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We demonstrate that phase transition and continuous symmetry breaking can happen in 2d Heisenberg
ferromagnets with long range interaction in violation of the Hohenberg-Mermin-Wagner theorem. This has been
possible to achieve in 2d van der Waals ferromagnet Fe3GeTe2 due to its exceptional tunability of magnetic
properties. We argue that the variable critical exponent is a signature of phase transition in 2d systems with
long range ordering, consistent with recent results from density functional theory and quantum Monte Carlo
calculations.
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In the last few decades, we have witnessed the amazing
success of renormalization group (RG) theory of critical phe-
nomena in explaining the universal behavior near continuous
phase transition in a wide class of systems. So far, our under-
standing of universality classes (UCs) and universal behavior
remains unchallenged in systems with short range (SR) inter-
action. However, the presence of long range (LR) interaction
changes the scenario completely [1,2]. The most intriguing
challenge comes from two aspects: (i) LR interaction driven
violation of Goldstone theorem, thereby providing a mass to
Goldstone modes, similar to the Higgs mechanism [3], and
(ii) LR interaction driven violation of the Hohenberg-Mermin-
Wagner (HMW) theorem facilitating, otherwise forbidden
continuous symmetry breaking transitions in low dimension
(d < 3) [4,5]. In variance with SR driven universal behaviors
in d < 3, LR interactions have been shown to be responsi-
ble for (i) interesting finite temperature transitions [6–8], (ii)
new critical phenomena [1,9–12], (iii) continuously varying
critical exponents in spin 1/2 Heisenberg systems [13–15],
and (iv) continuous symmetry breaking in 2d Rydberg array
using a programmable quantum simulator [16,17]. Though
it is realized that LR driven ferromagnetism is essential for
circumventing HMW theorem in 2d, experimental realization
remains elusive in condensed matter systems.

A large number of experiments already exists in well-
established 2d systems, such as ultrathin magnetic films,
atomic monolayer, and superconducting thin films [18–20],
but the magnetic order and phase transition in these systems
are predominantly governed by 2d Ising, 2d XY, and XY with
fourfold anisotropy (XYh4) UCs which are governed by SR
interaction. Moreover, there is always doubt about the low
dimensionality (d < 3) of these systems even in monolayer
because bonding and hybridization with substrate are poorly

*subhasis.ghosh.jnu@gmail.com

understood [21]. Recently, a new class of 2d magnetic van
der Waals (vdW) systems revolutionized condensed matter
physics due to their exceptional magnetic properties [22,23].
It is possible that 2d LR order, which was precluded in
previously mentioned 2d magnetic systems, make vdW 2d
ferromagnets most suitable to investigate the recently debated
aforementioned issues in the context of LR order in 2d mag-
netic systems [22,23].

In this Letter, we report how to break the limit of HMW
theorem by providing experimental basis for 2d Heisenberg
ferromagnets in vdW systems. We have chosen vdW magnetic
material Fe3GeTe2 for following reasons. (i) Fe3GeTe2 is 2d
layered material due to weak interlayer coupling with high
Curie temperature (Tc) ∼ 200 K [24]. (ii) Fe3GeTe2 hosts
both localized and delocalized spins resulting itinerant and
local-moment ferromagnetism [25–29], apparently due to LR
and SR interactions, respectively. (iii) Fe3GeTe2 is topolog-
ically constrained system exhibiting intriguing phenomena,
such as anomalous Hall effect [30] and Kondo effect [31]. (iv)
vdW bonding between layers in Fe3GeTe2 results in highly
anisotropic magnetic properties—the in plane spin-spin cor-
relation length is much higher than that along the out of
plane [26,32] and this is responsible for 2d magnetism in
bulk Fe3GeTe2, which provides a fertile system for study-
ing the magnetism, and strong correlation in 2d systems.
Local-moment magnetism is governed by Heisenberg, Ising,
or XY exchange interaction in d and f spins. The itinerant
magnetism is primarily governed by LR Ruderman-Kittel-
Kasuya-Yusida (RKKY) interaction in d and f electrons. Both
itinerant and local-moment ferromagnets show Curie-Weiss
law, however the microscopic origin is completely different.
The Curie-Weiss law, temperature dependence of magnetic
susceptibility, is governed by exchange interaction among
localized spins in Heisenberg, Ising, or XY ferromagnets,
and by nonlinear coupling among spin fluctuation modes in
itinerant ferromagnets [33,34].

2469-9950/2024/109(2)/L020407(6) L020407-1 ©2024 American Physical Society

https://orcid.org/0000-0002-0668-3645
https://orcid.org/0009-0006-2716-5229
https://orcid.org/0000-0003-1232-9930
https://orcid.org/0000-0003-1346-5635
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.L020407&domain=pdf&date_stamp=2024-01-25
https://doi.org/10.1103/PhysRevB.109.L020407


ANKITA TIWARI et al. PHYSICAL REVIEW B 109, L020407 (2024)

In a 2d LR Heisenberg model with power law decay cou-
plings, the Hamiltonian H for the ferromagnetic case can be
given by H = −∑

i �= j
J

|ri j |α Si · S j , where J is strength of LR
interaction, and the exponent α distinguishes LR interaction
from SR interaction and is generally represented by decay
exponent σ, i.e., α = σ + d , where d is the dimension of the
system [1]. Critical behavior with SR or LR interactions can
be distinguished by a critical value of either α (α∗) or σ (σ ∗).
There are three different regions (i) for σ � d/2 universal
behavior which can be described by mean field model. (ii) For
σ > σ ∗ or α > α∗, universal behavior is described by SR
interaction based models. (iii) For d/2 < σ � σ ∗ or d < α

� α∗, universal behavior can be described by LR interaction
based models resulting in novel features like variable critical
exponents [13–15], which has been shown here as a signature
for 2d Heisenberg ferromagnet.

We have used single crystal of Fe3GeTe2 grown by a
chemical vapor transport method [35]. Details of sample
growth is given in the Supplemental Material [36] (see also
Refs. [37–56] therein). The single-crystalline crystallographic
phase has been confirmed by single crystal x-ray diffraction
(XRD). Magnetic measurements were carried out in the physi-
cal properties measurement system and detailed measurement
protocol for temperature and field dependence of magneti-
zation are given in the Supplemental Material [36]. XRD
data for Fe3GeTe2 is shown in Fig. 1. We found that crystal
structure, space group, and lattice parameters are hexagonal,
P63/mmc, and a = b = 4.022 Å and c = 16.387 Å, respec-
tively. The XRD pattern of Fe3GeTe2, in which only (00l)
[57] peaks are detected, indicates the surface of the crystal is
parallel to the ab plane. Single crystals of Fe3GeTe2 contains
slabs of Fe3Ge connected to vdW bonded Te atoms. Fe in
Fe3GeTe2 are in two inequivalent Wyckoff positions [58] and
in the state of (Fe3+)2Fe2+Ge4−(Te2−)2, where Fe takes two
different oxidation states, i.e., Fe3+ and Fe2+. Detailed crystal
structure of Fe3GeTe2 and its description is given in Fig. S1
of the Supplemental Material [36].

Temperature-dependent magnetization (M-T ) for
Fe3GeTe2 with negligible Fe deficiency measured with
field along μoH ‖ c and μoH ‖ ab is shown in Fig. 1. A
large anisotropy by a factor of ten in magnetization between
the ab plane and perpendicular to the ab plane indicates
strong magnetism with large spin-spin correlation length
in the ab plane. The phase transition from paramagnetic
(PM) to ferromagnetic (FM) occurs at 223 K and is second
order which has been ascertained by Landau analysis [59],
entropy analysis [60], and Banerjee’s criterion [61], discussed
in Figs. S2, S3, and S4, respectively, in the Supplemental
Material [36]. A kink around 160 K may be due to the
additional magnetic interaction [62]. Further, field-dependent
magnetization (M-H) taken at 10 K is shown in Fig. 1.
Significant observations are as follows: (i) a clear hysteresis
verifies the ferromagnetism in Fe3GeTe2; (ii) until 5 T,
M does not saturate but increases slowly with field; (iii)
noninteger magnetic moment has been computed to be 1.56
μB/Fe at 5 T; (iv) Tc depends strongly on stoichiometry x in
Fe3−xGeTe2 [63] (Fig. S5 in the Supplemental Material [36]).
Based on these observations and a plethora of first principle
calculations backed by angle resolved photoemission and
neutron scattering measurements, it has been established

FIG. 1. (a) Single crystal XRD pattern for Fe3GeTe2, inset shows
Laue pattern and image of single crystal. (b) Schematic represen-
tation of unit cell of Fe3GeTe2. Fe occupy two different Wyckoff
positions [58]: Fe3+ and Fe2+. (c) M-T at an applied field μoH =
10 mT for both μoH ‖ c and μoH ‖ ab [inset shows derivative of
magnetization (dM/dT), which gives minimum around ∼ 223 K,
derivative done for μoH ‖ c]. (d) Field-dependent magnetization
(M-H ) at 10 K.

beyond a doubt that Fe3GeTe2 is ferromagnetic in which both
localized and itinerant moments exist [25–29].

We should seek a different approach, relevant to mag-
netism and phase transition, in order to establish the itinerant
magnetism in Fe3GeTe2. For itinerant ferromagnets, the
Rhodes-Wohlfarth (RW) ratio is defined as Pc/Ps where Pc are
numbers of magnetic carriers deduced from the Curie constant
(C) calculated from Fig. S6 in the Supplemental Material [36],
where C = NAμ2

BP2
eff/3kB, and Peff = √

Pc(Pc + 2). Ps are
the number of magnetic carriers determined from saturation
magnetization at low temperature [64,65]. For Fe3GeTe2, Ps

is calculated at 10 K. Figure 2 shows the field dependence of
Pc/Ps which is greater than one even at high field suggesting
that Fe3GeTe2 has itinerant electrons and cannot be described
only by localized moments. Pc/Ps decreases with field due to
gradual crossover from itinerant magnetism to local moment
driven magnetism at high fields. Hence, the effect of LR
interaction can be controlled by field. This observation has
been further corroborated by a generalized RW plot based
on the spin fluctuations formalism put forward by Takahashi
[66]. In this formalism the ratio Tc/To is an essential factor,
which describes the level of itineracy of the spin moment,
where To is the measure of spectral distribution in k-space,
as itinerant electrons are localized in k-space [34]. Magnetic
materials exhibit local moment magnetism at Tc/To ∼ 1, but
when Tc/To � 1 the system has significant itinerant mag-
netism. The estimated value of Tc/To for Fe3GeTe2 is 0.034
(To = 6524.87 K, see Table S2 in the Supplemental Material
[36]), which is close to the values reported for weak itinerant
ferromagnets like Sc3In (0.0097), Ni3Al (0.0116), and Au4V
(0.17) [66–68]. The generalized RW relation Peff/Ps vs Tc/To

[66,70] is shown in Fig. S8 in the Supplemental Material [36];
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FIG. 2. RW plot for fields μoH = 0.01 T, 0.05 T, 0.1 T, and 1 T.
Solid line is a guide for eyes. Inset is the log-log plot of generalized
RW plot. Solid circles are for 3d and solid squares are for 2d weak
itinerant systems. Empty squares are for Fe3GeTe2 plotted for fields
μoH = 0.01 T and 1 T. Data shown other than Fe3GeTe2 are taken
from Refs. [66–69]. Dash and dotted lines are the theoretical relation
between Peff/Ps and Tc/To for 3d and 2d weak itinerant systems,
respectively, and adapted from Ref. [69].

the obtained value of Peff/Ps is 3.19 and 2.96 for fields 0.01 T
and 1 T, respectively. These values are lower than the values
for 3d systems as evidenced from the inset of Fig. 2. Detailed
discussion on Takahashi formalism is given in the Supple-
mental Material [36]. Therefore it can be emphasized that
Fe3GeTe2 is a 2d itinerant ferromagnet in which itinerancy
can be controlled by an external field.

Figure 3 shows the M-T taken at different fields (μoH =
0.01 T, 0.1 T, and 1 T). It can be observed that M-T does not
show the usual T 3/2 dependence as expected in 3d Heisenberg
ferromagnets with SR order [71]. The temperature depen-
dence of magnetization variation �M(T ) = M(0) − M(T )
due to thermal excitation of spin wave in Heisenberg ferro-
magnets diverges logarithmically [72] in 2d, in accordance
with HMW theorem. However, experimental observation of
�M(T ) in 2d can only be reconciled if LR ferromagnetic
order is taken into account. It has been shown that the temper-
ature dependence of M(T ) due to LR ferromagnetic ordering
in 2d can be given by M(T ) = M(0)[1 − aT ln(bT )] [72–74],
where a and b are constants decided by strength of exchange
interaction, discussed in details in the Supplemental Material
[36] and M(0) is the magnetization at T = 0 K. Figure 3
shows the quasilinear dependence of M on temperature at
different fields. For μoH = 0.01 T and 0.1 T, the divergence
from quasilinear behavior, according to the relation for M(T )
explained above, occurs at 50 K and 100 K, beyond which
magnetization due to itinerant spins dominates. When mag-
netic field increases to 1 T, M-T shows quasilinear behavior
in the entire low temperature region till the critical phenomena
overrides the magnon dispersion near the phase transition, as
the contribution from itinerant magnetization is minimized at
higher field. The critical exponent β can be calculated directly
from M-T using the relation Ms(T ) ∝ (Tc − T )β , T < Tc. In
Fig. 3, the ln-ln plot of M vs Tc-T of M-T , yields β values
of 0.468 which is close to mean field UC at 0.01 T, 0.447
which is somewhere between mean field and Heisenberg UCs
at 0.1 T, and 0.388 which is close to Heisenberg UC. As

FIG. 3. M-T at an applied field (a) μoH = 0.01 T, (b) μoH =
0.1 T, and (c) μoH = 1 T. The solid lines in (a), (b), and (c) are fit to
the data according to relation M(T ) = M(0)[1 − aT ln(bT )]. Inset
of (a), (b), and (c) is ln-ln of M-T . β calculated from the gray shaded
region, in the temperature range T = 215 K–231 K, �T = 1 K. In
inset red line is linear fit to the data.

mentioned before, for a spontaneous symmetry breaking in
2d systems, there must be a LR interaction to override the
HMW theorem [72]. Hence, the critical exponent for magnetic
susceptibility, γ which is the most relevant for the range of
interaction [1,9,15], needs to be analyzed precisely.

There are three issues to be resolved to reveal the physics:
(i) How do the critical exponents depend on field? (ii) How do
the critical exponents evolve when both delocalized and local-
ized spins present in the system? And the most important issue
is (iii) how to distinguish LR and SR interaction driven critical
behavior? To resolve these issues and to achieve the main
objective of this work, i.e., continuous symmetry breaking in
a 2d Heisenberg system induced by LR interaction, the critical
isotherm and field dependent magnetic entropy change (�SM)
has been systematically investigated at Tc, (shown in Fig. S13
in the Supplemental Material [36]). The linear fit to the ln-ln
of M and �SM deviates at low and high fields. This indi-
cates that the critical exponents depend on field. To confirm
the appropriate UC and critical exponents, the Arrott-Noakes
relation (μoH/M )1/γ = (T − Tc)/Tc + (M/M ′)1/β , where M ′
is temperature and field-independent constant, has been used
by plotting (μoH/M )1/γ vs (M )1/β , known as modified Arrott
plots (MAPs). MAPs are constructed from M-H isotherms
by using critical exponents β and γ . Over whole range of
magnetic field (0.25–5 T) MAPs do not show parallel lines
indicating variable critical exponents due to the presence of
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FIG. 4. MAPs for Fe3GeTe2 constructed for field regions (a)
0.25 T–0.75 T, (b) 3 T–5 T. (c) and (d) shows derivative of MAPs
for low and high field ranges. (e) and (f) shows the δ values obtained
at critical isotherm, solid line is the linear fit to the data.

LR interaction, as elaborated before. Critical exponents can
only be determined accurately if MAPs show parallel straight
lines which, so far, is ensured visually in literature. Here
we show if the critical exponents depend on field, then it is
impossible to get parallel straight lines in MAPs (discussed
in Fig. S13 in the Supplemental Material [36]). To determine
the critical exponents we have divided M-H into four regions:
(a) 0.25–0.75 T, (b) 0.75–1.5 T, (c) 1.5–3 T, and (d) 3–5 T.
Using a rigorous iterative method as given in the details in the
Supplemental Material [36], the exponents obtained for four
field regions are β1 = 0.500 ± 0.004 and γ1 = 1.000 ± 0.010,
β2 = 0.439 ± 0.006 and γ2 = 1.010 ± 0.003, β3 = 0.388 ±
0.001 and γ3 = 1.050 ± 0.002, and β4 = 0.384 ± 0.001 and γ4

= 1.090 ± 0.003, respectively. The field dependent MAPs for
field range μoH = 0.25–0.75 T and μoH = 3–5 T is plotted in
Fig. 4. The validity of the exponents can only be ensured if the
derivative of the lines collapse to the line parallel to the x axis.
Figure 4 shows d (M1/β )/d ((μoH/M )1/γ ) vs (μoH/M )1/γ for
μoH = 0.25–0.75 T and 3–5 T, respectively. The derivatives
clearly collapse on to each other. The δ has been calculated
independently from critical isotherm for low and high field
regions. The experimental δ values match well with Widom
scaling [75], further confirming the validity of the field depen-
dent exponents. Figure S14 in the Supplemental Material [36]
shows the MAPs for other field ranges. The set of exponents
are listed in Table S4 in the Supplemental Material [36]. One
can observe that as the field increases, the exponent β goes
from mean field to Heisenberg like, i.e., β goes from 0.500 →
0.384, however γ remains close to one (varies from 1 to 1.09
as field increases), which suggests the presence of LR [9,15]
in both cases of mean field dominated itinerant magnetism or
exchange interaction dominated Heisenberg magnetism. We

further show that the validity of magnetic equation of state
[76,77] can only be ensured in the case of field dependent
critical exponents (Fig. S15 in the Supplemental Material
[36]) and not in case of field independent critical exponents
(Fig. S16 in the Supplemental Material [36]). So far, previous
studies on critical behaviors in Fe3GeTe2 resulted in ambigu-
ous and diverse UCs. In Refs. [63,78,79], the values of β

and γ have been claimed to be 0.372 and 1.265, 0.327 and
1.079, and 0.363 and 1.228 suggesting a combination of 3d
Heisenberg and 3d XY, 3d Ising and MF, and 3d Heisenberg
and 3d Ising, respectively. All these studies claimed Fe3GeTe2

as a 3d system in variance with the fact that Fe3GeTe2 is a 2d
system. In the case of a monolayer grown either by exfoliation
or epitaxially, a wide range of β values have been obtained
based on limited analysis of critical behavior and UCs starting
from mean field, 3d Heisenberg, 2d XY, and 2d Ising have
been proposed without any emphasis on γ [24,25,80]. It is
difficult to apprehend such a large variation on experimental
results on monolayer Fe3GeTe2. There are several possibilities
such as strong hybridization of substrate [21], effect of strain
[81], and stoichiometry. More importantly, the 3d to 2d transi-
tion has been suggested on the proposition that Tc varies with
the number of monolayers. However, Tc can also be varied
by changing stoichiometry, i.e., by introducing vacancy at
Fe2+ sites [63]. These ambiguities may have been stemmed
from enforcing wrong dimension and range of interaction on
critical analysis.

Finally, we discuss the range and dimensionality of spin-
spin interaction using RG theory to further corroborate the
appropriate UC with the help of critical exponents. Values
of σ for different spatial and spin dimension are given in
Table S5 in the Supplemental Material [36]. We found that
σ < 1.5 over the whole range of magnetic field. Hence,
whether β = 0.5 which is mean field, or β = 0.384 which
is close to Heisenberg UC, γ is close to one, and σ < 1.5
and α ∈ (2, 4), emphasizing magnetic order and spontaneous
symmetry breaking in Fe3GeTe2, driven by LR interaction.
Recently, it has been shown [15] using large scale quan-
tum Monte Carlo (QMC) simulations that there exists phase
transition for α ∈ (2, 4) in 2d Heisenberg ferromagnets with
spontaneous SU(2) symmetry breaking. It has been further
shown [15] that critical exponents for 2d Heisenberg ferro-
magnets are variable, i.e., function of α or σ . Figure 5 shows
how β and γ depends on α which has been calculated for
a different range of fields, as mentioned before. It is clear
from Fig. 5 that β and γ qualitatively follow the theoretical
results [15]. So far, RG analysis using classical field theory
[9,10] predicted that there are three limits/ranges for α, i.e.,
Gaussian fix point for 2 < α < 3, non-Gaussian fix point for
3 < α < 4, and absence of finite temperature ferromagnetism
when α � 4. These predictions have also been revisited using
QMC simulations [15], and their finite size critical analysis
satisfy both cases when the system is above critical dimen-
sion with Gaussian fix point (α < 3) and when the system is
below the upper critical dimension (3 � α < 4). Hence, when
α � 3, the critical exponents are γ = 1 and β = 0.5 and when
α � 3, γ � 1, and β � 0.5, which are observed in our exper-
iments. As emphasized [15], the variable critical exponents
and UC crossover differentiate 2d Heisenberg UCs from other
UCs in 2d.
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FIG. 5. Critical exponents β and γ plotted against α = σ + d .
Dashed lines are a guide for eyes. Solid lines are theoretical predic-
tions [15] on how β and γ vary with α. Symbol size takes care of the
error.

Finally, we should discuss the possible microscopic ori-
gin of itinerant and local-moment magnetism in Fe3GeTe2.
As mentioned before Fe3GeTe2 has two inequivalent charge
states of Fe, Fe2+, and Fe3+, resulting in a multiorbital path
for different spin-spin interactions. In the case of a hexagonal
crystal field, as in Fe3GeTe2, the five 3d orbitals of the Fe
atom split into a three group of orbitals, a1 (dz2 ), two twofold-
degenerate states e1 (dx2−y2 and dxy), and e2 (dxz and dyz). DFT
calculations [26–29,82] show that the a1 (dz2 ) and e2 (dxz and
dyz) orbitals are narrower and localized compared to orbital
e1 (dx2−y2 and dxy) which is wider and delocalized. Hence,
there would be two types of exchange mechanisms, i.e., the
itinerant magnetism with e1 electrons and the local-moment

magnetism with a1 and e2 orbitals. It has been shown [27] that
dx2−y2/dxy electrons lie close to Fermi level, and contribute to
the itinerant ferromagnetism in Fe3GeTe2. We argue that, as
field increases more and more delocalized electrons are po-
larized weakening itinerant magnetism without any effect on
localized electrons responsible for local-moment Heisenberg
magnetism.

In conclusion, we have presented detailed experimental
evidences for 2d Heisenberg ferromagnetism by breaking the
HMW limit. This has been possible due to exceptional tun-
ability of magnetic properties of Fe3GeTe2. The presence of
both itinerant and local-moment magnetism in Fe3GeTe2 has
facilitated to reveal variable critical exponents. Temperature
dependence of magnetization, RW, and generalized RW based
analysis established that Fe3GeTe2 is a 2d ferromagnet with
itinerant magnetism which can be tuned by magnetic field.
The critical exponents determined by an improvised method
unambiguously show that the exponent γ reveals LR interac-
tion over the wide range of field, but the exponent β crosses
from mean field UC to 2d Heisenberg UC as field increases.
We argue that variable critical exponents is a signature of 2d
Heisenberg ferromagnetism, as emphasized by recent theoret-
ical calculations. Multiorbital character in Fe3GeTe2 provides
the underlying LR ordering for both itinerant and local-
moment ferromagnetism.
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