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Centrosymmetric antiferromagnetic semiconductors, although abundant in nature, appear less favorable in
spintronics owing to the lack of inherent spin polarization and magnetization. We unveil hidden Zeeman-type
spin splitting in layered centrosymmetric antiferromagnets with asymmetric sublayer structures through first-
principles simulations and symmetry analysis. Taking the bilayer counterpart of recently synthesized monolayer
MnSe, we demonstrate that the degenerate states around specific k points spatially segregate on different
sublayers forming PT -symmetric pairs. Furthermore, degenerate states exhibit uniform in-plane spin config-
urations with opposite orientations enforced by mirror symmetry. Bands are locally Zeeman split up to order of
∼70 meV. Strikingly, a tiny electric field of a few mVÅ−1 along the z direction breaks the double degeneracy
forming additional Zeeman pairs. The design principle to obtain Zeeman-type splitting in centrosymmetric
antiferromagnets established here expands the range of materials among which to look for spintronics.

DOI: 10.1103/PhysRevB.109.L020404

Introduction. Spin polarization in nonmagnetic crystals
without inversion symmetry (P) can be achieved through
relativistic spin-orbit coupling (SOC), as demonstrated by
Dresselhaus [1] and Rashba [2–4] in their influential works.
Recent research has indicated that a similar phenomenon
called hidden spin polarization (HSP) can exist even in cen-
trosymmetric crystals, provided that individual atomic sites
break local inversion symmetry [5–10]. The discovery of HSP
opens up possibilities for a broader range of materials in spin-
tronics and offers new insights into various hidden physical
properties such as optical polarization [11,12], valley polar-
ization [12], orbital polarization [13,14], and Berry curvature
[15,16]. The HSP effect in nonmagnetic materials, character-
ized by the coexistence of P and time-reversal symmetry (T ),
is odd distributed in both real (r) and momentum (k) spaces
within a localized sector [17]. While techniques like spin- and
angle-resolved photoemission spectroscopy have successfully
measured HSP with both r and k resolution, its application
in spintronics necessitates the breaking of global symmetry,
typically achieved through external electric fields [8,12].

Antiferromagnets have recently emerged as a viable
substitute for nonmagnetic and ferromagnetic materials in
spintronic applications [18–22]. Due to their resilience against
magnetic disruptions, lack of stray fields, and ability to exhibit
exceptionally rapid spin dynamics, antiferromagnets possess
the potential to outperform ferromagnets. Recent research
focused on investigating spin splittings within various mag-
netic space groups, encompassing antiferromagnets [23,24].
However, centrosymmetric antiferromagnetic (AFM) semi-
conductors, which lack polarization and magnetization, pose
challenges in generating substantial and controllable spin
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splitting using magnetic or electric fields [25–27]. As a re-
sult, despite their abundance in nature, centrosymmetric AFM
semiconductors do not appear promising for practical applica-
tions in spintronics. Interestingly, the magnetoelectric effect
[28], in which an electric field has a dual effect of inducing
both polarization and magnetization, allows control over spin
splitting and textures in centrosymmetric antiferromagnets
even without SOC [27]. The gate-controlled magneto-optic
Kerr effect in layered collinear AFM MnPSe3 [25] and the
anomalous Hall effect in AFM CuMnAs [29] are observed.
Even though the magnetoelectric coupling effect is observed
in several centrosymmetric antiferromagnets [25–27,29], the
attainment of HSP remains uncommon due to the stringent
requirements imposed on lattice and site symmetry.

This Letter examines the hidden Zeeman-type spin split-
ting (HZSS) in PT -symmetric AFM two-dimensional (2D)
materials originating from specific local sites asymmetries.
We perform symmetry analysis and density-functional theory
(DFT) calculations on prototypical layered MnSe to show
that doubly degenerate states with opposite spin polarization
are segregated on different sublayers connected through PT
symmetry. The specific states from a single layer are locally
Zeeman split, exhibiting a unique spin-sublayer locking ef-
fect. In addition, the mirror plane (Mx) enforces the spins
to be k independent. Strikingly, a tiny electric field splits
the otherwise doubly degenerate bands, preserving the spin
configurations. Switching the electric field can reverse the
electronic spin magnetization connected to the energy level
splitting.

Methods. DFT calculations are performed using the
projector-augmented wave method [30] as implemented in
the VASP [31] package. The Perdew-Burke-Ernzerhof-based
generalized-gradient approximation [32] with a Hubbard U
correction [33] is adopted to describe electronic interaction.
Following Refs [34–36], we select an effective U of 2.3 eV
for Mn-d orbitals, giving a reasonable band gap of 1.82 eV
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FIG. 1. Geometric structures of bilayer MnSe with high-
symmetry stackings (a) AA and (b) AA′. The upper layer in AA
and AA′ is obtained by the translation (dẑ) and mirror reflection
(Mz) of the lower layer, respectively. The energy distribution of
different translations between layers for the (c) AA and (d) AA′

stacking. The energy surfaces are interpolated using ten steps in a
and b directions such that all possible high-symmetry stackings are
included. (e) Structure of the global ground state with AB stacking
having magnetization M↑↓↑↓. The sublayers αi and βi (i = 1, 2)
are connected by the PT center with orange dashed lines. (f) Energy
band dispersion of monolayer MnSe without (solid black lines) and
with an electric field (red dashed lines) of 0.05 VÅ−1 along the z
direction.

for monolayer MnSe. Note that we have computed band
structure in the framework of noncollinear magnetism with
SOC, although spin splittings are SOC independent. The
gate-controlled electric field is applied using the approach
introduced by Neugebauer and Scheffler [37]. Methods are
detailed in Sec. I of the Supplemental Material (SM) [38].

Monolayer MnSe. The MnSe monolayer consists of two
buckled honeycomb sublayers of MnSe, interconnected by
Mn-Se bonds [Fig. 1(a)]. Within the monolayer, the upper
Mn/Se atoms are positioned alternately on top of the lower
Se/Mn atoms. Each unit cell of monolayer contains two Mn
and two Se atoms, with a lattice constant of 4.28 Å, belong-
ing to the space group P3m1 with P symmetry (ignoring
spin configurations). Considering different possible magnetic
configurations, we find that the upper and lower sublayers
are coupled antiferromagnetically through Néel-type antifer-
romagnetism. The robust Néel-type AFM state is more stable
than the FM state by 0.38 eV per unit cell (u.c.). Additionally,
the magnetic anisotropic energy (MAE) calculations reveal
that the monolayer MnSe prefers in-plane magnetization over
out-of-plane magnetization, with an energy difference of
0.37 meV/u.c. These results are consistent with the previous
experimental [34] and theoretical reports [34–36].

Bilayer stackings. Determination of stacking orders in
multilayers is challenging, especially for more complex struc-
tures. First, we created bilayer MnSe by taking the upper
layer as translation (by dẑ) and mirror reflection (Mz) of the
lower layer, as shown in Figs. 1(a) and 1(b). We name these
stacking AA (obtained through dẑ) and AA′ (obtained through
Mz), following the nomenclature used in Ref. [39]. After
that, we transformed these stackings into other possible high-
symmetry stackings by translation sliding of one of the basal
planes in the unit cell: going to AB and BA state from AA, and

FIG. 2. Schematic illustration of band structures with (a) null
spin splitting and (b) Zeeman spin splitting. (c) Sketches of twofold
degenerate bands in the presence of PT symmetry with hidden spin
polarization, where each band is segregated on different sublayers.
(d) The lifting of band degeneracy in the presence of an electric
field along the z direction. The energy levels with positive and
negative spin magnetization are sketched in the red and blue curves,
respectively.

going to AB′ and BA′ from AA′. Further, DFT calculations
were conducted to ascertain the lowest energy states for vari-
ous stacking arrangements (see Sec. I of SM [38] for relaxed
structures and discussion). As shown in Fig. 1(c), translat-
ing the top layer in AA by 2

3 a + 1
3 b results in AB stacking

with nondegenerate global energy minimum. In comparison,
BA stacking is energetically unfavorable. On the other hand,
shifting the top layer from AA′ leads to doubly degenerate
energy minima AB′ and BA′ [Fig. 1(d)]. AB stacking is ener-
getically most favorable, having lower energy than AB′/BA′

by 14 meV per unit cell. Bilayer MnSe can be divided into
sublayers αi and βi (i = 1, 2), each sublayer containing a
single Mn atom. Note that we have taken four nondegener-
ate magnetic configurations M↑↑↑↑, M↑↓↑↓, M↑↓↓↑, and
M↑↑↓↓ (here, up and down arrows represent the magnetic
moment direction of sublayers along +x and −x directions,
respectively, in the order of β2, β1, α1, and α2 [Fig. 1(e)]).
Given that the easy axis of magnetization lies in the x-y plane
with MAE of 0.9 meV/u.c., we have chosen the x direction
as the axis for magnetization. Our DFT calculations show
that Néel-type AFM configuration M↑↓↑↓ has the lowest
energy. Therefore, our calculation assumes that the bilayer
MnSe exhibits AB stacking with M↑↓↑↓ configuration unless
otherwise specified.

Symmetry analysis. PT symmetry flips the spin but retains
the k invariance, i.e., PT (k, σ ) = PE (−k,−σ ) = E (k,−σ ),
enforcing the spin degeneracy. Therefore, energy bands
are doubly degenerate without spin polarization locally
and globally if all atomic sites are PT symmetric
[Fig. 2(a)]. Broken PT symmetry, i.e., in ferromagnetic or
noncentrosymmetric AFM materials, leads to the Zeeman spin
splittings [Fig. 2(b)] [20]. The magnetic point group (MPG)
for bilayer MnSe with AB stacking is 2′/m, having symmetry
operations Mx, C2xT , and PT besides trivial identity
operation (I). Here, Mx and C2x are mirror reflection in the
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y-z plane and twofold rotation around the x axis, respectively.
Bilayer MnSe is globally centrosymmetric (D3d ). However,
the atomic site symmetries of Mn (C3v) and Se (C3v) are
noncentrosymmetric. MPG of each sublayer (αi, βi) contains
I and Mx. While the total spin polarization is prohibited by
global PT symmetry, the PT -asymmetric nature of sublayers
allows the observation of spin polarization locally dubbed
hidden spin polarization. The αi sublayer is connected to the
βi sublayer through PT symmetry, making bilayer MnSe
globally PT symmetric [Fig. 1(e)]. Therefore, we say that
αi is the inversion partner of βi. As a consequence, the state
localized on the αi sublayer |ψαi

k,↑〉 and the state localized on

βi sublayer |ψβi

k,↓〉 are energy degenerate (Eαi
k,↑ = Eβi

k,↓). More
importantly, the two components of doubly degenerate bands
have opposite spin polarization (Sαi

k = −Sβi

k ), each spatially
localized on one of the two separate sublayers forming the
inversion partners, called the spin-sublayer locking effect
[Fig. 2(c)]. When examining a specific layer (say α) [see
Ref. [40] for the experimental procedure] that consists of
sublayers α1 and α2, the states localized on α1 and α2 have
nondegenerate energy. Consequently, the states |ψα1

k,↑〉 and
|ψα2

k,↓〉 create a Zeeman pair. Similarly, β1 and β2 states
also make a Zeeman pair. Moreover, the anticommutation
relationship between Mx and σy,z in spin space (where
σx,y,z represents the Pauli matrices) imposes a condition
on the general energy eigenstate |ψαi/βi

k,↑/↓〉. Specifically,

〈ψαi/βi

k,↑/↓|M−1
x σy,zMx|ψαi/βi

k,↑/↓〉 = −〈ψαi/βi

k,↑/↓|σy,z|ψαi/βi

k,↑,↓〉, which

implies that 〈ψαi/βi

k,↑/↓|σy,z|ψαi/βi

k,↑/↓〉 = 0. Consequently, the
spin orientations are independent of k and aligned parallel
or antiparallel to x direction. That leads to the HZSS with
persistent spin textures [Fig. 2(c)], and the energy relationship
can be expressed as

Eαi
k,↑ = Eβi

k,↓, i = 1, 2 and Es1
k,↑ �= Es2

k,↓, s = α, β. (1)

Next, we apply an electric field (E) to break PT symme-
try. The electric field creates a net charge polarization (P ∝
E) [28]. Induced polarization generates a net magnetization
(Mi ∝ Pj) through the magnetoelectric effect [28], lifting the
PT symmetry between inversion partners. The occurrence
of magnetization induces an effective magnetic field (Beff ∝
P) that couples with the spin degrees of freedom, yielding
a Zeeman-like Hamiltonian

∑
i, j λi, jPiσ j . Tensor λi, j deter-

mines the strength of the magnetoelectric coupling. Some
components of λi, j are never nonzero and vanish due to the
symmetry. We determine the symmetry-allowed terms λi j us-
ing the method of invariants [41] (H = O†HO, where O is the
symmetry operation belonging to the MPG 2′/m), generally
used to determine the k · p Hamiltonian in nonmagnetic ma-
terials [42,43]. The Zeeman Hamiltonian (HZ ), following the
transformation rules of Pi and σ j listed in Table I, is given by

HZ = λx,yPxσy + λx,zPxσz + λy,xPyσx + λz,xPzσx. (2)

HZ breaks the PT symmetry and lifts the energy degeneracy
between states localized on inversion partners [Fig. 2(d)], thus
forming additional Zeeman-like pairs

Eαi
k,↑ �= Eβi

k,↓, i = 1, 2 and Es1
k,↑ �= Es2

k,↓, s = α, β. (3)

TABLE I. The transformation rules of electric polarization
(Px, Py, Pz) and Pauli spin matrices (σx, σy, σz) with respect to the
operations (O) belonging to MPG 2′/m. The last column shows the
terms which are invariant under operation.

O (Px, Py, Pz) (σx, σy, σz) Invariants

I (Px, Py, Pz) (σx, σy, σz) Piσ j (i, j = x, y, z)
Mx (−Px, Py, Pz) (σx, −σy, −σz) Pxσy/z, Py/zσx

C2xT (Px, −Py, −Pz) (−σx, σy, σz) Pxσy/z, Py/zσx

PT (−Px, −Py, −Pz) (−σx, −σy, −σz) Piσ j (i, j = x, y, z)

It should be noted that HZ is determined assuming that the
magnetization axis aligns with the x direction. However, the
Hamiltonian can be adapted for any in-plane direction by
rotating it accordingly.

DFT analysis. According to symmetry analysis, there are
two conditions to observe HZSS: (i) global PT symmetry and
(ii) the states segregated on the local PT -asymmetric sites.
Condition (i) is already fulfilled, and to check condition (ii),
we plot the orbital-projected band structure of bilayer MnSe
considering spin-orbit interaction [Fig. 3(a)]. Under C3v site
symmetry, the Mn-d orbitals split into three categories, dz2 ,
(dx2−y2 , dxy), and (dxz, dyz ). The Se-p orbitals are split into two
categories, pz and (px, py). The Mn-d orbitals form conduc-
tion band (CB) states, while Se-p orbitals mainly contribute
to valence band (VB) states. Compared to the band structure
of monolayer MnSe [Fig. 1(f)], interlayer interaction between
inversion partners α1 and α2 results in increased separation
between the nested bands and spin mixture from another sub-
layer. Compared to the in-plane orbitals (dx2−y2 , dxy, px, py),
the out-of-plane orbitals (dxz, dyz, dz2 , pz) exhibit significant
interlayer and intersublayer interaction (see Sec. II of the
SM [38]). Observing HZSS is not ideal with the CB states
around the M and � points and the VB states around the

FIG. 3. (a) Orbital-projected band dispersion curves of bilayer
MnSe with AB stacking. (b) |ψnk(r)|2 for the states CB, CB + 1,
CB + 2, and CB + 3 at the K point. Layer-projected CBs of bi-
layer MnSe around the K point along (c) K-� and (d) K-M. (e)–(f)
Counterparts of (c)–(d) in the presence of a small electric field of
4 mVÅ−1 along the z direction.
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K and M points. That is because these states have contribu-
tions from the hybridization of out-of-plane orbitals between
different sublayers, and thus their wave functions are not
segregated. The CB states near the K point are predominantly
contributed by (dx2−y2 , dxy), and VB states around the � point
are composed of mainly (px, py). Therefore states arising from
the in-plane orbitals, i.e., the CBs near the K point and the
VBs near the � point, have weak communication between
different sublayers, leading to minimal separation between
nested bands and spin mixture from neighboring layers. Con-
sequently, each wave function is localized within the sublayer
for the CBs near the K point and the VBs near the � point,
forming the ideal choice to observe the spin-sublayer locking
effect and HZSS [Fig. 3(b)].

Next, we plot layer-projected dispersion curves for low
CBs in the vicinity of the K point for bilayer MnSe [Figs. 3(c)
and 3(d)]. The four lowest CBs form two twofold degen-
erate pairs [see Eq. (1)]. Despite having the same energy,
these states are localized on distinct sublayers and can be
probed using r-resolved spectroscopy techniques [7,44]. For
instance, the degenerate states CB and CB + 1 segregate on
inversion partners α1 and β1, respectively [Fig. 3(b)]. Both
inversion partners possess finite and opposite k-independent
spin orientations, either parallel or antiparallel to the x di-
rection (see Sec. III of the SM [38]), ensuring zero net spin
polarization respecting the PT symmetry requirement. The
k-independent persistent spin textures overcome spin dephas-
ing and provide nondissipative spin transport [45–47]. The α1

sublayer has a magnetization of magnitude 4.38μB along +x
direction and is compensated by the opposite magnetization
of inversion partner β1. A similar analysis also applies to the
upper degenerate pair CB + 2 and CB + 3, where wave func-
tions corresponding to CB + 2 and CB + 3 have segregated
on α2 and β2 sublayers, respectively. If we focus locally on
each layer, (|ψα1

K,↑〉, |ψα2
K,↓〉) and (|ψβ1

K,↓〉, |ψβ2
K,↑〉) form two

Zeeman pairs with energy splittings �α , �β , respectively
[Figs. 3(c) and 3(d)]. As a consequence of PT symmetry,
the strength of the Zeeman spin splitting is the same for each
layer (�α = �β) to satisfy the Kramers degeneracy. We have
observed Zeeman spin splitting of order ∼39.5 meV. Ob-
served Zeeman splitting in our case (without external fields) is
comparable to bulk AFM semiconductors Fe2TeO6 (55 meV)
and SrFe2S2O (33 meV) under an external electric field of
strength 60 mVÅ−1 [27]. However, it is still smaller than that
of nonmagnetic transition metal dichalcogenides, i.e., MoS2

(150 meV) [48]. HZSS is also observed for the VB states
near the � point, where both α and β bands are Zeeman
split (�α , �β) by ∼70 meV, as discussed in Sec. IV of
the SM [38].

Effect of external electric field. The HZ expressed in Eq. (2)
shows that twofold degeneracy will be lifted by including
polarization along an arbitrary direction (Px, Py, Pz). We in-
clude Pz through the application of an electric field along
the z direction (Ez), and our model in Eq. (2) can readily be
generalized to

HZ = γz,xEzσx (4)

where γz,x determines the strength of splitting. We plot the
CBs in a tiny Ez of 4 mVÅ−1 [Figs. 3(e) and 3(f)]. The

FIG. 4. The Zeeman spin splittings for the CBs (a) �1, �2 and
(b) �α , �β in bilayer MnSe as a function of electric field Ez.

Ez creates an asymmetric potential on the inversion partners
sublayers, resulting in global PT symmetry breaking. Each
degenerate pair splits into two levels E+ = γz,xEz (eigenstate
being |+〉) and E− = −γz,xEz (eigenstate being |−〉), where
σx|+〉 = +|+〉 and σx|−〉 = −|−〉. Therefore, two degener-
ate pairs in bilayer MnSe split into four energy levels, as
represented by the �1 and �2 in Fig. 3(f). Here �1 (�2)
represents the energy difference between the state localized
on the α1 (α2), and the state localized on β1 (β2). Upon initial
observation, it is evident that �1 < �2 due to the smaller real
space separation between α1 and β1 compared to that between
α2 and β2. Consequently, this results in a lesser potential
difference between α1 and β1, leading to a smaller energy
splitting �1 compared to �2.

After that, we plot energy splittings (�1,�2,�α , and �β)
as a function of the Ez [Figs. 4(a) and 4(b)]. We notice that the
energy splittings show a linear dependence on the Ez in the
range of 0 to 10 mVÅ−1. Maximum �1 and �2 are observed
to be 20.0 and 39.9 meV, respectively, with the Ez of strength
10 mVÅ−1. The Ez breaks the equality between �α and �β ,
where �α decreases and �β increases with increasing strength
of the Ez. The observed strength of �α and �β are 28.0 and
47.8 meV, respectively, under the influence of 10 mVÅ−1 Ez.
Additionally, the reversal of the electric field from Ez to −Ez

will reverse the spin magnetization Sx to −Sx (see Sec. V
of the SM [38]). Under an electric field of the same magni-
tude along the +z or −z direction, the strength of splittings
|�1| and |�2| is independent of the electric field direction.
However, �1 and �2 will flip their sign under electric field
reversal. These results are in qualitative agreement with our
model Hamiltonian Hz in Eq. (4). If we compare the effect
of the electric field on bilayer MnSe with monolayer MnSe
[Fig. 1(f)], we find that a large electric field is required in
monolayer MnSe to obtain the Zeeman splitting of the same
order. More specifically, Zeeman split pair of 50.9 meV is ob-
served with Ez of strength 50 mVÅ−1. Also, Zeeman splitting
without any external field in bilayer MnSe is an additional
advantage over monolayer MnSe.

It is interesting to note that PT symmetry remains in-
tact with increasing layer thickness. Therefore, effects similar
to bilayer MnSe are also achieved in trilayer and tetralayer
MnSe, where every band is doubly degenerate, and degenerate
pair of bands are localized on different sublayers connected
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through PT symmetry (see Sec. VI of SM [38]). Thus, exper-
imental realization of HZSS can be easily achieved in layered
MnSe with arbitrary thickness.

In conclusion, we have shown the existence of HZSS
in bilayer MnSe, combining first-principles calculations and
symmetry analysis. The stacking characteristic study shows
that AB with PT symmetry is the lowest energy stacking.
The doubly degenerate states arising due to PT symmetry are
segregated into different sublayers forming inversion partners.
Then, we identified the local Zeeman splitting as large as
∼70 meV in bilayer MnSe, where states forming Zeeman
pair with opposite spin orientation segregate on different sub-
layers within a single layer. Interestingly, a tiny out-of-plane
electric field yields additional Zeeman pairs through breaking
twofold degeneracy. Mx enforced persistence spin textures
remain preserved under an out-of-plane electric field and are
known for nondissipative spin transport. Moreover, the fact
that our results are independent of the layer number adds

credibility to the possibility of experimental observation. Con-
trollable Zeeman spin splittings achieved using electric fields
are detectable through established approaches such as optical
and transport measurements commonly used in spintronics
[49,50]. Zeeman splittings with hidden spin polarization in
centrosymmetric antiferromagnets form another prospective
aspect in developing semiconductor spintronics devices [51].
We anticipate that our findings will contribute to a deeper
understanding of magnetoelectric interactions and broaden
the emerging fields of AFM and semiconductor spintronics
[52,53].
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