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Nascent quantum computers motivate the exploration of quantum many-body systems in nontraditional
scenarios. For example, it has become natural to explore the dynamics of systems evolving under both uni-
tary evolution and measurement. Such systems can undergo dynamical phase transitions in the entanglement
properties of quantum trajectories conditional on the measurement outcomes. Here, we explore dynamics in
which one attempts to (locally) use those measurement outcomes to steer the system toward a target state, and
we study the resulting phase diagram as a function of the measurement and feedback rates. Steering succeeds
when the measurement and feedback rates exceed a threshold, yielding an absorbing-state transition in the
trajectory-averaged density matrix. We argue that the absorbing-state transition generally occurs at different
critical parameters from the entanglement transition in individual trajectories and has distinct critical properties.
The efficacy of steering depends on the nature of the target state: in particular, for local dynamics targeting
long-range correlated states, steering is necessarily slow and the entanglement and steering transitions are well
separated in parameter space.
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Introduction. Phases and criticality in quantum many-body
dynamics are topics of fundamental interest. For unitary dy-
namics, various questions have been explored, such as the
growth of entanglement [1–3], the emergence of hydrodynam-
ics [4–6], or the effects of disorder [7–9]. Recently, motivated
by advances in quantum computing hardware, “monitored”
quantum systems subject to repeated local measurements have
also come under intense investigation [10,11]. These systems
were shown to display the surprising phenomenon of en-
tanglement phase transitions as a function of measurement
rate [12–20]. Such phase transitions are only visible in the
properties of individual quantum trajectories [21] correspond-
ing to specific sequences of measurement outcomes, so they
bear a prohibitive postselection cost that is exponential in
the space-time volume (with exceptions in Clifford dynam-
ics [22,23], space-time dual dynamics [24–26], or replacing
measurements with swaps into an environment [27]). Mon-
itored dynamics can be enriched by using the measurement
outcomes, say, for adaptively controlling the subsequent dy-
namics [28–34]. Error correction is one example of such
interactive quantum dynamics with a transition as a function
of the error rate [35]. Understanding novel dynamical phe-
nomena in interactive evolution is an active area of inquiry,
especially topical in light of experimental advances in build-
ing devices capable of quantum control via measurements and
feedback.

In this work, we consider interactive quantum dynamics
with unitary evolution and measurements, where the mea-
surement outcomes are used to apply local unitaries that
steer the system towards target states [36–38]. The tar-
get states are absorbing states, so that the dynamics can
evolve to the target state, but cannot leave it. We dis-
cuss steering both to trivial product states and to entangled
symmetry-protected topological (SPT) states. Our dynamics

only uses local feedback (in contrast to nonlocal classical
communication); i.e., each feedback operation depends only
on the measurement immediately preceding it at the same
location. Therefore, the average density matrix dynamics
is described by a time-independent local quantum channel.
Unlike the quantum channels that occur in the standard (non-
adaptive) measurement-induced transition, our channel is not
unital, so its steady state need not be the maximally mixed
state. The channels we consider can, in fact, undergo an
absorbing-state phase transition [39–46] separating an “ab-
sorbing phase” in which a pure zero-entropy target state is
reached in a time at most polynomial in system size, from an
“active phase” in which it is not.

We study interactive quantum dynamics as a function of
the measurement rate pm and the fraction of measurements
that are followed by feedback, pf . This yields a phase dia-
gram with two transitions: an entanglement phase transition in
individual trajectories, driven by pm, and an absorbing-state
transition in the average density matrix, driven by the total
rate of feedback events pm pf (Fig. 1). We provide numerical
evidence and analytical arguments that these do not coincide
in general. When we target a trivial polarized product state
and use maximally efficient feedback, pf = 1, the transitions
occur at sufficiently close pm that we cannot numerically
distinguish the locations of the critical points. Nevertheless,
we find that quantities associated with the trajectory-averaged
density matrix scale with directed-percolation critical ex-
ponents that are completely different from the exponents
associated with the entanglement transition in individual tra-
jectories. This finding is natural if one posits two separate
transitions, but implies a drastic violation of one-parameter
scaling otherwise.

Errors above a target state with short-range correlations
can be locally corrected, allowing for efficient local feed-

2469-9950/2024/109(2)/L020304(6) L020304-1 ©2024 American Physical Society

https://orcid.org/0009-0009-5949-7326
https://orcid.org/0000-0002-2398-1804
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.L020304&domain=pdf&date_stamp=2024-01-31
https://doi.org/10.1103/PhysRevB.109.L020304


NICHOLAS O’DEA et al. PHYSICAL REVIEW B 109, L020304 (2024)

FIG. 1. Monitored quantum circuits with feedback and
schematic depictions of their associated phase diagrams. (a) A
quantum circuit model with |↑↑ · · · ↑〉 as its target state (see text).
Sketch of the phase diagrams for interactive dynamics targeting
(b) the all-up state and (c) an SPT cluster state. The two phase
boundaries are close or widely separated near pf = 1 in panels
(b) and (c), respectively. The absorbing-state phase transition curves
in panels (b) and (c) satisfy pm pf = const. (d) A table of the
properties of the three phases.

back. For target states with long-range correlations, such as a
ferromagnet or a topologically ordered state, error correction
requires pairing up domain walls or anyons over long dis-
tances, which requires long-range classical communication
[47–49]. Absent such communication, the error correction
dynamics is described by a local quantum channel, which has
a light cone. Steering from a product state to a long-range cor-
related state therefore takes a time that diverges with system
size, even at pm = pf = 1 where all trajectories are area-law
entangled. To explore these consequences of locality, we study
dynamics targeting an SPT state using both symmetric and
symmetry-breaking operations. In the former case, but not
the latter, the entanglement and absorbing-state transitions are
well separated, consistent with the logic above.

Polarized absorbing state. We first consider a spin-1/2
model with the target state |ψt 〉 = |↑↑↑ · · · ↑〉. The model
comprises two-site nearest-neighbor unitary gates applied in
a brickwork fashion in a one-dimensional system of length
L with periodic boundary conditions. Each gate is block di-
agonal and locally leaves the |↑↑〉 state invariant, but acts
as a Haar-random unitary U (3) in the 3 × 3 block of states
spanned by {|↑↓〉 , |↓↑〉 , |↓↓〉}. The unitary dynamics leaves
|ψt 〉 invariant, but is otherwise chaotic. Each gate in the cir-
cuit is sampled independently. Unless otherwise stated, we
always begin with the system in the |↓↓ · · · ↓〉 state. In be-
tween the unitary layers, we measure the Pauli Zi operator
on each site with the probability pm. If the outcome is +1,
locally corresponding to the |↑〉i state, we do nothing. If the
outcome is −1, a corrective unitary Xi is applied with the
probability pf to steer the system towards |ψt 〉 [Fig. 1(a)]. As
a channel, this measure-and-correct operation is equivalent to
a qubit reset, which is accessible on current hardware [46]. A
given quantum trajectory, |ψ �m(t )〉, is labeled by the sequence
of measurement outcomes, �m, encountered at each position
until time t ; the label also implicitly includes the action of

feedback events conditioned on the outcomes. We denote the
density matrix obtained by averaging over trajectories, feed-
back events, and choices of random circuits as ρ.

We describe the phase diagram of this model in Fig. 1 using
properties of trajectories and properties of ρ at times linear in
system size. When the total rate of feedback operations pm pf

exceeds the critical value pc ≈ 0.1, ρ approaches the absorb-
ing state (phase III). Here, every trajectory approaches the
same unentangled target state. When pm pf < pc, ρ remains
mixed up to times exponential in L. However, individual tra-
jectories exhibit two phases, even at pf = 0: a volume-law
phase (phase I) and an area-law phase (phase II). In phase
II, each trajectory stays active and visits different area-law
states, so ρ remains high-entropy. We argue below that phase
II intervenes between phases I and III, even when pf = 1.

Absorbing state transition. The absorbing-state transition
is visible in ρ and observable via conventional expectation
values. In Ref. [50], we show that the diagonal elements of
ρ evolve under the transfer matrix of a classical stochastic
process, while the off-diagonal elements vanish after one
complete time step. This mapping gives us access to much
larger system sizes and allows us to convincingly demonstrate
that this absorbing-state transition is in the directed percola-
tion universality class. In the classical process, the effect of
the averaged measurements is to locally send ↓ to ↑ with the
probability pm pf , while the effect of the averaged unitaries
is to mix the local configurations ↑↓, ↓↑, and ↑↑ with equal
probability 1/3 [50]. Note that the averaged dynamics are now
described by only a single parameter p ≡ pm pf describing
the total rate of measurements with feedback. This stochas-
tic process has an all-up absorbing state and undergoes an
absorbing-state transition characterized by the behavior of
“defects”, i.e., down spins. The density of defects

nd = 1

L

∑
i

1 − Zi

2

serves as an order parameter that rapidly approaches zero
(exponentially in time) in the absorbing phase, but reaches
a long-lived nonzero value in the nonabsorbing phase (for
times exponential in L). In Fig. 2(a), we see that the density
of defects is nonzero below pc ≈ 0.1 and vanishes above pc.
The curve pm pf = pc ≈ 0.1 defines the absorbing-state criti-
cal line depicted in Fig. 1(c). Note that a nonzero nd implies
an extensive entropy for ρ, with the entropy density being
maximal at nd = 0.5 and decreasing as pc is approached.

For a classical stochastic process with a single absorb-
ing state, a nondisordered transfer matrix, and no additional
symmetries, the critical properties are expected to be in the
directed percolation (DP) universality class. We confirm this
expectation in Figs. 2(b) and 2(c), using techniques discussed
in Ref. [51]. We expect that nd satisfies the following critical
scaling:

nd (t, L) ∼ t−δ�

(
(p − pc)t1/ν|| ,

t1/z

L

)
. (1)

where ν‖ = zν⊥ and z is the dynamical scaling exponent. To
probe the values of δ and pc, we define a time-dependent
estimate δ(t ) so that nd (t ) ∼ 1/t δ(t ), and we extract δ(t ) from
the quantity log10[nd (t )/nd (10t )]. We expect that at the crit-
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FIG. 2. Absorbing-state phase transition. (a) The sample-
averaged defect density nd as a function of p = pm pf . Between 103

and 2 × 103 samples were averaged for each data point shown. Val-
ues were computed via the mapping to a classical stochastic model
and initialized with random bitstrings. (b) The running estimate of
the critical exponent δ as a function of inverse time 1/t . The critical
pc is estimated to be the value of p for which the curve remains
constant as 1/t → 0, and an estimate for δ is that constant value.
(c) Scaling collapse of nd data to the form of Eq. (1). The critical
exponents are those of directed percolation.

ical point, and for t1/z/L sufficiently small, δ(t ) is constant,
while it vanishes in the nonabsorbing phase and diverges in
the absorbing phase. Figure 2(b) shows a value of δ consistent
with directed percolation’s of δDP = 0.159 and a critical prob-
ability of pc = 0.09085(5). We see scaling collapse of these
curves in Fig. 2(c) using this pc and δDP and νDP|| = 1.73.
Thus, as anticipated, our model’s absorbing-state transition
falls under the directed percolation universality class.

Entanglement phase transition. We now locate and charac-
terize the entanglement phase transition via exact simulations
of quantum trajectories for L � 24. We first consider the cut
pf = pm through the phase diagram in Fig. 1(c); the feedback
along this cut is weak enough that the entanglement phase
transition is numerically well separated from the absorbing-
state transition. We benchmark the entanglement transition
against previous analyses of models without feedback. We use
the tripartite quantum mutual information I3 = SQ1 + SQ2 +
SQ3 − SQ1∪Q2 − SQ2∪Q3 − SQ3∪Q1 + SQ1∪Q2∪Q3 , which was ar-
gued to be constant at the critical point and show a crossing
[15,52]. Here SA is the von Neumann entanglement en-
tropy of subsystem A, and Qn is the nth contiguous quarter
of the system. We evaluate I3 at t = 2L, anticipating that
the entanglement transition will have the dynamical expo-
nent z = 1 [17,18,53]. The crossing of I3 yields the critical
point pc

m = pc
f
∼= 0.130(5), which is well-separated from

the absorbing-state phase transition at pm = pf = √
pc

∼=√
0.09085 = 0.3014 found above (Fig. 2). We perform a scal-

ing collapse near the critical point, and the critical exponent
ν ∼= 1.1(2) obtained is consistent with previous estimates of
ν for the entanglement transition in monitored circuits with
Haar-random gates [52]. With this estimate of pc

m, we verify
[50] that the dynamics at pc

m are consistent with the exponent
z = 1 by examining the purification of an initial mixed state
[15,32,54]. Thus, along the line pf = pm, the entanglement
and absorbing-state transitions are well separated, and the for-
mer displays the same critical properties as monitored circuits
without feedback.

We now consider the case of full-strength feedback and
vary pm while pf = 1 is fixed. In this case, every measure-
and-feedback operation leaves the spin in the |↑〉 state; hence,

FIG. 3. Tripartite quantum mutual information. The data are
averaged over 5 × 102–5 × 103 circuit realizations and quantum tra-
jectories in simulations of full wave-function evolution, and over
times t = 2L and 2L + 1

2 to avoid even-odd effects. The top row
corresponds to the cut pf = pm, and the bottom to pf = 1. Vertical
dashed lines mark estimates of the critical points: pc

m
∼= 0.130(5)

(a) and pc
m

∼= 0.090(5) (c). Panels (b) and (d) show the finite-
size scaling collapse of the form I3 = f [(pm − pc

m )L1/ν], with ν ∼=
1.1(2).

measurements not only drive trajectories to low-entanglement
states, but also specifically towards the polarized state.
As a result, the entanglement and absorbing-state transi-
tions come closer together and a similar analysis of I3

locates the entanglement transition at pc
m

∼= 0.090(5) [see
Fig. 3(c)], numerically indistinguishable from the location of
the absorbing-state transition found above (Fig. 2). A natural
question is then whether the two phase transitions coalesce
as pf → 1, or remain distinct critical phenomena. In order
to see that the two transitions remain distinct, we determine
their dynamical exponents z [55]. We extract z for the entan-
glement transition using the purification setup [50]—which
examines the entropy S of a system initially in a mixture of
two random orthogonal states—and for the absorbing-state
transition using the density of defects nd . In Fig. 4 we show
both S and nd data for times t � Lz. The entropy continues to
scale like S ∼ f (t/L), i.e., z = 1.0(1), and nd scales accord-
ing to δ = 0.16(8) and z = 1.6(1) corresponding to directed
percolation. The picture that emerges is one in which the two

FIG. 4. Dynamical critical scaling along pf = 1. The system is
initialized in a mixed state with 1 bit of entropy as described in the
Supplemental Material [50]. Data points are averages of 2 × 102–
5 × 103 samples. (a) The second Rényi entropy of the density matrix
S vs scaled time. Data collapse is consistent with the scaling form
S = f (t/L). (b) The scaled density of defects vs scaled time. Data
collapse is consistent with nd = t−δ�(0, t/Lz ) at the critical point
[Eq. (1)]. The z values are not consistent in panels (a) and (b),
indicating distinct critical phenomena.
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phase transitions can become close in pm at strong feedback
(pf = 1); however, they remain distinct critical phenomena
that happen on parametrically different timescales as indicated
by the different z values.

Argument for separate transitions. We now argue more
directly that a sliver of phase II generically separates the two
transitions, provided that the absorbing-state transition is con-
tinuous. We perform a Stinespring dilation [35] of the channel
at pf = 1, such that each measurement consists of swapping
out one of the system spins for an ancilla spin prepared in |↑〉.
The steady-state entropy of ρ is the entanglement between
the system and ancilla qubits; meanwhile, the entanglement
entropy of trajectories is that of the system’s wave function
once we measure all the ancillas. Consider the dynamics when
nd � 1. “Live” (spin-↓) regions are dilute, and collisions
between them are rare. However, processes where a qubit in
the live region is swapped into the environment are common,
since pm is O(1). Suppose the live region is initially entangled
with the rest of the system. Before it encounters a neigh-
bor, it undergoes many measurement-and-feedback processes.
Therefore, the rest of the system is now entangled with the live
region together with the qubits that were swapped out. Colli-
sions are rare, so the number of swapped-out qubits exceeds
the number of qubits that remain in the live region. By the
decoupling principle [56], the live region is decoupled from
the rest of the system: instead, the rest of the system is now
entangled with the environment. Since decoupling happens
between collisions, large-scale entanglement cannot build up
and the system remains in an area-law phase. Crucially, the
rate of collisions (set by nd ) can be made arbitrarily small
relative to the rate of swaps (set by pm), by going near the
absorbing-state transition [57].

SPT absorbing state. In principle, the approach described
above can be generalized to steer a system to any pure state
that is the unique state annihilated by a set of projectors.
However, the efficacy of such steering depends on the nature
of correlations in the target state: as noted in the introduction,
local quantum channels have light cones and cannot prepare
states with long-range correlations in finite time starting from
a product state. Feedback operations targeting states with
long-range correlations are inherently less efficient, since they
generically move defects instead of eliminating them. One
might expect, therefore, that the entanglement and absorbing-
state transitions should be well separated for such target states
even at pf = 1.

We have tested this intuition for dynamics targeting the
cluster state (ground state of H = −∑

i ZiXi+1Zi+2), which
is an SPT state; under unitary dynamics, this state can be
prepared in O(1) depth if the protecting Z2 × Z2 symmetry
(that is a product of Xi on even and odd sites) is broken, while
it requires depth O(L) in the presence of the symmetry. An
appealing feature of the cluster state is that it allows steering
protocols of two types: (a) those in which the feedback com-
pletely breaks the protecting symmetry, allowing individual
defects to be annihilated, and (b) those in which the feed-
back respects a parity symmetry that constrains defects to be
annihilated in pairs. The details of the interactive dynamics
are described in Ref. [50]; the results can be summarized
as follows. In case (a), the phase diagram and dynamics

closely resemble the product-state example, while case (b) has
the following salient differences. First, the entanglement and
absorbing-state transitions are widely separated even for pf =
1 [Fig. 1(d)]. Second, the absorbing-state transition belongs
to the “parity-conserving” universality class [50]. Even in the
absorbing phase, the approach to steady state takes a time that
scales as L2 because of the diffusion-limited recombination
of defects. This conclusion does not rely on SPT symmetry,
and we expect it to generalize to other models involving pair-
wise annihilation of defects, including in higher-dimensional
systems with more exotic anyonic defects. Third, in the area-
law nonabsorbing regime, individual trajectories possess a
“spin-glass” SPT order [19,58,59], but the average over mea-
surement outcomes washes out this order. Finally, with the
parity symmetry, if we allow nonlocal communication so de-
fects can be paired up more efficiently, directed-percolation
universality is restored.

Discussion. In this work we explored the dynamics of sin-
gle trajectories and the trajectory-averaged density matrix for
a family of interactive quantum circuits with measurements
and feedback. We found distinct phase transitions for single-
trajectory and trajectory-averaged quantities and argued that,
in general, these transitions should belong to distinct uni-
versality classes and occur at distinct critical measurement
rates. The feedback allowed in our setup was based on local
information about the state; thus, it was much more restric-
tive than the feedback in classical-communication-assisted
protocols or in quantum error correction. An interesting di-
rection for future work is to explore the consequences of
relaxing this locality constraint and allowing for general
forms of interactive dynamics that cannot be captured by
local quantum channels (and therefore obey weaker local-
ity constraints). It would also be interesting to understand
cases where the two transitions may coincide [31], and
the relevance of feedback to these transitions in an RG
sense.

Note added. Recently, we became aware of a related work
which appeared on the arXiv and was subsequently published
as Ref. [60]. Our results agree where they overlap.

Acknowledgments. We are grateful to Tibor Rakovszky for
many insightful discussions and close collaboration. We also
thank Sebastian Diehl for discussing his work with us and
Yaodong Li and David Huse for helpful discussions. This
work was supported by the U.S. Department of Energy, Office
of Science, Basic Energy Sciences, under Early Career Award
No. DE-SC0021111 (N.O.D. and V.K.). V.K. also acknowl-
edges support from the Alfred P. Sloan Foundation through
a Sloan Research Fellowship and the Packard Foundation
through a Packard Fellowship in Science and Engineering.
S.G. acknowledges support from the NSF under Grant No.
DMR-1653271. A.M. is supported in part by the Stanford
Q-FARM Bloch Postdoctoral Fellowship in Quantum Sci-
ence and Engineering and the Gordon and Betty Moore
Foundations EPiQS Initiative through Grant No. GBMF8686.
Numerical simulations were performed on Stanford Research
Computing Center’s Sherlock cluster. We acknowledge the
hospitality of the Kavli Institute for Theoretical Physics at
the University of California, Santa Barbara (supported by
National Science Foundation Grant No. NSF PHY-1748958).

L020304-4



ENTANGLEMENT AND ABSORBING-STATE TRANSITIONS … PHYSICAL REVIEW B 109, L020304 (2024)

[1] P. Calabrese and J. Cardy, Evolution of entanglement entropy
in one-dimensional systems, J. Stat. Mech.: Theory Exp. (2005)
P04010.

[2] H. Kim and D. A. Huse, Ballistic spreading of entanglement in
a diffusive nonintegrable system, Phys. Rev. Lett. 111, 127205
(2013).

[3] A. Nahum, J. Ruhman, S. Vijay, and J. Haah, Quantum entan-
glement growth under random unitary dynamics, Phys. Rev. X
7, 031016 (2017).

[4] V. Khemani, A. Vishwanath, and D. A. Huse, Operator spread-
ing and the emergence of dissipative hydrodynamics under
unitary evolution with conservation laws, Phys. Rev. X 8,
031057 (2018).

[5] T. Rakovszky, F. Pollmann, and C. W. von Keyserlingk, Dif-
fusive hydrodynamics of out-of-time-ordered correlators with
charge conservation, Phys. Rev. X 8, 031058 (2018).

[6] P. T. Brown, D. Mitra, E. Guardado-Sanchez, R. Nourafkan, A.
Reymbaut, C.-D. Hébert, S. Bergeron, A.-M. S. Tremblay, J.
Kokalj, D. A. Huse, P. Schauß, and W. S. Bakr, Bad metallic
transport in a cold atom Fermi-Hubbard system, Science 363,
379 (2019).

[7] R. Nandkishore and D. A. Huse, Many-body localization and
thermalization in quantum statistical mechanics, Annu. Rev.
Condens. Matter Phys. 6, 15 (2015).

[8] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Colloquium:
Many-body localization, thermalization, and entanglement,
Rev. Mod. Phys. 91, 021001 (2019).

[9] F. Alet and N. Laflorencie, Many-body localization: An intro-
duction and selected topics, C. R. Phys. 19, 498 (2018).

[10] A. C. Potter and R. Vasseur, Entanglement dynamics in hy-
brid quantum circuits, in Entanglement in Spin Chains: From
Theory to Quantum Technology Applications, edited by A.
Bayat, S. Bose, and H. Johannesson (Springer, Cham, 2022),
pp. 211–249.

[11] M. P. A. Fisher, V. Khemani, A. Nahum, and S. Vijay, Random
quantum circuits, Annu. Rev. Condens. Matter Phys. 14, 335
(2023).

[12] Y. Li, X. Chen, and M. P. A. Fisher, Quantum Zeno effect
and the many-body entanglement transition, Phys. Rev. B 98,
205136 (2018).

[13] B. Skinner, J. Ruhman, and A. Nahum, Measurement-induced
phase transitions in the dynamics of entanglement, Phys. Rev.
X 9, 031009 (2019).

[14] S. Choi, Y. Bao, X.-L. Qi, and E. Altman, Quantum error
correction in scrambling dynamics and measurement-induced
phase transition, Phys. Rev. Lett. 125, 030505 (2020).

[15] M. J. Gullans and D. A. Huse, Dynamical purification phase
transition induced by quantum measurements, Phys. Rev. X 10,
041020 (2020).

[16] Y. Bao, S. Choi, and E. Altman, Theory of the phase transition
in random unitary circuits with measurements, Phys. Rev. B
101, 104301 (2020).

[17] Y. Li, X. Chen, and M. P. A. Fisher, Measurement-driven en-
tanglement transition in hybrid quantum circuits, Phys. Rev. B
100, 134306 (2019).

[18] C.-M. Jian, Y.-Z. You, R. Vasseur, and A. W. W. Ludwig,
Measurement-induced criticality in random quantum circuits,
Phys. Rev. B 101, 104302 (2020).

[19] M. Ippoliti, M. J. Gullans, S. Gopalakrishnan, D. A.
Huse, and V. Khemani, Entanglement phase transitions

in measurement-only dynamics, Phys. Rev. X 11, 011030
(2021).

[20] U. Agrawal, A. Zabalo, K. Chen, J. H. Wilson, A. C. Potter,
J. H. Pixley, S. Gopalakrishnan, and R. Vasseur, Entanglement
and charge-sharpening transitions in U(1) symmetric monitored
quantum circuits, Phys. Rev. X 12, 041002 (2022).

[21] M. B. Plenio and P. L. Knight, The quantum-jump approach to
dissipative dynamics in quantum optics, Rev. Mod. Phys. 70,
101 (1998).

[22] C. Noel, P. Niroula, D. Zhu, A. Risinger, L. Egan, D. Biswas,
M. Cetina, A. V. Gorshkov, M. J. Gullans, D. A. Huse,
and C. Monroe, Measurement-induced quantum phases real-
ized in a trapped-ion quantum computer, Nat. Phys. 18, 760
(2022).

[23] Y. Li, Y. Zou, P. Glorioso, E. Altman, and M. P.A. Fisher, Cross
entropy benchmark for measurement-induced phase transitions,
Phys. Rev. Lett. 130, 220404 (2023).

[24] M. Ippoliti and V. Khemani, Postselection-free entanglement
dynamics via spacetime duality, Phys. Rev. Lett. 126, 060501
(2021).

[25] M. Ippoliti, T. Rakovszky, and V. Khemani, Fractal, logarith-
mic, and volume-law entangled nonthermal steady states via
sacetime duality, Phys. Rev. X 12, 011045 (2022).

[26] T.-C. Lu and T. Grover, Spacetime duality between local-
ization transitions and measurement-induced transitions, PRX
Quantum 2, 040319 (2021).

[27] Z. Weinstein, S. P. Kelly, J. Marino, and E. Altman, Scrambling
transition in a radiative random unitary circuit, Phys. Rev. Lett.
131, 220404 (2023).

[28] P. Sierant, G. Chiriacò, F. M. Surace, S. Sharma, X. Turkeshi,
M. Dalmonte, R. Fazio, and G. Pagano, Dissipative Floquet
dynamics: From steady state to measurement induced criticality
in trapped-ion chains, Quantum 6, 638 (2022).

[29] S. Wu and Z. Cai, Spontaneous symmetry breaking and local-
ization in nonequilibrium steady states of interactive quantum
systems, Sci. bullet. 68, 2010 (2023).

[30] S. J. Garratt, Z. Weinstein, and E. Altman, Measurements con-
spire nonlocally to restructure critical quantum states, Phys.
Rev. X 13, 021026 (2023).

[31] M. Buchhold, T. Mueller, and S. Diehl, Revealing
measurement-induced phase transitions by pre-selection,
arXiv:2208.10506.

[32] T. Iadecola, S. Ganeshan, J. H. Pixley, and J. H. Wilson, Mea-
surement and feedback driven entanglement transition in the
probabilistic control of chaos, Phys. Rev. Lett. 131, 060403
(2023).

[33] M. McGinley, S. Roy, and S. A. Parameswaran, Absolutely
stable spatiotemporal order in noisy quantum systems, Phys.
Rev. Lett. 129, 090404 (2022).

[34] A. J. Friedman, O. Hart, and R. Nandkishore, Measurement-
induced phases of matter require feedback, PRX Quantum 4,
040309 (2023).

[35] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information, 10th anniversary ed. (Cambridge Uni-
versity, Cambridge, England, 2010).

[36] S. Roy, J. T. Chalker, I. V. Gornyi, and Y. Gefen, Measurement-
induced steering of quantum systems, Phys. Rev. Res. 2, 033347
(2020).

[37] B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A.
Micheli, and P. Zoller, Preparation of entangled states

L020304-5

https://doi.org/10.1088/1742-5468/2005/04/P04010
https://doi.org/10.1103/PhysRevLett.111.127205
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1126/science.aat4134
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1016/j.crhy.2018.03.003
https://doi.org/10.1146/annurev-conmatphys-031720-030658
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevLett.125.030505
https://doi.org/10.1103/PhysRevX.10.041020
https://doi.org/10.1103/PhysRevB.101.104301
https://doi.org/10.1103/PhysRevB.100.134306
https://doi.org/10.1103/PhysRevB.101.104302
https://doi.org/10.1103/PhysRevX.11.011030
https://doi.org/10.1103/PhysRevX.12.041002
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1038/s41567-022-01619-7
https://doi.org/10.1103/PhysRevLett.130.220404
https://doi.org/10.1103/PhysRevLett.126.060501
https://doi.org/10.1103/PhysRevX.12.011045
https://doi.org/10.1103/PRXQuantum.2.040319
https://doi.org/10.1103/PhysRevLett.131.220404
https://doi.org/10.22331/q-2022-02-02-638
https://doi.org/10.1016/j.scib.2023.07.047
https://doi.org/10.1103/PhysRevX.13.021026
https://arxiv.org/abs/2208.10506
https://doi.org/10.1103/PhysRevLett.131.060403
https://doi.org/10.1103/PhysRevLett.129.090404
https://doi.org/10.1103/PRXQuantum.4.040309
https://doi.org/10.1103/PhysRevResearch.2.033347


NICHOLAS O’DEA et al. PHYSICAL REVIEW B 109, L020304 (2024)

by quantum Markov processes, Phys. Rev. A 78, 042307
(2008).

[38] L. Zhou, S. Choi, and M. D. Lukin, Symmetry-protected dissi-
pative preparation of matrix product states, Phys. Rev. A 104,
032418 (2021).

[39] H. Hinrichsen, Non-equilibrium critical phenomena and
phase transitions into absorbing states, Adv. Phys. 49, 815
(2000).

[40] M. Henkel, H. Hinrichsen, and S. Lübeck, Non-Equilibrium
Phase Transitions, Volume 1: Absorbing Phase Transitions, The-
oretical and Mathematical Physics (Springer, Dordrecht, The
Netherlands, 2008).

[41] M. Marcuzzi, M. Buchhold, S. Diehl, and I. Lesanovsky,
Absorbing state phase transition with competing quantum
and classical fluctuations, Phys. Rev. Lett. 116, 245701
(2016).

[42] M. Buchhold and S. Diehl, Background field functional renor-
malization group for absorbing state phase transitions, Phys.
Rev. E 94, 012138 (2016).

[43] R. Gutiérrez, C. Simonelli, M. Archimi, F. Castellucci, E.
Arimondo, D. Ciampini, M. Marcuzzi, I. Lesanovsky, and O.
Morsch, Experimental signatures of an absorbing-state phase
transition in an open driven many-body quantum system, Phys.
Rev. A 96, 041602(R) (2017).

[44] I. Lesanovsky, K. Macieszczak, and J. P. Garrahan, Non-
equilibrium absorbing state phase transitions in discrete-
time quantum cellular automaton dynamics on spin lattices,
Quantum Sci. Technol. 4, 02LT02 (2019).

[45] F. Carollo, E. Gillman, H. Weimer, and I. Lesanovsky, Critical
behavior of the quantum contact process in one dimension,
Phys. Rev. Lett. 123, 100604 (2019).

[46] E. Chertkov, Z. Cheng, A. C. Potter, S. Gopalakrishnan, T. M.
Gatterman, J. A. Gerber, K. Gilmore, D. Gresh, A. Hall, A.
Hankin et al., Characterizing a non-equilibrium phase transition
on a quantum computer, Nat. Phys. 19, 1799 (2023).

[47] L. Piroli, G. Styliaris, and J. I. Cirac, Quantum circuits assisted
by local operations and classical communication: Transfor-
mations and phases of matter, Phys. Rev. Lett. 127, 220503
(2021).

[48] T.-C. Lu, L. A. Lessa, I. H. Kim, and T. H. Hsieh, Measurement
as a shortcut to long-range entangled quantum matter, PRX
Quantum 3, 040337 (2022).

[49] N. Tantivasadakarn, A. Vishwanath, and R. Verresen, A
hierarchy of topological order from finite-depth unitaries, mea-
surement and feedforward, PRX Quantum 4, 020339 (2023).

[50] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.109.L020304 for our classical mappings,
purification setup for z, and our parity-conserving model’s de-
scription and numerics.

[51] J. R. G. Mendonça, Monte Carlo investigation of the critical
behavior of Stavskaya’s probabilistic cellular automaton, Phys.
Rev. E 83, 012102 (2011).

[52] A. Zabalo, M. J. Gullans, J. H. Wilson, S. Gopalakrishnan, D. A.
Huse, and J. H. Pixley, Critical properties of the measurement-
induced transition in random quantum circuits, Phys. Rev. B
101, 060301(R) (2020).

[53] Y. Li, X. Chen, A. W. W. Ludwig, and M. P. A. Fisher, Con-
formal invariance and quantum nonlocality in critical hybrid
circuits, Phys. Rev. B 104, 104305 (2021).

[54] M. J. Gullans and D. A. Huse, Scalable probes of measurement-
induced criticality, Phys. Rev. Lett. 125, 070606 (2020).

[55] While the I3 data along pf = 1 still collapses well with ν ∼=
1.1(2) [Fig. 3(d)], this value of ν is also consistent with the
value ν⊥ = 1.1 for directed percolation and thus the absorbing-
state transition.

[56] B. Schumacher and M. D. Westmoreland, Approximate quan-
tum error correction, Quantum Inf. Process. 1, 5 (2002).

[57] In our numerics, nd at the critical point is still relatively high at
the accessible system sizes, so this asymptotic separation might
not be visible.

[58] A. Lavasani, Y. Alavirad, and M. Barkeshli, Measurement-
induced topological entanglement transitions in symmetric
random quantum circuits, Nat. Phys. 17, 342 (2021).

[59] S. Sang and T. H. Hsieh, Measurement-protected quantum
phases, Phys. Rev. Res. 3, 023200 (2021).

[60] V. Ravindranath, Y. Han, Z.-C. Yang, and X. Chen, Entangle-
ment steering in adaptive circuits with feedback, Phys. Rev. B
108, L041103 (2023).

L020304-6

https://doi.org/10.1103/PhysRevA.78.042307
https://doi.org/10.1103/PhysRevA.104.032418
https://doi.org/10.1080/00018730050198152
https://doi.org/10.1103/PhysRevLett.116.245701
https://doi.org/10.1103/PhysRevE.94.012138
https://doi.org/10.1103/PhysRevA.96.041602
https://doi.org/10.1088/2058-9565/aaf831
https://doi.org/10.1103/PhysRevLett.123.100604
https://doi.org/10.1038/s41567-023-02199-w
https://doi.org/10.1103/PhysRevLett.127.220503
https://doi.org/10.1103/PRXQuantum.3.040337
https://doi.org/10.1103/PRXQuantum.4.020339
http://link.aps.org/supplemental/10.1103/PhysRevB.109.L020304
https://doi.org/10.1103/PhysRevE.83.012102
https://doi.org/10.1103/PhysRevB.101.060301
https://doi.org/10.1103/PhysRevB.104.104305
https://doi.org/10.1103/PhysRevLett.125.070606
https://doi.org/10.1023/A:1019653202562
https://doi.org/10.1038/s41567-020-01112-z
https://doi.org/10.1103/PhysRevResearch.3.023200
https://doi.org/10.1103/PhysRevB.108.L041103

