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We predict a complete delocalization of the localized states following the localization transition in a one-
dimensional non-Hermitian Aubry-André model with a generalized quasiperiodic potential. We show that
the system first undergoes a transition from the delocalized phase to the localized phase and then to the
delocalized phase as a function of the complex phase of the quasiperiodic potential of fixed strength revealing a
reentrant delocalization transition. We further identify the localized region as topological in nature exhibiting a
well-defined spectral winding number which vanishes in the delocalized phases resulting in a reentrant spectral
topological transition. Moreover, we find that these two transitions occur through intermediate regions hosting
both delocalized and localized states which also possess nontrivial winding numbers that are different from that

of the localized phase.
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Introduction. The quasiperiodic lattices which are inter-
mediate to periodic and random lattices have enriched our
understanding on the localization transition [1]. One of the
striking features of such lattices is the well-defined localiza-
tion transition in one dimension as opposed to their random
counterparts where the localization of states occurs for any
infinitesimal strength of disorder. The simplest quasiperiodic
lattice model is the paradigmatic Aubry-André (AA) model
which exhibits a sharp delocalization-localization (DL) tran-
sition of the single particle states at a critical quasiperiodic
potential strength owing to the self-duality of the model
[2,3]. However, generalization of the AA model results in
the localization transition through an intermediate phase with
coexisting localized and delocalized states separated by crit-
ical energies known as the mobility edge [4-11]. However,
the studies on the non-Hermitian generalizations of the AA
model and its variants have predicted interesting scenarios
such as sharp DL transitions, associated parity-time (P7)
symmetry breaking, butterfly spectra, non-Hermitian mobility
edges, appearance of topological edge states, etc. [12-25].
Recent studies have also found the DL transition in nHAA
model as a topological phase transition by associating the
localized spectrum with a spectral winding number [26-29].

Until recently it was believed that in the DL transitions
once the states are localized they remain localized as a func-
tion of the disorder strength or other parameters. However,
the prediction of the reentrant localization transition in certain
dimerized quasiperiodic chains by some of us [30,31] has
brought in a renewed interest in the field of localization tran-
sitions. This counterintuitive phenomenon involves a partial
delocalization of the localized spectrum (or delocalization of
some of the localized states) after the system has undergone
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a localization transition and has been predicted in numer-
ous Hermitian and non-Hermitian systems [32-38] leading to
their recent experimental realizations [39,40].

While the studies reported so far involve the delocalization
of some of the localized states or partial delocalization of
the spectrum as a function of the disorder or other system
parameters, in this paper we predict a complete delocalization
of the localized spectrum in a parameter regime of the model.
We show that in the case of a non-Hermitian generalized AA
model the system after undergoing a DL transition returns to
the delocalized phase as a function of the complex phase in the
quasiperiodic potential. We term this nature of the transition
starting from a delocalized phase and then returning back to
another delocalized phase as a reentrant delocalization tran-
sition. Moreover, we find that the localized phase possesses
a nontrivial spectral winding number which vanishes in the
delocalized phases resulting in a reentrant topological phase
transition as a function of the complex phase. We also find
that the DL and LD transitions occur through the intermedi-
ate phases having coexisting delocalized and localized states
which are also found to be of topological in nature. In the
following we discuss these findings in detail.

Model. The non-Hermitian generalized AA (nHGAA)
model is defined as

L
H= -7 (chenp1 +He)
n=1

L cos2r fn + @)
A 2:; | —acosapn+¢)"

Tens (1)

where c; (cp) is the creation (annihilation) operator of spin-
less fermions at the nth lattice site. J is the nearest-neighbor
hopping amplitude and A represents the strength of the
quasiperiodic potential. Here 8 = (+/5 — 1)/2—an irrational
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number known as the inverse golden ratio. We introduce non-
Hermiticity by writing ¢ = 6 + ih. Note that the model is PT
symmetric if we choose 8 = 0 [20]. Therefore, we consider
6 = 0 throughout unless otherwise mentioned.

For @ = 0 and & = 0, the model in Eq. (1) reduces to the
Hermitian AA model that exhibits a DL transition of the entire
spectrum at A = 2J due to the self-duality of the model [2].
However, when £ is finite, the model is non-Hermitian and is
shown to undergo a DL transition at a critical 2 = In(2J/A)
in Ref. [26]. Also after this critical #, all the real eigenener-
gies become complex (a real-complex transition), indicating
a PT symmetry-breaking phase transition in the system. Due
to the presence of the complex energy spectrum, the local-
ized phase is found to possess nontrivial spectral winding
number and hence a trivial to topological transition at the
DL transition. In our study, we show that when o becomes
finite, a completely different scenario appears where the
system undergoes a delocalization-localization-delocalization
(DLD)-type transition which we further characterize as a
trivial-topological-trivial transition based on the spectral
winding numbers. These findings are obtained by numerically
solving the model shown in Eq. (1) using the exact diagonal-
ization method under periodic boundary conditions (PBCs)
with systems of size up to L = 6765. We set J = 1 as the
energy scale and fix the strength of the quasiperiodic potential
A=1.

In the following, we discuss our findings in detail. First
we will focus on the DL transition in the system. Next we
will investigate the spectral topological character associated
to these transitions.

Delocalization-localization transition. We begin our dis-
cussion by identifying the delocalized and localized regions
in the a-h plane as depicted in Fig. 1(a). The regions in
the left and right sides of the boundaries marked with green
squares and white circles respectively correspond to delocal-
ized phases (D) and the region below the yellow triangles
corresponds to the localized phase (L). The white central
region enclosed by these three lines is the intermediate phase
(I) where both delocalized and localized states coexist. These
boundaries are obtained from the inverse participation ratio
(IPR), given by IPR, = Z?:l |1//,{ |* and the correspond-
ing normalized participation ratio (NPR) given by NPR, =
1/(L x IPR,) [28,41] with I/I;{ as the nth eigenstate of the
Hamiltonian shown in Eq. (1). The IPR (NPR) takes vanishing
(finite) and finite (vanishing) value for a delocalized and a
localized state, respectively for a finite system. However, to
obtain the insight about the entire spectrum, we utilize (IPR)
and (NPR) where (-) stands for the average over all eigen-
states. In Fig. 1(d), we plot (IPR) (red solid line) and (NPR)
(blue dashed line) as a function of % for an exemplary value
of o = 0.2 [white dashed line in Fig. 1(a)]. The values of
(IPR) = 0 and (NPR) # 0 in the regions & < 0.325 and h 2>
4.25 [light blue regions in Fig. 1(d)] indicate that all the states
in the system are delocalized. In the range 1.35 < h < 3.25
(light red region), the states are localized which is indicated
from the values (IPR) # 0 and (NPR) = 0. However, there
exist two intermediate regions on either sides of the localized
region where both (IPR) and (NPR) remain finite [white
regions between 0.325 < /h < 1.35 and 3.25 <h <4.25 in
Fig. 1(d)]. The boundaries in the phase diagram shown in

FIG. 1. (a) The phase diagram in the «-h plane, obtained using
the average inverse participation ratio ((IPR)) and average normal-
ized particpation ratio ((NPR)) values indicating the delocalized
(D), intermediate (I), and localized (L) phases. The color code
indicates the values of average adjacent gap ratio ({r)) superim-
posed in the figure. (b) and (c) show the IPR plotted as a function
of the real energy eigenvalues and A. (d) (IPR) (red solid line),

(NPR) (blue dashed line), (r) (green dotted line) and p (black
dashed-dotted line) are plotted as a function of & for o« = 0.2 that
corresponds to the white dashed line in panels (a) and (e) indicating a
delocalization-localization-delocalization (DLD) and real-complex-
real (RCR) transition. (e) The phase diagram in the «-h plane
obtained using the values of density of states (o) which distinguishes
the real (R), mixed (M), and complex (C) phases. For the figures in
panels (b) and (c) a system of length L = 2584 is considered and
L = 6765 is considered for panels (a), (d), and (e).

Fig. 1(a) are obtained by plotting the average participation
ratios at different values of «. The different phases are further
analyzed by looking at the individual eigenstates in Figs. 1(b)
and 1(c) where we plot the IPR values as a function of eigen-
values and 4. In the delocalized (localized) phase all the states
are delocalized (localized). However, both delocalized and
localized states coexist in the intermediate phases. Moreover,
the delocalized and localized states are separated by critical
energies known as the mobility edge.

It can be noticed from the phase diagram that when o = 0,
a sharp DL transition occurs at & = In(2J/1)—a feature al-
ready predicted in Ref. [26]. However, when o becomes finite,
a DLD transition occurs as a function of & where a com-
plete delocalization of the localized states occur indicating a
reentrant delocalization transition for a range of values of «.
Unlike the transition at @ = 0, these transitions occur through
the intermediate regions and are not sharp. For « 2 0.25,
some of the delocalized states get localized resulting an inter-
mediate phase and then a complete delocalization of the states
occurs as h increases. For higher values of «, the complete
delocalization of states occurs from an intermediate phase.

To further quantify this behavior, we compute the adjacent
gap ratios (AGRs) defined by r, = DMaSe) where ¢, =

max(€n,€nt1)
Re(E,+1) — Re(E,). Here the eigenvalues E, are sorted in
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ascending order according to their real parts only [34,41].
In Fig. 1(d), we plot the average AGR, ie., (r) =), r./L
(green dotted line) as a function of & for « = 0.2. As expected,
(r) vanishes in the delocalized phase and attains its maxi-
mum value in the localized phase but takes an intermediate
value in the intermediate phase. To identify the phases from
the behavior of (r) we plot () as a function of o and h
in Fig. 1(a). The delocalized and localized regions can be
clearly identified by the blue and red regions where (r) is
zero and maximum respectively. This also matches well with
the boundaries obtained from the average participation ratios
[symbols in Fig. 1(a)]. The reason for the sharp dip in (r) at
h. ~ 2.29 inside the localized region will be discussed later.

The above analysis clearly shows that an increase in h
leads to a complete delocalization of the localized states. For a
range of & we also obtain a DLD-type reentrant delocalization
transition where the transitions occur through intermediate
phases. In the following our primary focus will be to under-
stand this DLD transition from the eigenspectrum.

Analysis of the eigenspectrum. To analyze the spectrum in
the current scenario, we examine the behavior of the density of
states p = N/L, where N counts the number of states having
complex eigenvalues in the spectrum and L is the system size.
According to the definition, in the thermodynamic limit, p
attains the value O (1) when none (all) of the eigenenergies
are complex and the corresponding phase is P7 unbroken
(broken). To this end, we first plot p as a function of « and
h in Fig. 1(e) which clearly depicts the regions of real ener-
gies (blue region) and complex energies (red region) where
p becomes exactly zero and one respectively. We denote these
regions with entire real and complex eigenenergies as R and C
respectively. There also exists a region where the value of p is
in between zero and one which indicates the presence of both
real and complex eigenenergies in the spectrum and we call it
the mixed (M) region. Note that similar to the phase diagram
shown in Fig. 1(a), we also see a reentrant transition of type
RCR in Fig. 1(e) for small values of «. This reentrant behavior
can be seen from the plot of p as a function of & which
is shown in Fig. 1(d) (white dashed line) for an exemplary
cut through the phase diagram of Fig. 1(e) at « = 0.2. From
Fig. 1(d), we observe that initially p = 0, i.e., all the energies
are real in the spectrum up to 2 = 0.325 (light blue region).
As h increases, the value of p becomes finite and reaches its
maximum, i.e., o = 1 in the range 1.35 < h < 3.25 (light red
region). In this range of A, the entire spectrum is complex
and the states are localized. Further increase in 4 leads to a
decrease in the value of p which eventually becomes zero for
h > 4.25, after which the spectrum is real again (light blue re-
gion). This re-appearance of the entire real spectrum for large
values of % is an indication of a reentrant RCR transition in
the spectrum associated to a P77 unbroken-broken-unbroken
phase transition. The mixed regions are indicated by the
white patches in Fig. 1(d) where p takes values between
0 and 1. Note that the step wise increase of p in the first
mixed region is due to the gaps in the spectrum as shown in
Fig. 1(b). Comparing the behavior of p with the participation
ratios shown in Fig. 1(d), we obtain that the delocalized-
intermediate-localized-intermediate-delocalized transitions of
the eigenstates coincide with the real-mixed-complex-mixed-
real transitions in the energies.
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FIG. 2. [(a)-(f)] The IPR is plotted as a function

of real and imaginary eigenvalues corresponding to
h=0.2,0.75,2.0, 2.8, 3.75, and 5.0, respectively, for « = 0.2. Here
a system of L = 2584 sites is considered.

We confirm this behavior by plotting the real and imagi-
nary energies in Figs. 2(a)-2(f) for different values of & (i.e.,
h=0.2, 0.75, 2.0, 2.8, 3.75, and 5.0). This shows that
in the delocalized (localized) phase, all the energies are real
(complex) as can be seen from Figs. 2(a) and 2(f). However,
in the intermediate phases, both real and complex energies are
present [see Figs. 2(b) and 2(e)]. Most importantly, when in
the localized and intermediate phases, the presence of com-
plex eigenvalues form loops as shown in Figs. 2(b)-2(e) for
h=0.75, 2.0, 2.8, 3.75, respectively, and we will show
that these loops will characterise the topological nature of the
phases.

Similar to the localization properties, the reentrant real-
complex transition occurs for a small range of «. After o 2>
0.25, the spectrum is never entirely complex and the reentrant
transition is of real-mixed-real type for 0.25 < « < 0.375 and
for @ 2 0.375 the transition is of mixed-real type as can be
seen from Fig. 1(e).

In the following, we will show that this appearance of reen-
trant RCR transition will reveal a much richer phenomenon in
the context of spectral topology.

Reentrant topological transition. We will now identify the
different phases with respect to their topological nature. To
this end we compute the spectral winding number defined as
[26,28,42]

2

w= lim — dfdglog[det{H(©O/L) —¢}], (2

L—oo 27
which in this case is the number of times the spectrum of H
winds a base energy & when the real 6 varies from 0 to 2. In
the case of the nHAA model, there is a direct real-complex
transition in the spectrum as a function of 4, i.e., all the
energies in the spectrum become complex after the transition.
This relaxes the choice of the base energy which can be safely
taken to be zero [26]. However, in the presence of the mobility
edge between the delocalized and the localized states, the
base energy can not be arbitrary due to the presence of the
mixed states in the spectrum. In practice, two base energies are
considered which correspond to the real energy eigenvalues
that defines the beginning and the end of the intermediate
or mixed region or the minimum and maximum energies on
the mobility edge [28,29]. Following this prescription, we
can identify the winding numbers across the DLD transition
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FIG. 3. Panel (a) shows the variation of spectral winding num-
bers w; (green diamonds), w, (orange boxes), ws (blue triangles),
and w; (red filled circles) and total winding number w (black empty
circles) as a function of & for @« = 0.2. The shaded blue (red) area
denotes the trivial (nontrivial) phase. (b) Real eigenvalues for A = 0
(gray line with dots), A =1, h = 6.0 (blue line with squares), its
shifted energies (red solid line) and Re(V') (green dashed line) are
plotted as a function of state index. Here the system size is considered
to be L = 233 in panel (a) and L = 2584 in panel (b).

at smaller values of «, e.g., « = 0.2 for which the DLD
transition occurs through two intermediate or mixed regions
resulting in four critical points.

In Fig. 2 we observed that the real versus imaginary eigen-
values form loops in the localized and intermediate phases.
We link the winding numbers corresponding to these loops
by identifying the base energies at the beginning and at the
end points of the intermediate regions from the energy spec-
trum. For o = 0.2, the base energies are ¢ &~ 2.274 and &; ~
—2.042 at the critical points h; and h; for Dto I and I to L
transitions, respectively. Similarly, we fix two other base en-
ergies across the second intermediate region, i.e., &3 ~ —3.0
and g4 &~ —7.0 at h3 and hy4 are critical points for the L to I and
I to D transitions, respectively. Accordingly, we obtain four
winding numbers such as w; (green diamonds), w, (orange
boxes), w3 (blue triangles), and wy (red filled circles) using
Eq. (2) which are plotted as a function of % in Fig. 3(a). We
also plot the total winding number w = w; + w; + w3 + wy
(black circles) to clearly distinguish the different phases. As
observed, all the winding numbers vanish in the delocalized
phase due to the nonexistence of complex eigenvalues and
this results in a reentrant topological transition. Apart from
this we find that in the intermediate phase, one of the wind-
ing numbers is finite, (e.g., for 0.325 < h < 1.35, w; = —1)
and in the localized phase, two of them are finite (e.g., for
1.35 < h < h,, w; = w, = —1). However, a counterintuitive
situation arises at h, where the total winding number be-
comes nonquantized even though the system is in the localized
phase. Moreover, at this point w changes its sign, i.e., when
h < h., w is negative and when h > h., w is positive. Note
that at /., a loop in the energy spectrum is expected since
the system lies in localized phase at this point. However, as
the largest eigenvalue is much larger compared to the other
eigenvalues in the spectrum, a discontinuous loop is formed
(not shown). This nature is also reflected in the value of (r)
which decreases slightly from its maximum value of ~0.6
[see Fig. 1(d)].

The reentrant phenomenon exhibited by the model is a
result of the peculiar behavior of the disorder potential as a
function of A. For small A, the disorder in the system is weak
for which all the states are delocalized. As £ is increased, the
disorder in the system first increases, reaches a maximum and
then decreases to a minimum value which is not sufficient to
localize the states and hence we get a second delocalization
transition. This complete delocalization can be understood by
analyzing the energy spectrum of the system in the limit of
large h. To provide an intuitive understanding, we consider
h = 6.0 and plot the real eigenvalues as a function of state
index in Fig. 3(b) (blue squares). This shows that the entire
eigenspectrum is nothing but a continuum of extended or delo-
calized states—a situation similar to the case of zero or weak
disorder, i.e., A ~ 0 shown as red dots in Fig. 3(b). By compar-
ing these two curves it is inferred that E; —; = E, ¢ + C where
C is a number. For & = 6, we obtain that C = 5.0 which can
be observed from the complete overlap of E;_o + 5.0 curve
(red solid line) and the E;—_; curve in Fig. 3(b). It turns out
that the number C in this case is the expectation value of
the onsite term of the Hamiltonian, i.e., V = A Zﬁzl V,,cjlcn,
where V, = %, over all the eigenstates as shown
in Fig. 3(b) (green dashed line).

This analysis reveals that as 4 becomes larger, the disorder
potential in the system eventually vanishes and in this limit it
tends to approach a constant value. This can be understood by
rewriting the potential in the limit of large % as

e—i(271/3n)eh/2 1
Vn—) B — =, 3
1— ae*t(Znﬂn)eh/Q’ o ( )

where cos(2mw Bn + ih) is written in terms of exponentials.
With this we get a constant onsite potential of strength
—A/a = =5 at all sites for A = 1 and o = 0.2. This is con-
sistent with our numerical findings shown above.

Conclusions. We have predicted a phenomenon of com-
plete delocalization of the spectrum after a localization
transition and identified an associated reentrant topological
transition as a function of the complex phase in a one-
dimensional nHGAA model. We obtain that the reentrant
topological transition is due to the real-complex-real transition
in the eigenspectrum indicating a P77 broken and subsequent
unbroken phase transition. Moreover, we have also found that
these transitions occur through two intermediate regions hav-
ing both real and complex energy spectra and are topological
in nature.

Our study reveals a counterintuitive scenario where the
system returns to the metallic phase after undergoing a
metal-insulator transition as a function of the Hermiticity
breaking parameter in the quasiperiodic lattice for fixed dis-
order strength. This prediction will expand our scope to
understand the localization transitions in quasiperiodic sys-
tems and in particular will provide possible new directions
to explore the localization and topological physics in non-
Hermitian systems. An immediate extension could be to ask
the fate of such complete delocalization of the localized states
in the presence of interaction. Another possibility will be to
explore the transport properties in such models where nature
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of transport can be studied while the system undergoes such
reentrant transition. However, due to the recent progress in
accessing quasiperiodic lattices in platforms such as photonic
lattices [28], electrical circuits [20] and periodically driven
systems [43] our prediction is in principle carries sufficient
experimental relevance in the field.
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