2 )

III (x̄Mn, xMn + 1
2 , x̄Mn + 1

2 )

IV (xMn + 1
2 , x̄Mn + 1

2 , x̄Mn )

magnetic structures. We fit the remaining free parameter to
experimental μSR spectra recorded at 2 K in zero and 0.3 T
fields oriented along the three principal directions of the cubic
structure. This provides in turn quantitative information on the
parameters entering the spin Hamiltonian, in particular, the
Cartesian components of the microscopic Moriya vector.

Some basic physical properties of MnSi. The lattice param-
eter is alatt = 4.558 Å. The Mn atoms occupy the 4a Wyckoff
position which is entirely defined by parameter xMn = 0.138.
As done previously [38], we shall specify the position of a unit
cell by the cubic lattice vector i and that of a Mn atom within
a cell by dγ with γ ∈ {I, II, III, IV}. For convenience, we list
the dγ coordinates in Table I.

From SANS it has been established that k in ZF is collinear
to one of the four threefold axes with an incommensurate
modulus k ≈ 0.345 nm−1 at low temperature [4,36,45–47]. In
the conical phase, k is parallel to the external magnetic field
Bext with approximately the same modulus.

Spin Hamiltonian and its treatment. We consider classical
spins S interacting through the ferromagnetic Heisenberg and
DM interactions. The Hamiltonian is

H = −1

2

∑

〈i,i′,γ ,γ ′〉
JSi,γ · Si′,γ ′ + 1

2

∑

〈i,i′,γ ,γ ′〉
Di,γ ;i′,γ ′ · (Si,γ × Si′,γ ′ )

+
∑

i,γ

gμBSi,γ · B, (1)

where the first two sums are limited to nearest neighbors (see
the Supplemental Material [48]). The last quantity is the Zee-
man term, in which the magnetic induction B is related to Bext

through the demagnetization field. The spectroscopic factor
is set to the experimental value g ≈ 2 [19,49]. In Eq. (1),
Di,γ ;i′,γ ′ represents the Moriya pseudovector (or axial vector)
associated with the atomic bond between sites i, γ and i′, γ ′.
It is invariant through cubic lattice translations. With four Mn
spins in the unit cell and six neighbor spins for each of them,
we have 24 different Di,γ ;i′,γ ′ vectors. They are related to each
other by the antisymmetry relation Di′,γ ′;i,γ = −Di,γ ;i′,γ ′ and
the symmetry elements of point group 23 [48]. In fact the
specification of a single Di,γ ;i′,γ ′ vector suffices to determine
the whole set. We have chosen bond I–II as the reference
bond such that Di,I;i,II ≡ D = (Dx, Dy, Dz ) where the Carte-
sian components are expressed in the cubic reference frame.
Note that the DM Hamiltonian can equivalently be written as
the weighted sum of three antisymmetric invariants [16], the
weighting factors being the D components.

To lower the energy, the magnetic structure is allowed to
slightly deviate from the regular helical or conical structure

through twist and canting angles. We will explicit these an-
gles thereafter. Assuming the product kalatt , the twist and
canting angles, and the Dα/J ratios to be small parameters,
the energy is written as an expansion up to second order in
these quantities. Thanks to the incommensurate nature of the
magnetic ordering, the energy minimization can be performed
analytically [14,48]. It leads to

2

3

−Dx + Dy − 2Dz

J
= −kalatt, (2)

and to analytical expressions for the twist and canting angles
which depend on the Mn sublattice, the orientation of k and
parameter

Dx + Dy

J
≡ σ. (3)

The resulting magnetic structure is found consistent with the
prescriptions of representation analysis, as expected. Note
that Eq. (2) replaces the continuous-field model relation k =
|D|/B1 linking k with the scalar D describing the DM interac-
tion and the exchange stiffness B1; see, e.g., Ref. [9].

The polarization function. A μSR experiment gives access
to a polarization function, i.e., the time evolution PZ,X (t ) of the
projection of the muon spins along the direction of the beam
polarization (Z) or a direction perpendicular to Bext (X ) [50].
As a first step towards its computation, we need an expression
for Mn magnetic moment mi,γ = −gμBSi,γ at position ri,γ .
Consistently with the helical or conical magnetic structure
[38,39],

m�;i,γ = m⊥[cos(k� · ri,γ )a�,γ − sin(k� · ri,γ )b�,γ ] + m‖,

(4)

where m‖ is the projection of the magnetic moment along
Bext when a field is applied. The subscript � labels one of
the K-domains, and a�,γ and b�,γ are orthogonal unit vectors.
In the regular helical and conical phases, vectors a�,γ and
b�,γ are perpendicular to k� and independent of γ . Here, we
do not enforce these conditions. Instead, the minimization of
the energy is obtained by allowing a�,γ and b�,γ to deviate
from the a� and b� vectors of the regular structures [48],
which together with k�/k form a direct orthonormal basis.
The vectors a�,γ and b�,γ are deduced from a� and b� after
two successive rotations [14]. The first one, corresponding to
a structure twist, is a rotation of angle ω�,γ around k�. The
second one, defining the structure canting, is a rotation around
an axis ��,γ perpendicular to k�.

Equipped with Eq. (4) and the prior determination of the
muon crystallographic site and coupling parameter [51,52],
the magnetic field vector Bloc at the location of the probe
can be derived for a given site in a given magnetic domain.
Then the evolution Sμ(t ) of the muon spin is computed from
the Larmor equation dSμ

dt = γμSμ × Bloc, where γμ = 851.6
Mrad s−1T−1 is the muon gyromagnetic ratio. Accounting
for the spin-spin and spin-lattice relaxation rates, and aver-
aging over the crystallographically equivalent muon sites in
the crystal and over the magnetic domains, the model PZ,X (t )
functions are computed [48].

Experiments and results. The μSR experiments were car-
ried out with single crystals grown from Czochralski pulling;
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FIG. 1. μSR spectra of a MnSi crystal at 2 K, measured either
in zero field or in a 0.3 T field applied along the [111], [001], or
[110] crystallographic direction as indicated in the figure. The ZF
spectra obtained for the three orientations of the crystals are similar.
For each measurement, the results corresponding to the relevant pair
of detectors are displayed, with a vertical shift of 0.15 for better
visibility. The full lines represent a combined fit to the different
sets of data. The inset sketches the muon (M) and positron forward,
backward, up, down, left, and right (F, B, U, D, L, R) detectors with
the sample in the middle of the spectrometer. Sμ denotes the spin of
the implanted muons.

see Refs. [23,52] for more details. The crystal were cut in
the form of slabs oriented perpendicular to the [111], [001],
or [110] cubic axes. The measurements were performed with
the general purpose surface-muon (GPS) spectrometer of the
Swiss muon source, Paul Scherrer Institute, Villigen, Switzer-
land [53]. We display in Fig. 1 the spectra recorded at 2 K in
ZF and in a field of 0.3 T applied along each of the three prin-
cipal directions of a cubic structure, together with the results
of a fit of our model to the data. For reference, Fig. 2 presents
the field distributions computed from the experimental data
and fits. Overall, the description is rewarding; only near 0.2 T
for the [111] direction are some details of the experimental
data not captured by the model (Fig. 2).

This data analysis yields the Mn magnetic moment m and
the angle of the conical structure; see Table II. As expected,
the m values are reasonably independent of the field direction
and intensity, and are consistent with the literature; see, e.g.,
Refs. [18,23,54]. The value of σ [Eq. (3)] derived from the

FIG. 2. Distribution of fields probed by the muons given by the
Fourier transforms of the data and fits displayed in Fig. 1. The narrow
peaks visible at 300 mT for the [001] and [110] spectra correspond
to a background of muons stopped out of the crystal.

fit is σ = 0.017 (3). As a byproduct, we compute the twist
and canting angles in ZF to be 0.83 (10) and 0.40 (7) degrees,
respectively [48]. While a twist angle of 0.83◦ seems very
small, it is, however, non-negligible compared to the average
rotation angle 2.6◦ of the magnetic moments belonging to
neighboring 〈111〉 Mn planes. The canting is approximately
twice as large as found for the celebrated La2CuO4 case [55].

Discussion and conclusions. We first discuss the quantita-
tive information about H [Eq. (1)] derived from our analysis.
As explained above, from symmetry consideration, H only
depends on four independent parameters: J , Dx, Dy, and Dz.
A good estimate for J is provided by the analysis of the
temperature dependence of m [23,26]: J = 5.5 (1) meV [56].
Equations (2) and (3) provide linear relations between Dx,
Dy, and Dz. While a third relation linking them would be

TABLE II. Results of the combined fit to the data: Mn magnetic
moment m ≈ (m2

⊥ + m2
‖ )1/2 and angle θ = arctan(m⊥/m‖) character-

izing the conical structure for an applied field of 0.3 T.

Field direction Moment m (μB) Cone angle θ (deg.)

zero field 0.3881 (2) 90 (–)
[111] 0.388 (2) 66.7 (3)
[001] 0.396 (3) 63.5 (7)
[110] 0.388 (2) 66.6 (5)
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FIG. 3. Locus of the D vector Cartesian coordinates resulting
from the data analysis. The components are normalized to the ex-
change parameter J . For the sake of clarity, the projection of the line
onto the Dz/J = −0.1 plane is shown as a dashed line. The plot is
limited to max(|Dα|/J ) � 0.2. The full line has been drawn for the
nominal values of kalatt and σ . Solutions in the vicinity of the line
are possible according to the experimental uncertainties on each of
these quantities. The vertical dotted line in the middle corresponds to
the position of the minimum of D/J or of the angle between D and
the reference bond; see Fig. 4. The inset depicts two unit cubic cells
with the four types of Mn atoms and reference bond I–II.

required for a complete determination, Fig. 3 illustrates the
set of D components consistent with the experimental data.
The full line is obtained from the intersection of the planes
defined by Eqs. (2) and (3). We note that the Moriya rules
[57] provide no information on the angle between D and
the Mn nearest-neighbor bond, due to the absence of the
requested symmetries. This is consistent with Fig. 4 for which
no remarkable angle value appears. Figure 4 also displays the
evolution of D/J when D describes the full line of Fig. 3.
Rewardingly, the condition D/J � 1 is fulfilled, which is
consistent with our model.

The orientation of the Moriya vector relative to the Mn-
Mn bond is closely related to the twist and canting angles.
While the discussion of these angles is rare in the literature
[14,16,35,58] and the present study provides an experimental

FIG. 4. Characterization of D: (i) angle between the nearest-
neighbor Mn atoms bond and the associated D and (ii) modulus of
D normalized to J . Both the angle and D/J are plotted for the path
between the A and B points defined in Fig. 3. As for the preceding
figure, solutions in the vicinity of the two lines are possible. The
minimum angle is �10.6 degrees.

determination of their values, the orientation of D has been
considered in a few theoretical works. There is no consensus.

A value |σ | = 2.28 has been estimated [59] based on a
formula [60] which forces D to be perpendicular to its bond,
consistent with a first-principles calculation [61]. The |σ |
value is about two orders of magnitude larger than measured.
A more recent ab initio study of MnSi has estimated the D
components [15]. The condition |Dα|/J � 1 is satisfied, in
agreement with our present results. However, with a calcu-
lated D/J ratio of approximately 1/20, D is drawn roughly
perpendicular to the bond. This appears inconsistent with our
results, which predict the Moriya vector to be almost parallel
to the bond at minimum D/J (see Fig. 4). We should also
note that (i) the computed J ≈ 20 meV value is approximately
four times larger than found here [62], (ii) the Mn moment
is nearly three times larger than the accepted value, and (iii)
the ratio |Dα|/J is sizably larger for next-nearest neighbors
than for nearest neighbors. In fact, MnSi is a dual system
as pointed out in the introduction. Here, we describe the
interactions between the Mn moment localized components.
We limit ourselves to nearest-neighbor interactions, so that we
work with the minimal Hamiltonian.

Remarkably, a microscopic model, but not a first-principles
model, has predicted the dominant contribution to D to be
parallel to the corresponding bond, which is close to our
experimental result when D/J is minimum [13]. Reference
[6] also considers D to be parallel to the bond.

The ground state energy resulting from Eq. (1) does not
depend on the k orientation, at least up to the second-order
expansion [14,48]. While k ‖ Bext for Bext � 0.1 T, it is par-
allel to 〈111〉 in ZF [36]. This suggests the existence of an
anisotropy term in the Hamiltonian. Two origins have been
proposed: same-site energy and exchange. The former has
been widely discussed [13,16,63,64]. It generates a spin gap
[12]. Recalling the absence of such a gap at the sub-10−7 eV
level [23,26,65], the energy scale would be too small to be ef-
fective. Accounting for an exchange anisotropy would require
at least one other exchange constant along with J , among a
maximum of six [16]. A step forward in this direction could
be a quantitative analysis of the phase diagram for which an
anisotropy has been experimentally observed [66].

In conclusion, through a quantitative μSR spectra analysis,
we have validated a nearest-neighbor spin Hamiltonian pic-
ture made of the sum of isotropic Heisenberg and DM terms
[14,67]. Quantitative information has been derived for the
Cartesian components of D. An additional relation between
these components is required for their full determination. Our
analysis suggests the compound to be still cubic in its magnet-
ically ordered state, in contrast to a proposal [68].

Our microscopic magnetic picture could be of interest,
for example, for an insight into the partial magnetic order
observed above Tc under pressure [69], or the mechanisms at
play for the stabilization of the skyrmion crystal [4,68,70,71]
and related topological Hall and Nernst effects [72,73].
Understanding magnetic properties in terms of the crystal
structure could be crucial for magnetic engineering. The mi-
croscopic mechanism leading to k ‖ 〈111〉 in ZF is still to
be discovered. A local anisotropy can be excluded. We an-
ticipate that the parameter σ , and therefore the ZF twist and
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canting, and D, could be slightly different from given here
when k ‖ 〈111〉 in ZF is explained.
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