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Mott-insulating transition metal oxides containing t4
2g ions with strong spin-orbit coupling were recently

demonstrated to display unusual magnetism due to a dynamical mixing of the low-energy multiplet states via
exchange processes. Here we derive exchange interactions in the situation where a tetragonal or trigonal crystal
field selects a single relevant excited state on top of the singlet ionic ground state, producing an effective spin- 1

2 .
We show that these moments universally obey antiferromagnetic transverse-field Ising model (TFIM) with an
intrinsic transverse field generated by the splitting of the two ionic singlets. Using Ru4+ as a example ion,
we provide quantitative estimates of the exchange and illustrate the emergent TFIM physics based on phase
diagrams and excitation spectra obtained for several 2D lattices—square, honeycomb, as well as for the frustrated
triangular lattice.

DOI: 10.1103/PhysRevB.109.L020403

Introduction. Transverse-field Ising model introduced by
de Gennes in 1960s [1] ranks among the most prominent ex-
ample systems to study quantum criticality [2,3]. Its Ising part
belongs to a few lattice models in statistical physics for which
exact solutions are available [4–9] and gained popularity as
a prototype model to capture collective behavior not only of
localized spins in magnets but also in a much broader context
[10,11]. Ising model itself represents a classical problem. By
adding transverse magnetic field, the quantum nature of spins
comes into play, leading to a quantum critical behavior reflect-
ing a competition of Ising interactions and Zeeman energy.
The model has been studied in various settings, a particularly
appealing case is the antiferromagnetic (AF) TFIM on a tri-
angular lattice combining quantum criticality with frustration
and exhibiting Berezinskii-Kosterlitz-Thouless (BKT) transi-
tions [12–14].

Realization of TFIM in magnetic materials is limited by
the requirement of strong uniaxial anisotropy of exchange
interactions and their suitable strength with respect to acces-
sible magnetic fields. Simple anisotropic ferromagnets were
considered since the early days [15]; however, a definitive ex-
perimental demonstration came only in 2010 with CoNb2O6

acting as 1D TFIM chain in neutron scattering [16]. The case
of frustrated AF TFIM is yet more delicate. A promising route
was recently suggested by 4 f triangular-lattice compound
TmMgGaO4 where signatures of BKT physics were observed
[17–19]. Here the lowest two levels of Tm3+ ions form a
well-isolated pair of singlets hosting effective spin- 1

2 . Thanks
to large spin-orbit coupling (SOC) and hence large orbital
component of these moments, they are subject to strongly
anisotropic interactions. The second key ingredient is the
crystal-field (CF) induced splitting of the two singlets that
plays a role of an intrinsic transverse field [20–23]. In this
Letter we show that 4d4 and 5d4 Mott insulators with large
SOC [24] may be even more convenient platform for TFIM
utilizing a similar mechanism. As we demonstrate by explic-
itly deriving the exchange model, at sufficiently large negative
CF splitting of t2g levels, the interactions are of AF Ising-type

enforced by the very structure of the d4 ionic states. This
promises a realization of TFIM on various 2D lattices at larger
energy scales and corresponding characteristic temperatures
as compared to 4 f systems (exchange strength reaching tens
of meV compared to ≈1 meV for TmMgGaO4 [17]), with the
intrinsic transverse field potentially tunable by straining.

TFIM imposed by spin-orbital structure of ionic states.
We first briefly review the multiplet structure of relevant ions
such as Ru4+ or Ir5+ with d4 valence configuration limited
to t2g orbitals. Large SOC in these ions forms nonmagnetic
J = 0 singlet ground state s and low-energy J = 1 triplet
excitations Tx, Ty, Tz separated from the ground-state level by
energy ζ/2 with ζ denoting the single-electron SOC strength
[24]. These states may serve as a basis for an effective model
exhibiting quantum critical behavior due to the competition of
exchange and triplet energy cost [24,25]. The essential control
parameter here is the tetragonal or trigonal CF splitting �

of t2g orbital levels relevant for 2D lattices of corner-sharing
or edge-sharing metal-O6 octahedra, respectively. Nonzero �

splits the J = 1 triplet and strongly modifies the ionic excita-
tion energies as plotted in Fig. 1(a) and thoroughly discussed
within the Supplemental Material (SM) [26]. Earlier studies
analyzed the situation with no triplet splitting [25,27,28] and
partially the positive-� case [29,30]. Here we focus on the
so-far unexplored negative-� case with |�| � ζ , the relevant
set of basis states thus gets reduced to a non-Kramers doublet
consisting of the ionic ground state s and one of the triplets Tz

selected by the out-of-plane CF axis direction z [see Figs. 1(a)
and 1(e)]. The internal structure of these t4

2g states sketched
in Fig. 1(b) is best appreciated when expressing them via
eigenstates |Lz, Sz〉 of the total effective t2g orbital momentum
L = 1 and total spin S = 1 carried by the two t2g holes,

|s〉 = 1√
2
(|+1,−1〉 + |−1,+1〉) cos ϑ0 − |0, 0〉 sin ϑ0,

|Tz〉 = i√
2
(|+1,−1〉 − |−1,+1〉). (1)
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FIG. 1. (a) Low-energy levels of t4
2g ion depending on tetragonal

or trigonal CF splitting �. The energies are plotted relative to the
ionic ground-state level. Within LS coupling scheme, total L = 1
and S = 1 of the two holes added to the t6

2g configuration are com-
bined by SOC into ground-state singlet s, a triplet of states Tx,y,z

degenerate at � = 0, and a quintuplet at higher energies that may
be ignored. In point-charge model, negative � corresponds to the
indicated tetragonal/trigonal elongation of metal-O6 octahedra (in
reality it is influenced also by the Madelung potential contributed by
more distant ions and covalency effects, which may break this simple
correspondence). (b) At large enough � < 0, the pair s and Tz forms
the basis of the low-energy model. The corresponding wave functions
(for the tetragonal case) are represented by shapes of the respective
hole densities resolved according to Sz and Lz. Spin is indicated by
color (red, up along z; blue, down), orbital angular momentum by an
arrow. The remaining Tx,y are shown in the inset of (a). (c) Linear
combinations of s and Tz forming the basis of the pseudospin S̃ = 1

2
model. For large negative � they converge to fully polarized states
with antiparallel L and S. (d) �-dependent angles ϑ0,1 entering the
wave functions. (e) xyz reference frame with z being the out-of-plane
axis.

The auxiliary angle ϑ0 is given by tan 2ϑ0 = 2
√

2/(1 −
2δ) with δ = �/ζ and vanishes in � → −∞ limit [see
Fig. 1(d)]. The splitting of s and Tz levels equals ET =
1
4ζ [

√
(1 − 2δ)2 + 8 − (1 − 2δ)], vanishing as ζ/(1 − 2δ).

The exchange interactions between d4 ions in the above
regime can be obtained by standard second-order perturbation
theory in electron hopping resulting in a model for hardcore
bosons s and Tz. These are subject to the local constraint
ns + nTz = 1, where ns = s†s and nTz = T †

z Tz count bosons
on a given site. The model becomes particularly transparent if
formulated in terms of a pseudospin S̃ = 1

2 based on the linear
combinations |̃↑〉, |̃↓〉 = 1√

2
(|s〉 ± i|Tz〉),

|̃↑〉 = c2|−1,+1〉 − s2|+1,−1〉 −
√

2 cs |0, 0〉,
|̃↓〉 = c2|+1,−1〉 − s2|−1,+1〉 −

√
2 cs |0, 0〉, (2)

with c = cos ϑ0
2 and s = sin ϑ0

2 . This choice is motivated
by the � → −∞ limit depicted in Fig. 1(c) where |̃↑〉,
|̃↓〉 correspond to fully polarized states |−1,+1〉, |+1,−1〉
with strictly antiparallel out-of-plane Lz = −Sz. Moreover,
the pseudospin carries Van Vleck-type magnetic moment,
which is purely out-of-plane with large gz = 6 cos ϑ0 and zero
gxy (see the SM [26]). On the operator level, this change
of the basis is expressed via the correspondence relations
S̃x = 1

2 − nTz , S̃y = 1
2 (s†Tz + T †

z s), S̃z = − i
2 (s†Tz − T †

z s). As
a consequence, the level splitting ET translates to a transverse
field h = ET in the pseudospin formulation. The form of the
exchange interactions can be easily anticipated by consider-
ing the � → −∞ limit in Fig. 1(c). Since the two virtual
electronic hoppings generating second-order exchange can
only change the ionic spin component Sz by �Sz = 0,±1,
the states |̃↑〉, |̃↓〉 with Sz = ±1 cannot be connected and the
exchange is strictly of Ising S̃zS̃z type in this limit. A full
derivation for general � � −ζ gives the pseudospin model

HS̃ =
∑
〈i j〉

(
JzS̃

z
i S̃z

j + JxS̃x
i S̃x

j + JyS̃y
i S̃y

j

) − (h + δh)
∑

i

S̃x
i

(3)

with dominant Jz and h = ET , supplemented by minor Jx,
Jy, δh. In contrast to Jz, the latter exchange parameters only
arise due to the small common parts of |̃↑〉, |̃↓〉 and as such
they are proportional to sin2 ϑ0. As demonstrated later, they
quickly drop when entering the � � −ζ regime. Detailed
exchange expressions for both 180◦ bonds (corner-sharing
metal-O6 octahedra) and 90◦ bonds (edge-sharing) as well as
the connection to the hardcore boson formulations are given
within the SM [26]. Note that due to the omission of the bond-
directional states Tx,y, the interactions are identical for all bond
directions. Neglecting the minor contributions in Eq. (3), we
arrive at the final minimal model, which takes the form of
transverse-field Ising model

HTFIM = Jz

∑
〈i j〉

S̃z
i S̃z

j − h
∑

i

S̃x
i . (4)

Let us emphasize that this minimal model is imposed solely by
the internal structure of the ionic states at sufficiently negative
�/ζ , hence the mechanism is universal for any lattice.

Exchange parameters, phase diagrams, and excitations.
In this section, we illustrate the emergence of TFIM as a
low-energy magnetic model by exploring phases and exci-
tations obtained using an exchange model including all four
low-energy states s, Tx,y,z in the local basis. This model, to be
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called (full) s-T model in the following, has the advantage to
be applicable at any �/ζ and allows us to study the crossover
to the � � −ζ regime of interest. As we show below, the
main features in this regime can indeed be understood and
reproduced by simple AF TFIM. Its connection to the full
s-T model is provided by projection onto s and Tz, which
transforms the s-T model into the pseudospin- 1

2 model of
Eq. (3). On the way, we will also give quantitative hints on the
TFIM parameters targeting Ru4+ compounds by the particular
choice of Hubbard repulsion U , Hund’s coupling JH, and
SOC strength ζ . The s-T model Hamiltonian was obtained
by second-order perturbation theory and encompasses a large
number of bond terms involving hardcore bosons s, Tx,y,z,
following the general structure presented within the SM [26].
Due to this complexity, it cannot be given explicitly here (see
[25] for a simpler version with �/ζ = JH/U = 0), but we use
it in full to determine the variational phase diagram using the
trial product state

|�trial〉 =
∏

i∈sites

(√
1 − ρi s† + √

ρi

∑
α=x,y,z

d∗
iαT †

iα

)
|vac〉 (5)

and to calculate corresponding harmonic excitations using lin-
ear flavor wave theory (LFWT) [26,31–35]. |�trial〉 of Eq. (5)
enables to capture various forms of magnetically ordered
states linked to a condensation of hardcore vector bosons T as
well as the paramagnetic state where T remain uncondensed.
In the former case, the site-dependent variational parameters
ρi (scalars) and d i (unit vectors) determine the condensate
density and magnetic structure, respectively. The associated
excitation spectrum contains magnon-like modes (fluctuations
in d) and amplitude mode (oscillations of the condensate
density ρ). In the latter paramagnetic case, we find a trivial
minimum with all ρi = 0 and excitations being carried di-
rectly by bosons T .

As a first example, Fig. 2 gives an overview for a square
lattice with straight 180◦ bonds, where the nearest-neighbor
hopping t connects diagonally a pair of t2g orbitals active on a
given bond [24]. The phase diagram shown in Fig. 2(a) con-
tains a window of paramagnetic (PM) phase around �/ζ = 0,
separated by quantum critical points (QCP) at � ≈ ±ζ from
two condensed phases. Both are characterized by AF ordered
Van Vleck moments but their nature strongly differs. The
positive-� case with in-plane moments can be described by
a pseudospin-1 model with predominantly XY-type of inter-
actions and has been discussed in the context of Ca2RuO4

[26,29,30], which was estimated to have �/ζ ≈ 1.5 [29]. In
contrast, our negative-� case of interest is captured by the
above pseudospin- 1

2 TFIM. In this language, the pseudospins
in the PM phase are fully aligned by the in-plane transverse
field h = ET , while beyond QCP they develop staggered out-
of-plane component supported by Jz > 0. Due to zero in-plane
g factor, only the AF out-of-plane component carries magnetic
moment.

The TFIM picture is confirmed by the excitation spectra
in Fig. 2(b). Near the QCP, the dispersion of the low-energy
excitations probed by χzz susceptibility softens at the AF
momentum M = (π, π ), deeper in the AF phase they become
flat and the gap saturates, which is consistent with the ex-
pected Ising-type excitation at constant ω = 2Jz contrasting

FIG. 2. (a) Variational phase diagram of the full s-T model
for the square lattice obtained using U = 3 eV, JH = 0.5 eV, ζ =
0.15 eV (roughly corresponding to Ru4+), and hopping t = 0.14 eV.
At large enough negative/positive �, condensate of T bosons with
the density ρ is present and carries out-of-plane/in-plane AF mo-
ment. (b) Dynamic magnetic susceptibility calculated by LFWT at
selected points in (a) and separated into zz component (blue) and
in-plane xx + yy part (gray). Line thickness scales with the inten-
sity, dashed lines indicate the dispersions of excitations. Triangular
Brillouin-zone path including high-symmetry points � = (0, 0), X =
(π, 0), and M = (π, π ) is used. Identical zz component spectra are
obtained also by LFWT limited to s and Tz bosons only. (c) Plot
of the interaction parameters of the effective pseudospin- 1

2 model
(3) showing the clear dominance of Jz. (d) Parameter ratio Jz/h of
the effective model plotted as function of �/ζ . The QCP position
on �/ζ axis is estimated by mapping the critical ratio (Jz/h)crit of
TFIM determined either classically (0.5) or using precise QMC result
(≈0.657) back to �/ζ .

to the magnon-like excitations for positive � (see the SM
[26]). The proximity to TFIM is illustrated by the evalu-
ated parameters of the pseudospin- 1

2 model (3) presented in
Fig. 2(c). For � � −ζ , the dominant AF Jz quickly saturates
at the infinite-� value Jz ≈ (5 − 7η) t2/U with η = JH/U
(see the SM [26]), and is accompanied by tiny in-plane Jx,y.
Finally, Fig. 2(d) combines Jz of Fig. 2(c) and h = ET found
in Fig. 1(a) into the ratio Jz/h that is the decisive parameter
of TFIM and can be used to estimate the critical value of
�/ζ . The value (�/ζ )crit ≈ −0.9 based on (Jz/h)crit = 0.5
obtained by treating TFIM classically roughly agrees with
our variational result for the full s-T model in Fig. 2(a). It
gets corrected towards more negative (�/ζ )crit ≈ −1.4 when
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FIG. 3. (a) Effective exchange parameter Jz for the 90◦ bonding
geometry and U = 3 eV, JH = 0.5 eV, ζ = 0.15 eV. The parameter
β interpolates linearly between metal-O-metal hopping t and direct
hopping t ′, namely t = (1 − β ) × 0.3 eV, t ′ = β × 0.3 eV. (b) Rela-
tive strength of Jx (≈ Jy) compared to the dominant Jz. (c) Variational
phase diagram of the full s-T model on the honeycomb lattice. Major
part is taken by AF phase with out-of-plane moments, the white
area corresponds to the PM phase. The (classical) phase boundary
of the resulting TFIM (i.e., pseudospin- 1

2 model with Jx,y neglected)
is shown by the solid line. Dashed lines illustrate its trend for varying
JH. (d) Variational phase diagram for the triangular lattice. Using the
critical ratios for TFIM from QMC [36] together with our TFIM pa-
rameters, the estimated phase boundary gets shifted horizontally by
about 0.3 to the left in (c) and by 1.2 in (d). (e) Magnetic patterns of
the phases in (c) and (d). (f) Clock-phase pattern in the pseudospin- 1

2
representation. The central site carries a saturated in-plane moment,
which is completely hidden in the magnetic pattern due to the zero
in-plane g factor.

using the precise value (Jz/h)crit ≈ 0.657 obtained by QMC
[37].

Similar analysis is performed for 90◦ bond geometry that
occurs in, e.g., honeycomb or triangular lattices with edge-
sharing octahedra. Here two major hopping channels active on
metal2-O2 plaquettes have to be simultaneously considered—
bonding paths via oxygen ions and a direct overlap of d
orbitals [24]. The former hopping with amplitude t connects
off-diagonally a bond-dependent pair of t2g orbitals while
the complementary t2g orbital is subject to direct hopping t ′.
Despite the completely different hopping rules as compared
to the 180◦ case, the pseudospin- 1

2 interactions plotted in
Figs. 3(a) and 3(b) again feature dominant AF Ising Jz ac-
companied by minor in-plane Jx,y, in accord with the general

conclusions of the previous section. For large negative �, the
value of Jz approaches Jz ≈ 4

9 [(7 − 20η) t2 + (2 + 8η) tt ′ +
(4 − 8η) t ′2]/U .

Variational phase diagram for the nonfrustrated honey-
comb lattice presented in Fig. 3(c) and the corresponding
excitation spectrum (see the SM [26]) show similar behavior
as for the square lattice. Much richer is the case of the frus-
trated triangular lattice. The phase diagram shown in Fig. 3(d)
contains two condensed phases with nontrivial patterns de-
picted in Figs. 3(e) and 3(f). One of them appears in so-called
clock phase familiar from the studies of TFIM on triangular
lattice [13,14]. Here the frustration of pseudospins is resolved
by a formation of honeycomb AF pattern of the out-of-plane
components to satisfy the Ising interactions and a simultane-
ous alignment of the in-plane components with the transverse
field. At the remaining sites, the pseudospins are strictly in-
plane, avoiding the Ising interactions and conforming fully to
the transverse field. The other pattern—of stripy type—is spe-
cific to our s-T model and is not captured by the pseudospin- 1

2
TFIM because of the participation of Tx,y in the condensate.
Based on the extended nature of 4d and 5d orbitals, the regime
t ′ � t can be expected, making the clock phase more relevant.

Interestingly, the clock pattern of pseudospins on triangular
lattice is obscured by zero in-plane g factor, giving rise to a
static magnetic pattern identical to that of the honeycomb AF
phase. However, the excitation spectra reveal a fundamental
difference to the latter case. Figure 4(a) shows the evolu-
tion of the magnetic excitations when crossing the PM/clock
phase boundary. These are again obtained using the full s-T
model, but—as demonstrated by Fig. 4(b)—the relevant χzz is
perfectly reproduced also by the pseudospin dynamics within
the corresponding TFIM. Approaching the PM/clock bound-
ary, the excitations soften at the characteristic momentum
K = 2π ( 1√

3
, 1

3 ) of the honeycomb AF pattern formed after
entering the clock phase. Here a separation of energy scales
occurs. The high-energy part of the spectrum is represented
by a flat Ising-type excitation at ω ≈ 2Jz encountered previ-
ously and linked here to a pseudospin flip taking place in the
honeycomb AF structure. This excitation is complemented by
a dispersing low-energy mode (energy scale h) that involves
rotations of in-plane pseudospins. Its dispersion, soft near K ,
is approximately given by ωq ≈ h[1 − (h/hc)|γq|2] with γq =
2 cos(

√
3

2 qx ) + exp(i 3
2 qy) and hc = 3

2 Jz denoting the critical
transverse field. Remarkably, this intense magnetic excitation
stems from the moments that are magnetically invisible in
the static pattern. In contrast to the triangular lattice case,
the honeycomb spectrum (see the SM [26]) hosts only the
Ising-type excitation and its low-energy part is empty.

Conclusions. We presented a detailed theoretical account
on the exchange interactions in 4d4 and 5d4 spin-orbit Mott
insulators in the regime of negative tetragonal or trigonal
crystal field �. As illustrated by the corresponding phase
diagrams and excitations for several 2D lattices, the low-
energy magnetism can be well captured by AF transverse-field
Ising model involving effective spins- 1

2 . Being based on d
valence electrons, the emergent TFIM features convenient
energy scales in the range of tens of meV. The transverse field
is intrinsic, generated by CF itself, and is therefore sensitive
to strain control. Robust Ising-type interactions are imposed
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FIG. 4. (a) Magnetic excitation spectra for the selected points indicated in Fig. 3(d) as obtained by LFWT applied to s-T model.
The intensity is represented by line thickness as in Fig. 2(b) with blue indicating the out-of-plane zz component and gray the in-plane
components. The inset shows the Brillouin zone path. (b) zz susceptibility for the point D calculated using linear spin-wave theory applied
to the corresponding TFIM with Jz ≈ 30 meV and h ≈ 19 meV. Cartoons capture the two distinct excitations—low-energy fluctuations of the
in-plane pseudospins and high-energy Ising-type excitations.

by the internal spin-orbital structure of the d4 ionic states,
and as such they are generic to both 180◦ and 90◦ bond-
ing geometries. This universality of TFIM description is in
strong contrast to the much different behavior of singlet-triplet
models obtained for �/ζ = 0 in these two bonding-geometry
cases [25,27,28]. The radical change of the magnetic model
when varying �/ζ is an excellent illustration of the richness
of the exchange interactions among 4d and 5d ions brought
about by the complex structure of the low-energy ionic states.
Apart from promising an identification/engineering of TFIM

in the family of 4d and 5d correlated oxides, the proposed
scenario also motivates the study of related theoretical is-
sues. For example, the calculations suggest the dominant Ising
exchange to be accompanied by small interactions between
transverse components of effective spins. Their influence on
the BKT behavior of TFIM is an interesting open problem.
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