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The nature of the superfluid-to-Bose-glass (SF-BG) quantum phase transition, occurring in systems of
interacting bosons immersed in a disordered environment, remains elusive. One fundamental open question
is whether or not the transition obeys conventional scaling at quantum critical points (QCPs): this scaling would
lock the value of the crossover exponent φ—dictating the vanishing of the superfluid critical temperature upon
approaching the QCP—to the value of quantum critical exponents for the ground-state transition. Yet such a
relation between exponents has been called into question by several numerical as well as experimental results
on the SF-BG transition. Here we revisit this issue in the case of the S = 1/2 Heisenberg antiferromagnet
on a site-diluted cubic lattice, which lends itself to efficient quantum Monte Carlo simulations. Our results
show that the model exhibits a percolation transition in zero applied field, with the correlation length exponent
ν = 0.87(8) and φ = 1.1(1) consistent with 3d percolation. When applying a sufficiently strong magnetic
field, the dilution-induced transition decouples from geometric percolation, and it becomes a SF-BG transition;
nonetheless, the ν and φ exponents maintain values consistent with those of the percolation transition. These
results contradict the conventional scaling, which predicts φ � 2; and they suggest a possible relationship
between the SF-BG transition and percolation of phase coherence.
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Introduction. Quantum localization in strongly correlated
systems is a central topic of current research in condensed
matter and statistical physics [1–6] for its wide-ranging con-
sequences on both the equilibrium physics of the system and
nonequilibrium dynamics, with the possible breakdown of
thermalization [7,8]. In this paper we shall specifically focus
on the localization transition in bosonic systems, which is
relevant to a wide variety of physical platforms, ranging from
4He in porous media [9], to ultracold atoms in disordered
optical potentials [10] to disordered superconductors [11].
The central question in this domain concerns the nature of
the ground-state quantum phase transition (QPT) [1,2] from
the long-range ordered, superfluid (SF) phase to the local-
ized, Bose-glass (BG) phase. The nature of the QPT remains
a subject of debate, as it appears to defy the conventional
scenario for critical scaling. The seminal study of Ref. [2]
postulated that the finite-temperature free energy in the vicin-
ity of the QPT obeys a conventional scaling form, admitting
the temperature and the control parameter of the QPT as the
unique instability directions for the fixed point governing the
quantum critical behavior. This has the result that, on the SF
side of the transition, long-range order persists in 3d up to
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a critical temperature Tc, which vanishes upon approaching
the quantum-critical point (QCP) as Tc ∼ |g − gc|φ (with g
the control parameter of the QPT), with a crossover exponent
φ = νz. Here ν is the correlation-length exponent at the QCP,
and z the dynamical critical exponent. The finite compress-
ibility of the BG phase leads to the prediction that z = d [2]
with d the number of dimensions. Combined with the Harris
criterion for criticality in disordered systems [6], mandating
that ν � 2/d , this leads to the conclusion that φ � 2.

The above picture has been severely cast into doubt by the
first quantitative tests of the scaling theory for the SF-BG
transition, which have been mostly performed on its mag-
netic incarnation [12]. A broad family of gapped magnetic
systems exhibits a magnetic analog of the commensurate-
incommensurate transition of strongly interacting bosons [13]
when subject to a strong magnetic field [14,15]; and this
transition takes the nature of a SF-BG transition when disorder
is introduced in the system [12]. The magnetic SF-BG transi-
tion has been investigated in a variety of doped compounds
[16–20] and theoretical models thereof [20,21], the most
extensively studied case being the one of NiCl2(1−x)Br2x ·
4SC(NH2)2 (Br-DTN) [20–23]. All these studies have con-
cluded that φ < 2, with the most in-depth investigations
giving φ ≈ 1.1, at least in the range of Tc that were acces-
sible to both experiments and numerics [20]. This is in open
contradiction with the φ � 2 prediction, casting one or more
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hypothesis behind it into doubt. The Harris criterion ν � 2/3
[6] is confirmed by all the studies of the 3d SF-BG transi-
tion [21,23–25], giving ν ≈ 0.7 − 0.9. The prediction z = d ,
while called into question by several studies in d = 2 [26–28],
appears to be confirmed by all the available studies of the 3d
SF-BG transition [21,23–25]. Therefore a possible conclusion
is that the SF-BG transition does not obey conventional scal-
ing, and several generalized two-argument scaling Ansätze
have been put forward [21].

Meanwhile, a large-scale numerical study [25] found that
φ ≈ 2.7 for the disordered link-current model (a dual model to
the disordered Bose-Hubbard model) and for disordered hard-
core bosons at zero average chemical potential. In particular
Ref. [25] puts forward a density criterion |n(T )/nc − 1| � 1
identifying the putative temperature range to observe the cor-
rect φ exponent, where n(T ) is the finite-T boson density and
nc its value at the QCP; and arguing that the observation of
φ ≈ 1.1 is the result of an analysis of Tc values in a tem-
perature range not complying with this criterion. Nonetheless
this argument is contradicted by the fact that existing data
consistent with φ ≈ 1.1 [20] are also complying with the
density criterion [29].

Here we revisit the φ exponent problem at the 3d SF-BG
transition by looking at the S = 1/2 Heisenberg antiferromag-
net on a site-diluted cubic lattice and in a uniform magnetic
field, which lends itself to very efficient quantum Monte
Carlo (QMC) simulations of the transition on very big lat-
tices and at very low temperatures. Long-range magnetic
order can be destroyed in the ground state by a sufficiently
large dilution x (density of empty sites), and in zero applied
field this transition is found to have a percolative nature, ex-
hibiting a crossover exponent φ = 1.1(1) consistent with the
one for 3d percolation, φp = 1.12(2) [30–32]. The transition
becomes a SF-BG one in a finite field, but the crossover
exponent is found to maintain a value consistent with the
percolation one. Our data reverse the conclusions of Ref. [25],
in that an exponent φ � 2 can only fit our Tc data in an
intermediate temperature range, but it cannot account for the
lowest-temperature regime we access. Moreover our results
suggest the existence of a strong link between the Bose-glass
transition and percolation at least for what concerns the finite-
temperature behavior. Yet a simple geometrical percolation
picture of the SF-BG transition is definitely not supported by
our data, because the boson density is not percolating across
the system in the vicinity of the transition, and ordering is
fundamentally supported by weak links [22].

Model and ground-state phase diagram. We study the
S = 1/2 Heisenberg antiferromagnet defined on a site-diluted
cubic lattice, whose Hamiltonian reads

H = J
∑
〈i, j〉

εiε jSi · S j − H
∑

i

εiS
z
i ; (1)

here Si is an S = 1/2 quantum spin operator on each site i;
H is the applied magnetic field; and εi takes values 1 and 0
randomly, with probabilities 1 − x and x respectively—where
x is the dilution concentration. This model is also equivalent
to hardcore bosons with hopping J/2, nearest-neighbor repul-
sion J , and a uniform chemical potential H , defined on the
same lattice [33]. In the following we take J as the energy unit
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FIG. 1. Ground-state phase diagram of the S = 1/2 3D site-
diluted AFM Heisenberg model in the x-h plane. The dots give
the QMC estimates of the order-disorder transition at t = 10−3. Ar-
rows illustrate the three different transitions analyzed in details in
this paper.

and define a reduced temperature t = T/J and a reduced field
h = H/J for convenience. We investigate this model using
numerically exact QMC simulations, based on the stochastic
series expansion (SSE) algorithm [34]. By using a β-doubling
procedure [35], we simulate system sizes up to L3 = 263 and
with temperatures down to t = 10−3. Our results are aver-
aged over 2400–5300 disorder realizations (depending on the
size). Compared to previous studies on S = 1 disordered spin
models by some of us [20,21], the system sizes and disorder
realization numbers studied here are at least twice as large,
and the temperatures (in units of the interaction) are lower
than all previous studies to our knowledge.

We characterize the equilibrium behavior of the system
via the transverse static structure factor at wavevector q,
Sxy(q) = L−3 ∑

i, j eiq·(ri−r j )〈Sx
i Sx

j + Sy
i Sy

j〉, which is propor-
tional to the momentum distribution of the hardcore bosons.
Such a quantity allows us to define the squared order parame-
ter characterizing the long-range antiferromagnetic phase in
the XY plane as m2

s = Sxy(Q)/L3, where Q = (π, π, π ) is
the ordering wavevector; this quantity is proportional to the
condensate density for bosons. A finite value of m2

s in the
thermodynamic limit marks the phase with long-range anti-
ferromagnetic order in the XY plane (AF-XY), which maps
onto the SF phase for bosons. The correlation length can
be determined by using the second-moment estimator ξ =
L

2π

√
Sxy (Q)

Sxy (Q+(2π/L,0,0) − 1. Throughout our paper, the critical

temperatures tc(x, h) have been determined via the crossing
points of ξ/L curves for different values of L, typically at fixed
t and variable x or h.

The ground-state phase diagram, obtained via the ξ/L
scaling at the lowest temperature t = 10−3, is shown in Fig. 1
in the dilution-vs-field plane. Two fundamental features
can be easily established: (1) at the percolation threshold
xp = 0.6883923(2) [36], the site-diluted cubic lattice breaks
up into finite clusters, so that long-range magnetic order is
no longer sustainable for x > xp; and (2) the clean system
(x = 0) undergoes a polarization transition at the saturation
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FIG. 2. Scaling at the zero-field magnetic transition. [(a),(b)]
Finite-size scaling of the correlation length ξ at t = 0.001, leading
to the estimates xc = 0.693(6) and ν = 0.87(8). [(c),(d)] Scaling of
the finite-temperature transition line in the log-log (c) and normal
(d) scales, respectively. Solid red lines are power-law fit xc = xc(0) −
At1/φ with xc(0) = 0.694(6) and φ = 1.1(1). The dashed blue line
in panel (d) is a power-law fit with φ̄ = 2.5 to the intermediate
temperature data, giving x̄c(0) ≈ 0.732.

field hc(x = 0) = 6. Adding any finite amount of disorder to
the system in the form of dilution alters the latter transition,
introducing an intermediate BG phase [37], which necessarily
erodes the SF phase, as the polarizing field is independent
of the dilution. On the other hand, in zero field a magnetic
percolation transition can occur, which is purely driven by
the geometry of the underlying lattice. Such a transition
persists up to a multicritical field h∗ ≈ 1, at which the SF-BG
transition line and the magnetic percolation line meet.

Zero-field magnetic transition and percolation. We first
focus on the zero-field transition induced by dilution x. Upon
diluting the cubic lattice one may wonder whether quantum
fluctuations are able to destroy long-range order for x < xp,
but this turns out not to be the case—as clearly shown in
Fig. 2(a). There the scaling analysis of the correlation length
at the lowest temperature (t = 10−3) indicates a critical point
of 0.693(6), consistent with xp (see below for the t = 0 extrap-
olation). Moreover the estimated correlation length exponent
ν = 0.87(8)—obtained from the collapse of different data
sets according to the scaling Ansatz ξ/L = F (|x − xc|L1/ν )
[Fig. 2(b)]—is also found to be consistent with the percolation
value νp = 0.876(1). As shown in the Supplemental Material
(SM) [38], adding corrections to scaling allows us to collapse
the ξ/L curves by using xc = xp, as well as to collapse curves
for m2

s with the 3d percolation exponent βp = 0.418(1) [36].
We conclude that corrections to scaling, while necessary for
the correct estimate of quantum critical exponents, only lead
to a small (� 1%) shift in the estimate of the critical point.
Therefore, in order to minimize the number of fitting factors,
we shall not apply them in the rest of the work. Our data
are therefore fully consistent with a magnetic percolation
transition occurring at xc = xp. These results generalize to
three dimensions the ones (both theoretical [35] as well as

experimental [39]) already obtained for the magnetic perco-
lation transition of the 2d version of this model.

The critical dilution xc(t ) for the 3d Heisenberg model at
various finite temperatures can be systematically determined
via the ξ/L scaling, and it is shown in Figs. 2(c) and 2(d). It
clearly exhibits a power-law behavior xc(t ) = xc(0) − At1/φ ,
stabilizing only in the lowest-temperature range we explored
(t ∼ 10−3 ÷ 10−2). Fitting the data in this range delivers
xc(0) = 0.694(6), deviating by <1% from xp; and φ = 1.1(1).
Most interestingly, a similar value for φ has been recently
obtained in an extensive numerical study on the classical (S =
∞) Heisenberg model on the same diluted lattice [32]; and it
has been shown to be consistent with the crossover exponent
for percolation, φ = νpζ̃R = 1.12(2), where ζ̃R = 1.28(2) dic-
tates the scaling of the resistance of a resistor network defined
on the critical percolating cluster [31]. The coincidence of
the behavior of the quantum system and that of the classical
system is not at all surprising, given that quantum effects are
found not to change the percolative nature of the magnetic
transition at zero temperature; and they are even less expected
to affect the finite-temperature behavior. On the other hand
we remark that an exponent φ � 2 could be easily fitted to
our results when discarding the lowest temperature results;
but this approach would lead to an unphysical estimate of the
zero-temperature transition at xc(0) > xp.

SF-BG transition and φ exponent. We now move to the
central part of the work, namely the study of the crossover
exponent φ at the SF-BG transition. To demonstrate the uni-
versality, we study the transition along two cuts of the SF-BG
transition line: (i) varying h at x = 0.3, and (ii) varying x at
h = 3. The critical field and dilution concentration for the
lowest accessible temperature t = 10−3 are determined from
the scaling analysis of ξ/L to be hc(t = 10−3, x = 0.3) =
4.998(3) and xc(t = 10−3, h = 3) = 0.604(3), respectively,
with an estimated ν = 0.9(1)—see Figs. 3(a) and 3(c). The
critical fields [hc(t )] and concentrations [xc(t )] at finite tem-
perature, obtained with a similar scaling analysis, are shown
in Figs. 3(b) and 3(d), and fitted to the power-law dependence
gc(t ) = gc(0) − At1/φ (g = h, x). Our data clearly indicate
that φ = 1.1(1) in both cases—a detailed fitting analysis on
variable temperature windows is presented in the SM [38].
The curve best fitting the points at the lowest temperatures t =
10−3 ÷ 10−2 has nearly zero curvature (since φ is very close
to unity). Yet the prediction of conventional scaling theory
(φ � 2) would instead require a finite curvature, which can
be easily found by looking at higher temperatures. A φ = 2
exponent can fit our data only if we exclude the points in the
above-cited low-t range, leading to extrapolated t = 0 criti-
cal points, which are inconsistent with those [hc(t = 0, x =
0.3) = 5.007(3) and xc(t = 0, h = 3) = 0.606(5)] obtained
by using φ as a fitting parameter.

In addition to the analysis of the finite-temperature transi-
tion lines in the vicinity of the QCP, a completely alternative
approach can be used to extract the φ exponent, based on
the thermodynamic behavior along the so-called quantum
critical (QC) trajectory, namely varying t at fixed g = gc(0).
Along this trajectory the specific heat scales as C(t ) ∼ t xC ,
and the uniform magnetization behaves as m(t ) − m(0) ∼ t xm ,
where xC and xm are the associated scaling exponents. It has
been shown that the relation φ−1 = xC − xm + 1 holds for all
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FIG. 3. Scaling at the SF-BG transition. [(a),(c)] Scaling plots of
the correlation length ξ/L at t = 0.001 and the finite-temperature
transition line by varying h at x = 0.3 (a) and by varying x at
h = 3 (c). [(b),(d)] Temperature-dependent critical points hc(t ) at
x = 0.3 (b) and xc(t ) data at h = 3 (d). The red lines show fits to
the power-law behavior gc(t ) = gc(0) − At1/φ (g = h, x). The blue
lines are fits of the intermediate temperature data with fixed φ̄ = 2.
Insets of (b) and (d) are parameter r(t ) (see text) along the critical
line; the pink-shaded region shows the temperature regime in which
we observe φ ≈ 1.1.

scaling Ansätze proposed so far for the transition [21], includ-
ing that of Ref. [2]. The xC exponent can be most conveniently
obtained via QMC from that governing the scaling of the
thermal energy, E (t ) − E (0) ∼ t xE with xE = xC + 1. Data
of E (t ) and m(t ) at x = 0.3 and hc(0) = 5.007 are shown
in Figs. 4(a) and 4(b), respectively. From the power-law fit,
we obtain xE ≈ 2.58(4) and xm = 1.71(1), which leads to
φ = 1.20(7), fully consistent with the analysis based on the
transition lines.

We notice that the density factor r(t ) = |n(t )/nc − 1| [40]
can take widely different values over the temperature ranges
that consistently lead us to the estimate φ ≈ 1.1 – r � 1
in Fig. 3(b), r � 0.2 Fig. 3(d), and r � 4 in the tempera-
ture range t � 0.25 exhibiting the QC trajectory behavior in
Figs. 4(a) and 4(b). These results question the relevance of the
density criterion r � 1 put forward by Ref. [25].

FIG. 4. Temperature evolution of the thermal energy per spin
E (t ) (a) and the uniform magnetization m(t ) (b) along the QC tra-
jectory at x = 0.3, hc(0) = 5.007. The solid lines are power-law fits
giving xE = 2.58(4) and xm = 1.71(1), respectively.

Discussion and conclusions. Using two independent
approaches for the extraction of the crossover exponent at
the SF-BG transition (via the vanishing of Tc; and via the
thermodynamics along the QC trajectory) we unambiguously
find a value of φ, which violates the prediction from con-
ventional scaling theory, φ � 2. On the other hand, our
findings are consistent with experimental results on Br-DTN,
as well as with extensive numerical studies of its model
Hamiltonian [20,29]. Note that clear signs of saturation of
the thermodynamic quantities to their t = 0 value (see data
within the SM [38]) are observed at the lowest tempera-
ture (t = 10−3) in our calculations, and correspondingly the
critical values xc(t = 10−3) and hc(t = 10−3) for dilution
and field are typically compatible with their extrapolated
t = 0 value within the error bar. Therefore our results reach
a rather satisfactory level of control on thermal effects, at
least up to the system sizes we could access. The results of
Ref. [25], concluding that φ ≈ 2.7, have full control on the
position of the t = 0 QCP only for the disordered link-current
model: remarkably this model has an additional (particle-
hole) symmetry with respect to generic bosonic models with
disorder. In the disordered hardcore-boson models studied by
Ref. [25] (not possessing this symmetry) the position of
the QCP is not evaluated directly, and one cannot conclude
whether or not the asymptotic scaling regime was reached.
As we have shown above, curves with φ � 2 can be fitted to
our data as well in an intermediate temperature range (t �
10−2), which is the one reached by Ref. [25] for hardcore
bosons; but they are no longer working when going to even
lower temperatures.

Our data show that the crossover φ exponent at the SF-
BG transition is compatible with the one of 3d percolation,
suggesting a link between the two phenomena. Nonetheless,
the link, if existent, is rather complex, as the SF-BG quantum
critical exponents are markedly different from the ones of
percolation. As shown within the SM [38], a scaling anal-
ysis of m2

s L2β/ν at the SF-BG transition for x = 0.3 leads
to estimating the two critical exponents as ν = 0.9(1) and
β = 1.2(1): while the first exponent is compatible with νp of
3d percolation, the second one is definitely not compatible
with βp, even after taking into account corrections to scaling.
Hence a more complex scenario of quantum percolation [22]
is in order. Such a scenario is supported by a study of the
magnetic participation ratio [22] (see the SM [38]), expressing
the fraction of the diluted system effectively populated by
hardcore bosons with density ni = 1/2 − Sz

i ; our numerical
results show that this fraction is below the value associated
with density percolation in the entire region surrounding the
SF-BG transition. Hence percolation at the SF-BG transition
can only be understood in the sense of phase correlations,
spreading across weak links (akin to tunnel junctions), which
are nearly devoid of bosons.

Reference [41] has proposed that criticality compatible
with percolation might be seen as a transient crossover
behavior upon approaching the SF-BG transition. Our results
seem to exclude such a crossover. Indeed, as shown in the SM
[38], we can extract a z exponent from the scaling of the spin
stiffness, which appears to be compatible with z = d = 3 at
T = 0 as expected for the true SF-BG QCP, but are instead
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incompatible with percolation [41]. These same data are in
the temperature range in which we observe φ ≈ 1.1; hence
we do not see much room for a further crossover to φ � 2.
Our results are instead compatible with two-argument scaling
Ansätze [21], implying the existence of a dangerously irrel-
evant perturbation at the SF-BG fixed point, similarly to the
one observed at the incommensurate SF-insulator transition in
clean systems [13]. The physical origin of such a perturbation
remains nonetheless to be identified.

Finally, the SF-BG transition we investigated can be po-
tentially realized in any magnetic insulator realizing 3d
Heisenberg antiferromagnetism (for S = 1/2 as well as higher
spins), and subject to chemical doping of its magnetic
ions—several examples of such systems (especially layered

antiferromagnets exhibiting a 3d Néel transition) exist in the
literature, e.g., La2Cu1−x(Zn,Mg)xO4 [39], Rb2Mn1−xMgxF4

[42], Mn1−xZnxPS3 [43]. Our predictions are therefore
testable via the high-field and low-temperature properties of
such materials, as well as similar ones.
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