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Willis materials provide degrees of freedom to control mechanical waves unavailable in conventional ma-
terials, but our understanding of wave-matter interaction in these exotic media has been limited by their
unconventional constitutive equations. This work derives an equivalence between the acoustic Willis wave
equation inside a general inhomogeneous and anisotropic Willis medium and the well-known wave equation in
conventional acoustic materials with embedded continuous distributions of monopole and dipole sources. It thus
enables accurate and efficient computation of sound scattering from arbitrarily shaped general acoustic Willis
materials in one, two, and three dimensions. The result is validated by showing in numerical simulations that real-
izable bulk Willis metamaterials, obtained by periodically replicating a labyrinthine cell, scatter sound identically
to its equivalent material with embedded continuous source distributions. Furthermore, the equivalence provides
insights into the physics of Willis materials. For example, it shows that multiple pairs of Willis coupling vectors
produce exactly the same sound scattering regardless of excitation. It also directly shows whether the effective
material parameters extracted from single Willis cell simulations maintain validity in bulk metamaterials based
on that cell. This equivalence model will advance the design of Willis metamaterials and provide the tool to
better understand the physics of Willis media.
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Introduction. Willis media have long been recognized
as extensions to conventional materials in which addi-
tional coupling coefficients between the strain-momentum
and velocity-stress fields provide new degrees of freedom to
manipulate sound [1–4]. Although Willis coupling is typically
small in the natural acoustic environment, various studies
have demonstrated that Willis coupling can be increased
using metamaterial techniques which enabled exciting appli-
cations. For example, it has been shown that metasurfaces
composed of arrangements of carefully designed unit cells
significantly increase the Willis coupling coefficients and al-
low independent control of the reflected and transmitted sound
[5]. Similarly, gradient Willis metasurfaces have been used
as highly efficient beam steerers in which transmitted waves
were sent in desired directions with very low reflections [6]
and grating Willis metasurfaces have been used as anomalous
reflectors that steered the reflected sound in nonspecular direc-
tions [7]. Moreover, a design approach based on self-induced
surface waves was introduced and experimentally verified
to realize Willis gradient metasurfaces for arbitrary beam
splitting and anomalous reflection with theoretically unitary
efficiency [8].

Active Willis metamaterials further extended the range of
achievable Willis coupling coefficients beyond the fundamen-
tal limitations of passive media. Not only that the two Willis
coefficients can be set differently in active media, but their
values are not subject to the fundamental bounds imposed
in passive materials outlined in Ref. [7]. These properties

*udemir@umich.edu
†bipopa@umich.edu

were leveraged to demonstrate excellent broadband sound
barriers [9], broadband nonreciprocal media [10–13], and pro-
grammable extreme anomalous reflectors [14].

These exciting applications stem from the nonconventional
wave equation governing the propagation of sound in Willis
media. However, the exotic form of this equation, which was
also associated to moving media [15–17], has been an impedi-
ment for our understanding of Willis media dynamics because
there are no generally accepted solvers of this equation. Ana-
lytical solutions have been provided in one-dimensional (1D)
systems [3,11,18] and in related homogeneous unbounded
media [19], but these approaches are not suitable for two-
(2D) or three-dimensional (3D) spaces involving finite-sized
inhomogeneous materials.

In an attempt to overcome this obstacle, researchers
resorted to equivalent models that equate Willis media with ar-
rangements of discrete, line- or pointlike sources [9,10,20,21]
separated by subwavelength distances. These models nec-
essarily consider the microscopic interaction between these
sources and are nonscalable in general scenarios in which the
material they model becomes too voluminous. Moreover, it
is generally challenging to relate the physical structure of a
material to the strength of these sources [21].

In this work we address these challenges and derive the
equivalence between general inhomogeneous Willis media
anisotropic in both the mass density and Willis coupling
vectors and conventional media with embedded continu-
ous source distributions. The advantage of our approach is
threefold. First, the latter medium is acoustically described
by a wave equation which assumes a conventional form and
thus can be solved numerically with commercially available
solvers such as COMSOL Multiphysics. Consequently, our
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model enables efficient simulations of sound scattering from
Willis media of arbitrary shape and material parameters in
2D and 3D. Second, this work gives previously unavailable
insights into the physics of Willis materials. For example, it
shows that multiple choices of Willis coupling vectors yield
the same sound scattering characteristics in active Willis me-
dia. Third, our model answers important questions related to
Willis material design such as whether the material parameters
observed in single cell measurements extend to larger meta-
material samples obtained by periodically replicating that cell.
We validate this equivalence model by showing that the sound
scattered by a physical Willis metamaterial composed of unit
cells of known effective material parameters matches excel-
lently the field scattered by its continuous equivalent medium.
We show that, remarkably, this excellent match occurs not
only outside the Willis metamaterial but also inside it. This
equivalence model will open the path towards better under-
standing the interaction of sound and Willis materials and
will facilitate the extension of established metamaterial design
and characterization tools including those based on advanced
machine learning techniques [22–24] to Willis media.

Equivalence model. Willis acoustic media in 3D are char-
acterized by four effective material parameters, namely the
mass density ¯̄ρ, the bulk modulus B, the velocity to pressure
S̄, and the volumetric strain to momentum density D̄ coupling
terms. To preserve generality, these material parameters are
allowed to vary with position to account for inhomogeneous
Willis media. For passive materials �S = �D. However, given
the emergence of active Willis materials, we relax this con-
straint and allow �S and �D to be different in this work. The
constitutive equations in these general fluids are [20]

�μ = ¯̄ρ · �v + �Dε,

−p = Bε + �S · �v, (1)

where p is the acoustic pressure, �v is the particle velocity, ε is
the volumetric strain, and �μ is the linear momentum density.
These equations are coupled with the following conservation
of momentum and mass equations written in the harmonic
regime using the e jωt time-variation convention:

−∇p = jω �μ,

jωε = ∇ · �v. (2)

Understanding how sound propagates in inhomogeneous me-
dia described by Eqs. (1) and (2) requires solving them
numerically. However, the unconventional form of these equa-
tions due to the additional terms containing �S and �D means
that established solvers are not suitable and developing new
ones are not trivial.

We show in this section that we can always replace the
Willis medium with an equivalent conventional fluid with
embedded continuous distributions of monopole and dipole
sources of same shape and size as the Willis medium, as illus-
trated in Fig. 1. Our goal is to derive the material properties
of the equivalent fluid (namely, mass density tensor ¯̄ρ ′ and
bulk modulus B′) and the monopole Qm and dipole �qd source
terms such that the scattered pressure fields are the same for
both materials regardless of excitation. The conventional wave
equation in the equivalent medium assumes the form of the

FIG. 1. Schematic diagrams of a general acoustic Willis medium
with effective material parameters ¯̄ρ, B, �S, and �D and the acoustically
equivalent continuous material with effective material parameters ¯̄ρ ′

and B′ and embedded sources Qm and �qd .

inhomogeneous Helmholtz equation as follows [25]:

−∇ · [ ¯̄
ρ ′−1 · (∇p − �qd )] − ω2

B′ p = Qm. (3)

Similar to other source-driven models [9,20,26], the source
terms Qm and �qd are functions of the material parameters ¯̄ρ ′
and B′, the local acoustic pressure p, and the pressure gradient
∇p. In the remainder of this section, we show that Eqs. (1) and
(2) reduce to Eq. (3) under suitable choices of ¯̄ρ ′, B′, Qm, and
�qd expressed in terms of ¯̄ρ, B, �S, �D, p, and �v.

Substituting Eqs. (2) into Eqs. (1) yields

− 1

jω
∇p = ¯̄ρ · �v + �D

jω
∇ · �v, (4)

and

−p = 1

jω
B∇ · �v + �S · �v. (5)

From Eq. (4), �v can be found in terms of the gradient of p and
the divergence of �v as follows:

�v = − 1

jω
¯̄ρ−1 · (∇p + �D∇ · �v). (6)

Plugging �v found above into the �S · �v term of Eq. (5) and
rearranging the terms give

jωp = (M − B)∇ · �v + N, (7)

where

M = �S · ( ¯̄ρ−1 · �D),

N = �S · ( ¯̄ρ−1 · ∇p), (8)

which gives the divergence of the particle velocity in terms of
the acoustic pressure as follows:

∇ · �v = jωp − N

M − B
. (9)

Computing the divergence of Eq. (6) and replacing ∇ · �v
in it with the expression provided by Eq. (9) result in the
wave equation in a Willis fluid written in terms of the acoustic
pressure

jωp − N

M − B
= − 1

jω
∇ ·

[
¯̄ρ−1 ·

(
∇p − �D jωp − N

B − M

)]
. (10)
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We notice that Eq. (10) is identical to the standard wave
equation [Eq. (3)] in a conventional fluid with continuous
distributions of monopole and dipole sources if and only if

¯̄
ρ ′ = ¯̄ρ,

B′ = B,

Qm = jωB−1 N − jωpB−1M

1 − B−1M
,

�qd = B−1 �D jωp − N

1 − B−1M
. (11)

This is a remarkable result for at least three reasons. First,
it shows that the Willis coupling terms in a general acoustic
Willis medium could be simply replaced by distributions of
monopole and dipole sources without modifying the acous-
tic pressure distribution inside and outside the medium.
Therefore, instead of solving the nonconventional system of
equations Eq. (1) and Eq. (2), one can simply solve the
wave equation in the conventional equivalent material with
embedded sources using commercial tools such as COMSOL
Multiphysics.

Second, Eq. (11) provides important insights into the
physics of Willis materials. One example regards the unicity
of the Willis coupling terms producing a given acoustic field
distribution. We note that in an active Willis material (which
is not bound by the requirement �S = �D existing in passive
materials) there are in general six Willis vector components
for �S and �D which could be used to manipulate the scattering
of sound. Since the equivalent fluid with embedded sources
has only four components that define the monopole and dipole
sources that replace the effects of �S and �D, it follows that
there are multiple choices of �S and �D that result in the same
scattered field distribution. This is better seen by noticing that
the Willis vector �S appears in the wave equation Eq. (10) as
part of the definitions of scalars M and N in Eq. (8). For given
values of M, N , ¯̄ρ, �D, and p, Eq. (8) forms a system of two
equations in the three unknowns comprising the components
of vector �S. This is an underdetermined system having, in
general, multiple solutions. Other insights into the physics of
Willis metamaterials will be revealed after we consider the
validation of Eq. (11) in the next section.

Third, models of matter consisting of conventional fluids
with embedded sources have been shown to provide design
tools for active metamaterials composed of periodic arrange-
ments of sensors and drivers which realize the monopole and
dipole sources in a straight-forward manner [26,27]. This
model extends the same benefits to active Willis metama-
terials. It provides the closed-form relationship between the
local acoustic fields and the embedded source strengths. The
relationship translates directly into the transfer functions be-
tween the sensors that capture the local acoustic fields and the
actuators that produce the acoustic response in active meta-
materials realized with the sensor-driver architecture.

Model validation. We validate next the equivalence model
represented by Eqs. (11) by showing that it accurately cal-
culates the sound scattered by a finite metamaterial sample
composed of periodic arrangements of unit cells with known
effective material parameters. This is done by showing that
the scattered pressure fields from the physical metamaterial

FIG. 2. Schematic diagram of the unit cell with H = 11 mm,
dx = 5.75 mm, dy = 8.00 mm, t = 0.8 mm and w = 0.4 mm. The
grey region is the rigid solid inclusion, and the white region is the
background lossless air with density ρ0 = 1.29 kg/m3 and speed of
sound c0 = 343 m/s.

match very well those of the equivalent continuous material
with embedded sources. To facilitate numerical simulations
of a physical Willis metamaterial stucture composed of one-
hundred-unit cells, we perform this validation in 2D.

The unit cells that make up the physical metamaterial are
designed to be asymmetrical structures to induce anisotropy in
the Willis coupling vectors and the mass density tensor. There
are many approaches to realize acoustic Willis metamateri-
als [5,6,18,28,29]. Here we choose the typical labyrinthine
design shown in Fig. 2, which was shown to lead to large
Willis coupling terms [7]. In the figure, the grey region is
the solid inclusion, and the white region is the background
lossless air with density ρ0 = 1.29 kg/m3 and speed of sound
c0 = 343 m/s. The solid inclusion is assumed to be orders of
magnitude stiffer and denser than air and thus its surface is
well approximated by a perfect reflector.

The unit cell has the side lengths H , and the solid inclusion
has the side lengths dx and dy, the wall thickness t , and the
channel width w. These values were chosen using the follow-
ing design procedure. It is common to consider that physical
metamaterials formed by periodic arrangements of unit cells
have effective material parameters if these unit cells are highly
subwavelength structures [30]. As a rule of thumb, unit cell
sizes smaller than a fifth of the wavelength in both the material
and the background fluid usually suffice. Here we targeted the
2−4 kHz bandwidth corresponding to wavelengths in air (λ0)
between 85.75 mm and 171.5 mm. We thus choose the unit
cell size H = 11 mm, which is approximately one-tenth of
λ0=114.3 mm at 3.00 kHz. The meandered path length was
chosen to be approximately a quarter of the wavelength at
3 kHz to produce significant Willis parameters at this fre-
quency. The inlet position was chosen on the bottom left side
of the cell to ensure Willis anisotropy in the �S = �D vectors,
i.e., 0 �= Sx �= Sy �= 0, where Sx and Sy are the components of
these vectors in the x and y directions.

The mass anisotropy of the cell is determined by the asym-
metry in the inclusion dimensions. To assure large differences
between the mass density tensor components in the principal
axes ρxx and ρyy, we chose dx significantly smaller than dy.

The other geometrical parameters were chosen itera-
tively by requiring large mass density and Willis parameter
anisotropies in the metamaterial. For each choice of geomet-
rical parameters, the effective ¯̄ρ, �S, and �D were calculated
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FIG. 3. Nondimensional effective material parameters extracted
from 1D unit cell simulations: (a) �(ρ∗

xx ) and �(ρ∗
yy ), (b) �(B∗),

(c) �(S∗
x ) and �(S∗

y ), and (d) �(D∗
x ) and �(D∗

y ).

from sound reflection and transmission simulations through
one unit cell in a 1D setting using an established proce-
dure [10,11,31]. The components of these effective material
parameter tensors were computed considering propagation
in the x and y directions as described in [32]. Further-
more, although being a scalar term, B was also obtained
independently from sound propagation in the x and y direc-
tions to confirm that they have very similar values for both
directions.

The final geometrical design parameters are dx = 5.75 mm,
dy = 8.00 mm, t = 0.8 mm and w = 0.4 mm, the length
of the meandering paths is 29.7 mm, approximately one-
quarter of λ0 = 114.3 mm at this frequency. Figure 3
shows the extracted relative effective material parameters
for this cell defined as ¯̄ρ∗ = ¯̄ρ/ρ0, B∗ = B/B0, �S∗ = �S/Z0,
and �D∗ = �D/Z0 where ρ0 = 1.29 kg/m3, B0 = 0.152 MPa
and Z0 = 442.5 Pa s/m are the mass density, bulk modulus,
and characteristic impedance of air. In the frequency range
2.80–3.12 kHz, the cell size is larger than a fifth of the
wavelength in the metamaterial, the homogenization theory
becomes less accurate, and thus the effective material param-
eters lose physical meaning. In this band, the metamaterial
displays phononic crystal characteristics showing either high
dispersion (light gray area in Fig. 3) or a band gap (textured
gray in the figure). Here we are primarily interested in the
frequencies outside of this band where the homogenization
theory is accurate. By doing so, we also disregard the non-
local components of the Willis coupling terms, which make
these coupling terms vary with impinging wave direction, as
discussed in Ref. [33].

Owing to the constitutive equations defined in Eq. (1), the
unit cell simulations reveal that for lossless Willis media, ¯̄ρ∗
and B∗ are real for all propagating frequencies and that �S∗
and �D∗ are purely imaginary. Therefore, Fig. 3 shows the
real values of mass density �( ¯̄ρ∗) and bulk modulus �(B∗),
and the imaginary values of Willis coupling vectors �(�S∗)
and �( �D∗) over the frequency range 2–4 kHz. The imaginary
parts of �S∗ and �D∗ may mean that the impulse momentum
depends on the rate of change of the volumetric strain and
the acoustic pressure depends on the particle acceleration, as
discussed in Ref. [18]. In this case, the Willis coupling terms
�S and �D would be replaced by jω�S and jω �D in the constitutive

FIG. 4. Scattered pressure fields from (a) the Willis medium and
(b) the acoustically equivalent continuous material with embedded
sources at f = 2.80 kHz. Close-up views of the scattered pressure
fields inside (c) the Willis medium and (d) equivalent material. The
plots present the raw fields computed by COMSOL Multiphysics.

Eqs. (1) and, therefore, the redefined Willis coupling terms be-
come real. In this work, we chose the form of the constitutive
equations shown in Eqs. (1) as this form is more widely used.

Figure 3 confirms that the unit cell has significant
anisotropy in the mass density [Fig. 3(a)] and Willis coupling
vectors [Figs. 3(c) and 3(d)]. The extracted bulk modulus
[Fig. 3(b)] assumes the same values outside of the shaded re-
gions, which confirms the metamaterial behaves acoustically
as a fluid. Finally, as expected for passive lossless media, it is
seen that �S = �D.

Having designed a Willis unit cell with known effective
material parameters, we validate our equivalence model for
Willis media by comparing the acoustic fields scattered by a
metamaterial composed of periodic arrangements of this unit
cell and its equivalent continuous fluid with embedded sources
and acoustic properties provided by Eq. (11).

The metamaterial is the 10 by 10 lattice of unit cells
shown in Fig. 4(a) such that it forms a square with side
L = 110 mm or almost a wavelength in air. The metamate-
rial was ensonified by a line source placed at the coordinate
(x, y) = (576, 576) mm and of frequency 2.8 kHz (i.e., the
frequency just to the left of the left shaded region in Fig. 3).
The complex acoustic pressure distribution scattered by the
physical metamaterial is shown in Fig. 4(a).

The effective material parameters at this frequency are ob-
tained from Fig. 3 and assume the following values: �(ρ∗

xx ) =
3.06 and �(ρ∗

yy) = 2.02, �(B∗) = 0.65, �(S∗
x ) = �(D∗

x ) =
0.52, and �(S∗

y ) = �(D∗
y ) = 0.22. These values were plugged

into Eqs. (11) to calculate the effective properties of the
equivalent continuous material with embedded sources. The
acoustic pressure scattered by this equivalent material is
shown in Fig. 4(b).
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FIG. 5. The scattered pressure magnitudes at (a) point A and
(b) point B and the scattered pressure phases at (c) point A and
(d) point B for the Willis metamaterials (solid line) and the equivalent
material (dashed line).

It can be seen from Figs. 4(a) and 4(b) that the pressure
fields scattered from the equivalent continuous material are
in excellent agreement with those scattered from the physical
Willis metamaterial. More importantly, the close-up views
of the pressure fields obtained inside the Willis metamate-
rial match equally well those in the equivalent medium as
illustrated in Figs. 4(c) and 4(d). These results confirm the ef-
fectiveness of the equivalence model summarized by Eq. (11).

To further validate this model, we performed this compar-
ison in the entire band from 2 kHz to 4 kHz and recorded
the acoustic pressure amplitude and phase at two points inside
and outside the metamaterial labeled A and B in Fig. 4. The
magnitude |ps| and phase φ of the scattered pressure fields
for the Willis media and its equivalent continuous material
counterpart are shown in Figs. 5(a) and 5(c) for point A and
Figs. 5(b) and 5(d) for point B. The simulations inside the
continuous material match very well the fields obtained in
the Willis metamaterial over the entire frequency range with
the exception of a few regions discussed below where some
discrepancies occur.

For point A, there is a mismatch in the phase values for
3.39 � f � 3.42 kHz [Fig. 5(c)]. This is expected because
the pressure field amplitudes approach zero and thus the phase
values lose relevance. Moreover, for point B, the equivalent
material shows spikes in the scattered pressure amplitude |ps|
and phase φ in a narrow band around f = 3.10 kHz where
the bulk modulus B approaches the term M given by Eqs. (8)
and jωp approaches N to maintain a finite value of the source
terms Qm and �qd . At these frequencies, Eq. (11) becomes
very sensitive to numerical errors in the computation of the
acoustic pressure. As mentioned before, the effective material
parameters shown in Fig. 3 lose physical meaning in the gray
band shown in Fig. 3 (2.80–2.94 kHz) where the metamaterial
display phononic crystal characteristics. Nevertheless, it is
remarkable to see that the good match between the fields scat-
tered by the physical metamaterial and its equivalent model
in this band. This observation suggests that, for this specific
metamaterial, the homogenization theory holds for cell sizes
significantly larger than a fifth of the wavelength inside the
metamaterial.

We further validate our equivalent medium model by com-
puting the average rate of change of energy inside the medium

over a period and showing it is zero for the lossless metama-
terial. According to the conservation of energy, the average
rate of change of energy can be computed by integrating
the acoustic intensity vector �I = 0.5�(p�v∗) over a closed
surface surrounding the effective medium. The details of
this calculation, the estimated acoustic intensity vector, and
the rate of change of energy relative to the power incident
are presented in the Supplemental Material [34] (see also
Ref. [35] therein). This calculation shows that the energy rate
of change is negligible compared to the impinging power in
the entire band of interest where the homogenization the-
ory holds, i.e., excluding the gray region in Fig. 3. This
confirms once more the validity of our equivalent medium
model.

The excellent match between the simulated acoustic pres-
sure for the Willis metamaterial and its equivalent continuous
counterpart demonstrates directly that the effective material
parameters retrieved from one-cell simulations maintain va-
lidity in the bulk metamaterial composed of large numbers
of cells. This remarkable result confirms that the acoustic
behavior of the labyrinthine Willis cell shown in Fig. 2 is
not influenced by the other cells surrounding it. This result
is not surprising. The Willis coupling terms are expected to
be influenced by the length and shape of the meandered chan-
nel inside the solid inclusion rather than by external factors.
Also, metamaterials made of solid nonresonant rectangular
inclusions were shown to have the same effective acoustic
properties as the individual cell spawning it [32]. For example,
it was shown that the extracted effective material properties of
such a nonresonant metamaterial varying in thickness from 1
to 4 unit cells along the propagation direction are essentially
the same in the frequency band where the unit cell size is
significantly smaller than the wavelength [32]. This obser-
vation implies that the behavior of individual cells remains
uninfluenced by interactions between them. However, this
important property may not hold for other metamaterial cells.
For example, it was shown that cells based on Helmholtz
resonators [36] possess distinct effective material properties
compared, depending on whether the cells are placed at the
edge or in the middle of the metamaterial. In this case, im-
parting the effective properties extracted from a single cell
to a bulk metamaterial yields significant errors. Importantly,
the equivalence model and the validation method presented
in this work constitute a straight-forward procedure to obtain
insight into when one-cell effective properties extend to bulk
metamaterials.

Conclusion. In this study, we derived the wave equation in
a general inhomogeneous, anisotropic acoustic Willis medium
and showed that it is identical to the wave equation in a con-
ventional fluid with continuous distributions of monopole and
dipole sources. To maintain maximum generality, the deriva-
tion did not make assumptions about the relationship between
the Willis coupling vectors and thus is applicable to both
passive and active media. This result shows that the physics
of Willis materials can be efficiently analyzed by studying its
equivalent conventional fluid for which efficient solvers of the
wave equation exist in 1D, 2D, and 3D. This approach was
validated through the excellent match between the acoustic
pressure scattered by a physical Willis metamaterial and its
continuous equivalent. This equivalence gave insights into the
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physics of acoustic Willis media. For example, it showed that
there exist multiple pairs of Willis coupling vectors that can
produce identical sound scattering, but these Willis coupling
terms are typically characteristic of the active media. More-
over, the equivalence also demonstrated directly that the bulk
metamaterials obtained by periodic arrangements of a popular
type of anisotropic labyrinthine unit cell of known effective
material parameters maintain the effective acoustic properties
of the cell. This implies that single cell design is a very

effective tool for the design of large metamaterials involving
this type of cell.

Due to its ability to efficiently perform simulations of
sound scattered by acoustic Willis materials, the approach
will allow researchers to apply advanced methods developed
for conventional media (e.g., based on machine learning) to
design and characterize Willis media.
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