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Observation of acoustic Floquet π modes in a time-varying lattice
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Time modulation provides an important degree of freedom for classical wave steering in topological manners.
Rather than using the spatial dimension to mimic time, here we design and implement an acoustic temporal
lattice with time-varying couplings to demonstrate a unique type of strongly localized Floquet π modes that
are gauge independent and can be robustly excited at the frequency in the nontrivial band gap. We observe
the topological phase transitions by changing modulation frequency, consistent with the calculated quasienergy
spectra. Our work paves the way for investigating intrinsic characteristics of various temporal systems and may
inspire other intriguing discoveries in topological systems, such as higher-order temporal Floquet topological
insulators.
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Introduction. In recent years, time modulation has been
attracting surging attention as it provides more degrees of
freedom for wave manipulations [1–5]. Generally speaking,
time modulation includes nonperiodic operation and abrupt
temporal switching, which reshape the paradigm for time
reversal acoustics [6,7], broadband impedance matching and
absorption [8–10], temporal antireflecting coating [11], non-
Hermitian response [12,13], and so on. However, periodic
time modulation always plays a central role and can be
analyzed with the well-established Floquet theorem. One ap-
pealing application for periodic modulations in time is to
make the magnet-free nonreciprocal devices or multifunc-
tional metasurfaces by designing asymmetric mode transitions
in k-ω space [14–17]. Meanwhile, periodic time modula-
tion has been proposed as an essential strategy to tailor the
topological phases, which brings new insights for classical
wave steering [18–21]. Specifically, by applying judiciously
designed time modulation, the classical wave systems can
behave as Floquet topological insulators (FTIs) to support
localized edge states [22–33].

However, FTIs need the hopping or on-site energy mod-
ulation with time, making its realization very challenging.
Alternatively, researchers mainly focus on waveguide plat-
forms for classical wave manipulation, where the governing
paraxial wave equation takes a similar form to the time-
dependent Schrödinger equation, and the propagating axis in
space dimension can serve as the synthetical time dimension.
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Although the waveguide systems also have the potential for
studying the topological pumping and adiabatic processes
[34–40], they are static in nature and usually unconfigurable.
As a result, the localized robust edge modes in such time-
independent FTIs are intrinsically reciprocal. In addition, the
spatial modulation in waveguide systems does not bring a real
frequency band gap, and the wave energy of the Floquet π

mode oscillates between the coupled waveguides along the
propagating direction, making it gauge dependent. For exam-
ple, the Floquet π modes can only be conditionally excited by
well matching the source with the instantaneous modal profile
at the initial position [29].

To break through these limitations in static waveguide sys-
tems, we propose a time-varying Su-Schrieffer-Heeger (SSH)
model and experimentally implement it in a one-dimensional
(1D) acoustic cavity lattice with the adoption of an electric-
circuit-driven dynamic coupling strategy. Under moderate
modulation frequencies, we univocally excite the localized
edge modes, which are Floquet π modes as they emerge at
half the driving frequency. Distinctive from their counterparts
in static waveguide systems, the Floquet π modes in our
system with real-time modulation are hybridizations of adja-
cent Floquet harmonics in real frequency band gaps. Thus,
the Floquet π modes can be stably excited by choosing the
frequencies in the π gaps. Taking advantage of the Floquet
theory, we calculate the quasienergy bands of the systems
to elaborate on the band degeneracy mechanism and related
topological phase transition. For comparison, we experimen-
tally demonstrate that the π modes are absent when the system
is in both low- and high-modulation-frequency regimes. To
our knowledge, the temporal lattice is utilized for the first
time to demonstrate the Floquet π modes, which may in-
spire other topological discoveries for time-dependent wave
systems.
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FIG. 1. Acoustic implementation of the time-varying SSH model. (a) A photograph of the acoustic lattice with ten coupled cavities. The
adjacent cavities are interlinked with both the air tubes (for static coupling h0) and the electric setups [for dynamic coupling hm(t ) ], which have
microphones, amplifiers, DPDT relays, and loudspeakers. The lower panel shows the tight-binding model for the generalized time-dependent
SSH model, with the dashed box representing a unit cell. (b) Experimentally measured (crosses) and theoretically calculated (solid curves)
pressure amplitudes in the excited cavity under different coupling conditions.

Acoustic realization of time-dependent SSH model. To
excite the robust Floquet π mode in the time domain, we
design and fabricate a temporal 1D acoustic lattice with time-
modulated couplings, mimicking a generalized time-varying
SSH model [41–43]. As shown in Fig. 1(a), the acoustic
lattice consists of 10 identical metallic and cuboid cavities
labeled from 1 to 10. The cavities of height 10 cm support
the first-order resonance at ω0/2π = 1568 Hz with dipole like
modal profiles. With a proper arrangement of static coupling
tubes, both positive and negative couplings can readily be
obtained between these cavities [44–46]. Here we link the
cavities at the bottom with straight tubes, contributing a static
coupling h0 [47]. In addition, adjacent cavities are mutually
connected with the dynamic coupling generated by designed
feedback circuits, which consist of microphones (for input),
signal amplifiers (with direct current power supplies), and
loudspeakers (for output). Taking two cavities labeled n and
n + 1 for example, the sound is detected at cavity n (n + 1)
by the microphone and then coupled to n + 1 (n) by using the
speaker after amplification. Between the amplifiers and loud-
speakers, there are double-pole, double-throw (DPDT) relays
so that the electric connections (in-phase or out-of-phase) can
modulate with the control signals [47]. As a result, the active

circuits provide a tunable coupling hm(t ), which can work to-
gether with the static coupling h0. By periodically controlling
the relays and ignoring the higher-order Fourier components
of hm(t ), as shown in the lower panel of Fig. 1(a), our acoustic
crystal mimics a generalized time-dependent SSH model with
the staggered couplings,

H(t ) =
N∑

n=1

(ω0 + iγ )c†
ncn

+
N−1∑
n=1

[h0 + (−1)nhmcos(ωmt )]c†
ncn+1 + H.c., (1)

where n denotes the site indices, hm is the effective modulation
amplitude, ωm is the modulation frequency, and c†

n and cn

are the creation and annihilation operators for the nth site,
respectively.

Before showcasing the Floquet π modes of this time-
varying acoustic lattice in the time domain, we experimentally
verified the effectiveness of this time-dependent coupling unit
with a static two-resonator system, which can be described
by a static Hamiltonian H = [ω0 + iγ h

h ω0 + iγ ], where γ is the
intrinsic loss of cavities and h is the total coupling effect [48].
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FIG. 2. Floquet π modes with ωm/2π = 40 Hz. (a) The measured pressure distributions in the lattice with the boundary excitation. (b) The
pressure p1(ω) and field area Sfield(ω) with the dark region denoting the range of bulk states from ω0−2h0 to ω0 + 2h0. [(c) and (d)] Pressure
distributions for the edge state with a single-frequency source at ω/2π = 1588 Hz. p1(t ) is the transient pressure in the first cavity. [(e) and
(f)] Pressures for the bulk state with a sound source at ω/2π = ω0/2π = 1568 Hz.

As shown in Fig. 1(b), by fitting the spectra of the excited
cavity, we obtain the static coupling of h0/2π = −18 Hz and
the tunable coupling of |hstatic

m /2π | = 17 Hz. The signs of
couplings can be determined by the phase difference between
the two cavities. When both couplings are present, the total
coupling is h/2π = −35 Hz (or h/2π = −1 Hz) if they are
with the same (or opposite) signs, demonstrating the linear
superposition relation between them. Thus, when use square-
wave voltage signals to control the relays, hstatic

m periodically
switches from positive to negative, becoming time modulated
hm(t ). Without changing the cavities’ boundary conditions,
such dynamic coupling has negligible effects on the system’s
chiral symmetry and can be modulated fast and freely without
introducing any noise or dissipation, making our system a
versatile platform for studying topological physics. In addi-
tion, the electric elements in the coupling circuits introduce
negligible phase delays, and the mutual couplings here are
real valued and are different from the previous experimental
implementations with complex values [49,50].

Observation of floquet edge modes. We introduce time
modulation to the acoustic lattice to study the dynamics of
the Floquet π modes. By exciting the left-most cavity (la-
beled 1) with a swept-frequency signal, we measured the
sound pressures of the system with modulation frequency
ωm/2π = 40 Hz. Figure 2(a) shows that the pressures have
two prominent peaks around 1548 and 1588 Hz, correspond-
ing to the edge modes in the Floquet band gaps. To analyze
the localization property of the modes, we define the excited
field area as

Sfield(ω) =
∑ |pn(ω)|

max {|pn(ω)|} , (2)

where pn(ω) is the pressure in the nth cavity. It is clear that
a smaller Sfield means a stronger localization. In Fig. 2(b), we
display both Sfield(ω) and p1(ω) for comparison. The sound
waves around ω0 ± ωm/2 (here are 1588 and 1548 Hz) have
the maximum pressures but correspond to the minimum field
areas, demonstrating a strong localization of the edge modes.
Though the Floquet bands are periodic, it should be noted
that only these π modes within the bulk band range (the dark
region from ω0−2h0 to ω0 + 2h0) can be effectively excited.

We switched to single-frequency signals for the excitation
to further investigate these π modes. When we set ω/2π =
1588 Hz, as shown in Fig. 2(c), the sound wave concen-
trates at the outmost cavity and is remarkably converted to
1548 Hz. In Fig. 2(d), the beat effect of transient pressure
p1(t ) also demonstrates that the edge modes are the hybridiza-
tion of ω0 ± ωm/2. We need to stress that the Floquet π

modes are with specific frequencies in the Floquet band gaps,
rendering more robustness for excitation. This is distinct from
their counterparts in the static waveguide platform, where
the space serves as the synthetical time dimension, and the
Floquet π modes can only be excited by matching the source
with the instantaneous modal profile as the frequency band
gap is absent [29]. On the other hand, when we use ω = ω0

as the working frequency, the bulk modes are excited. As
shown in Figs. 2(e) and 2(f), the excited pressures are much
smaller than the edge states. However, due to the dissipation
of cavities, the excited bulk modes cannot spread through-
out the whole lattice, which leads to the difference between
the experimental and theoretical results in the Supplemental
Sec. V [47].

Floquet phase transitions. To study the modulation fre-
quency’s effect on the Floquet π modes, we measured p1(ω)
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FIG. 3. Quasienergy spectra for the time-periodic SSH model. (a) Measured pressure p1(ω) at different ωm. (b) Quasienergies of the SSH
model with opening boundary conditions. In the calculations, we set N = 40 and hm/2π = 10 Hz. The gray regions denote the bulk band,
and the blue curves indicate the edge modes in the π gaps. Red dots are the measured pressure peaks in (a). Red dashed curves denote three
frequencies analyzed in (c). (c) Quasienergy bands (blue curves) of the time-periodic SSH model in the momentum space at different ωm. Red
curves are energy bands of the static SSH model with hm = 0, and are used to guide the catch for the Floquet replicas. The gray regions in the
middle column denote the π gaps.

with different ωm. As shown in Fig. 3(a), by setting the sweep-
ing step to be 10 Hz, only for ωm within a particular range
from 30 to 60 Hz, p1(ω) has two prominent peaks, where the
π modes are excited. To elaborate on the mechanism of π

modes with time modulation, we utilize the Floquet theory
to calculate the quasienergy of the time-periodic Hamiltonian
(see Appendix A). In this case, the time-dependent model
becomes a time-independent eigenvalue problem in the direct-
product Floquet space: H ⊗ T, where H is the conventional
Hilbert space and T is the space of time-periodic functions
spanned by ei jωmt , with j denoting the jth Floquet replica [42].
For the time-dependent SSH model with open boundaries in
Eq. (1), we calculate the quasienergy as a function of ωm.
In Fig. 3(b), replicas for j ∈ [−2, 2] are provided together
with the measured pressure peaks (red dots) in Fig. 3(a) [47].
Because of the chiral symmetry, the quasienergy spectra are
symmetric about 1568 Hz. It is evident that the Floquet π

modes (blue curves) are only available within a particular
ωm range, which can be explained by the degeneracy of the
Floquet replicas. When ωm > 4h0, the modulation is so fast
that the replicas do not overlap with each other, and the π

gaps therein are trivial. At ωm = 4h0 (here is 72 Hz), as shown
by the right column in Fig. 3(c), the gaps are closed because
the j = 0 band touches the adjacent replicas with j = ±1 at
ω0 ± ωm/2. By further decreasing ωm, the overlap between

the j = 0 and ±1 replicas opens the gaps again, which is
given in the middle column of Fig. 3(c) with ωm/2π = 40 Hz.
As a result, the closing and reopening process switches the π

gaps at ω0 ± ωm/2 from trivial to nontrivial, which can be
proved by calculating the Zak phases [42]. When we continue
to decrease the modulation frequency and set ωm < 4h0/3,
the modulation is so slow that more replicas overlap with
each other, and new degeneracies appear within the spectral
range of the j = 0 replica. However, as shown by the left
column of Fig. 3(c), the driving-induced gaps become subtle
and unnoticeable. We note that the phase transition points
correspond to the cases where new degeneracies occur.

Wave dynamics for low- and high-frequency regimes. As has
been explained, the Floquet π modes become unobservable
(absent) when the system modulates in the low- (high-) fre-
quency regimes since too many (no) Floquet replicas overlap.
When the modulation goes to the low-frequency regime, more
replicas overlap with each other, switching the topology from
trivial to nontrivial and vice versa [51]. However, for the spe-
cific case with ωm/2π = 20 Hz, as shown in Fig. 4(a), there is
no edge mode in the frequency range of [ω0−2h0, ω0 + 2h0],
where the pressure distributions become uniform. When we
compare Fig. 4(c) with Fig. 4(d), the pressure distributions at
the high modulation frequency of ωm/2π = 80 Hz are almost
identical to those with no modulation, viz., hm = 0. In other
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FIG. 4. Measured pressure distributions with different modulation conditions. [(a)–(c)] The time-varying cases with the modulation
frequencies in the (a) low-, (b) moderate-, and (c) high-frequency regimes, respectively. (d) The static case without the time-varying couplings.
All four cases are marked in the ωm axis with the red region representing the moderate frequency range of 4h0/3 < ωm < 4h0.

words, in the high-frequency regime, the modulation seems
to “do nothing” because the replicas are separated from each
other. We note that the sound wave propagates into the interior
region, while the pressures at the boundary are much smaller
than the π modes with ωm/2π = 40 Hz, as shown in Fig. 4(b)
for comparison. In summary, we failed to observe the Floquet
π mode in both the low- and high-frequency regimes, and the
underlying reasons are distinct.

Conclusion. In this work, we have developed an elegant
method to implement dynamic systems with real time-
modulation and demonstrated the Floquet phase transitions
in an acoustic temporal lattice. We realize a time-dependent
SSH model in acoustics with staggered couplings controlled
by electric relays. The nontrivial Floquet π modes in tem-
poral lattices, distinctive from the counterparts in the static
waveguide systems, are unambiguously excited in the ex-
periments by choosing the correct excitation frequency in
the band gap (see Appendix B for comparison). Resulting
from time modulation and hybridization of adjacent Floquet
replicas, the real band gap in frequency provides us with
more degrees of freedom for robust edge state manipulation.
Notably, by utilizing the electric circuits rather than physical

overlap, the dynamic coupling is favorable for extending the
system into three or higher dimensions with the chiral sym-
metry protected. Our proposal not only opens the door of the
real time-dependent Floquet systems for various significant
applications, such as acoustic diodes and isolators, but also fa-
cilitates the realization of other intriguing matter, such as time
crystals [52–54].
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Appendix A: Floquet energy band. For the general-
ized SSH model with time-dependent couplings, we use
the Floquet theory to deal with the time-periodic Hamil-
tonian H(t + 2π/ωm) = H(t ), where ωm is the modulation
frequency. The quasienergy band can be calculated by using
the Floquet mode expansion method. According to this theory,
the state function can be written as a superposition of Floquet
states

|�(t )〉 = eiεt |u(t )〉, (A1)

where ε is the quasienergy and |u(t )〉 is the corresponding
Floquet mode. Since the eigenvalues belong to an extended
Hilbert space, the quasienergies are defined with integer mul-
tiplies of ωm, and the Floquet modes are also periodic with
2π/ωm. By taking Eq. (A1) into the Schrödinger-type wave
equation, we obtain a new eigenvalue equation(

H(t ) + i
d

dt

)
|u(t )〉 = ε |u(t )〉. (A2)

Using the spectral decomposition of the Hamiltonian and
the Floquet modes, viz.,

H(t ) =
∞∑

f =−∞
ei f ωmt H f , (A3a)

|u(t )〉 =
∞∑

f =−∞
ei f ωmt |u f

〉
, (A3b)

we can simplify the dynamic wave equation as a time-
independent Floquet equation,

(H0 − f ωI)|u f 〉 +
∑
m �=0

Hm|u f −m〉 = ε|u f 〉, (A4)

where f is an integer.
For the time-dependent SSH model in Eq. (1), its Hamil-

tonian can be treated as a sum of static and dynamic parts,

H(t ) = H0 + Ht (t ), (A5)

where

H0 =
N∑

n=1

(ω0 + iγ )c†
ncn +

N−1∑
n=1

h0c†
ncn+1 + H.c., (A6a)

Ht (t ) =
N−1∑
n=1

(−1)nhmcos(ωmt )c†
ncn+1 + H.c.. (A6b)

By reformulate the time-dependent Hamiltonian with an
exponential function Ht (t ) = H1eiωmt + H−1e−iωmt , all the
Hamiltonian can be expressed by a N × N matrix,

H0 =

⎛
⎜⎜⎝

iγ h0 0
h0 iγ h0

0 h0 iγ
· · ·

...
. . .

⎞
⎟⎟⎠

N×N

, (A7a)

H±1 = 1

2

⎛
⎜⎜⎝

0 −hm 0
−hm 0 hm

0 hm 0
· · ·

...
. . .

⎞
⎟⎟⎠

N×N

. (A7b)

Note here we set ω0 = 0 for a reference value. As a result,
the eigenvalue equation can be represented with a block-
matrix operator

⎛
⎜⎜⎜⎜⎜⎝

. . .

H1 H0 − ωmI H−1

H1 H0 H−1

H1 H0 + ωmI H−1
. . .

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

...

u−1

u0

u1

...

⎞
⎟⎟⎟⎟⎟⎠

= ε

⎛
⎜⎜⎜⎜⎜⎝

...

u−1

u0

u1

...

⎞
⎟⎟⎟⎟⎟⎠

. (A8)

By truncating Eq. (A8) at a finite f , we can get the con-
verged eigenvalues.

Appendix B: Comparison of the floquet edge modes. Ta-
ble I summarizes the comparison of the Floquet π modes in
static waveguide or time-varying cavity systems. Here H (x)
(H (t )) is the Hamiltonian of the waveguide section along the
propagating direction x (the time-varying cavity system with
time t), |�(x)〉 (|�(t )〉) is the wave function in the waveg-
uides (cavities), and |s(t )〉 is the stably applied source. The
distinction between the Floquet π modes in these two settings
can also be seen in Fig. 5, which vividly presents the wave
dynamics of the two edge modes.

TABLE I. Comparison of the Floquet π modes in the waveguide or time-varying systems.

Static waveguide system Real time-varying system

Wave equation −i d
dx |�(x)〉 = H (x)|�(x)〉 −i d

dt |�(t )〉 = H (t )|�(t )〉 + |s(t )〉
On-site energy Propagation constant Resonant frequency
Frequency conversion Absent Yes
Source introduction Initially introduced Stably applied
Gauge-dependence Yes No
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FIG. 5. Schematic of the Floquet π modes in the waveguide (a) or time-varying system (b). For the waveguide system, the edge mode
energy, denoted by the red line, oscillates between the two outmost waveguides. Thus, the π mode is gauge dependent and can only be excited
by matching the source with the initial modal profile. Contrarily, the π mode in the time-varying lattice is gauge independent and can be
robustly excited by using the frequencies in the ±π gaps, denoted by the red and green lines.
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