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Anderson localization transitions are usually referred to as disorder-driven quantum phase transitions from
delocalized states to localized states. Here we report an unconventional “Anderson localization transition” in
two-dimensional quantized quadrupole insulators. Such transitions are from symmetry-protected topological
corner states to disorder-induced normal Anderson localized states, which can occur in the bulk as well as
on the boundary. We show that these localization-localization transitions (transitions between two different
types of localized states) can happen in both Hermitian and non-Hermitian quantized quadrupole insulators
and investigate their criticality by finite-size scaling analysis of the corner density. The scaling analysis suggests
that the correlation length of the phase transition, on the Anderson insulator side and near critical disorder Wc,
diverges as ξ (W ) ∝ exp[α/

√|W − Wc|], a typical feature of Berezinskii-Kosterlitz-Thouless-like transitions.

DOI: 10.1103/PhysRevB.109.L020202

Introduction. Disorder-induced quantum phase transitions,
known as Anderson localization transitions (ALTs) [1–4], are
a fundamental topic in wave physics since disorders are ubiq-
uitous in nature and profoundly affect the properties of states,
as demonstrated in quantum Hall systems [3], topological An-
derson insulators [5–7], and non-Hermitian systems [8–11].
The scope of ALTs is very broad, including metal-insulator
transitions and quantum-Hall-plateau transitions that occur
in topologically nontrivial systems [4]. They can be ei-
ther second-order phase transitions between localized and
extended states [12–15] or Berezinskii-Kosterlitz-Thouless
(BKT) transitions between localized and critical states with
fractal structures [16–20]. ALTs are generally considered as
phase transitions from delocalized (extended or critical) states
to localized states in disordered systems.

Here we report a disorder-induced phase transition from
topologically nontrivial localized states to trivial localized
states in two-dimensional quantized quadrupole insulators
(2D QQIs) [21–25]. QQIs are 2D second-order topological
insulators with in-gap zero-dimensional corner states charac-
terized by a nonzero quadrupole moment. The second-order
topological insulators survive at weak disorders, as genuine
topological phases [26–29], in contrast to other localized
states in deterministic fractals due to constructively inter-
ference [30]. Although Anderson localizations are surely
dominant at strong disorders, how QQIs evolve into the
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Anderson insulators (AIs) remains unresolved. Corner den-
sities of wave functions show directly that QQIs transition to
AIs as disorder increases, different from the delocalization-
localization transitions reported in a second-order topological
Anderson insulator [26]. The correlation lengths diverge ex-
ponentially on the AI side near the critical disorder, a feature
reminiscent of BKT transitions [31,32].

The topological corner-dwelling states of QQIs have been
observed in various materials, including sonic [33,34], pho-
tonic [35,36], cold atomic [37], and magnetic systems [38],
whose Hamiltonians are non-Hermitian in principle. There-
fore we consider a non-Hermitian Hamiltonian whose Her-
mitian part describes a QQI. Besides, in the presence of
non-Hermicity, such a model can support a transition from
normal insulators in the Hermitian limit to non-Hermitian
QQIs. Driven by disorder, both Hermitian and non-Hermitian
QQIs undergo localization-localization transitions. Finite-
size scaling analysis suggests that such transitions are
BKT-like since the correlation lengths diverge as ξ (W ) ∝
exp[α/

√|W − Wc|], a behavior similar to the BKT-like crit-
icality reported in other disordered systems [16–18].

Models. We consider a tight-binding model on a Lx × Ly

square-octagon lattice subject to a non-Hermitian potential as
shown in Figs. 1(a) and 1(b). The Hamiltonian reads

H =
∑

i

c†
i εici +

⎛
⎝∑

i j

c†
i Ti jc j + H.c.

⎞
⎠. (1)
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FIG. 1. (a) Unit cell of the square-octagon lattice. There are three
different types of hopping, t̃i j (orange), ti j (blue), and −ti j (green),
whose amplitudes are random. (b) A rectangular lattice of Lx = 3,
Ly = 2 with lattice constant a = 1. (c) qxy as a function of t for γ =
0 (Hermitian) and W = 0. (d) qxy vs γ for t = 3 and W = 0. (e)
Energy spectrum of γ = 0 for Lx = Ly = 5 in the clean limit. (f) and
(g) Re[ε] and Im[ε] vs γ for t = 3 and W = 0. Colors in (e)–(g)
map the common logarithm of participation numbers log10[p2(0)]
interpreted later. Orange dashed lines in (c)–(g) separate QQIs and
normal insulators.

Here, c†
i and ci represent the creation and annihilation op-

erators on site i. The nearest-neighbor hoppings Ti j are t̃i j ,
ti j , and −ti j for the different types of hoppings shown in
Fig. 1(a), where t̃i j and ti j distribute randomly and uniformly
in the ranges [(−W/2 + 1)t̃, (W/2 + 1)t̃] and [(−W/2 + 1)t,
(W/2 + 1)t], respectively. Hence W measures the degree of
randomness. Non-Hermiticity is introduced by the on-site po-
tentials with εi = iγ (γ ∈ R) for the b, c, g, and f sublattices,
and εi = 0 otherwise. Below, we set t̃ = 1 as the energy unit.

Topological invariance for clean QQIs. In the clean limit,
the Bloch Hamiltonian of model (1) reads

h(k) = t̃τ1s0σ0 + (iγ /2)τ0s0σ0 − (iγ /2)τ3s3σ0

− [g+(k2)τ1s1 − g−(k2)τ2s2 + h(k2)(τ2s1 + τ1s2)]σ3

+ [g+(k1)τ0s0 + g−(k1)τ3s3]σ1+h(k1)(τ0s0+τ3s3)σ2.

(2)

{τi=0,1,2,3}, {si=0,1,2,3}, and {σi=0,1,2,3} are unit and Pauli matri-
ces on the sublattice spaces. g±(k) = (t/2)(cos[k] ± 1), and
h(k) = (t/2) sin[k]. Under certain conditions, h(k) is a QQI
for both Hermitian (γ = 0) and non-Hermitian (γ �= 0) cases,
where topologically protected states appear at the corners of a
finite-size lattice such as that shown in Fig. 1(b).

Such corner states are featured by a bulk topological
quadrupole moment qxy, which can be calculated using nested
Wilson loops [23]. A Wilson-loop operator in the x (y) di-
rection is defined as Ŵx (Ŵy). In the Hermitian limit, the
matrix elements of the Wilson-loop operator in the y direction

are given by a path integral over the first Brillouin zone (BZ),
denoted by exp,

[Ŵy(k1)]mn = exp

[
i
∮
Ci

Ay
mn(k1, k2)dk2

]
(3)

with Ci being a closed loop of k1 = qi�k1 and k2 = 0 →
�k2 → 2�k2 · · · → (Ly − 1)�k2 → 0 and �k1 = 2π/Lx,
�k2 = 2π/Ly. Ay

mn(k1, k2) = i〈um(k)|∂k2 |un(k)〉 is the Berry
connection, and |un(k)〉 is the occupied Bloch func-
tion [39,40]. By diagonalizing the Wilson-loop operator
under periodic boundary conditions in both directions, one
can define the Wannier Hamiltonian Ĥy as Ŵy = eiĤy .
We diagonalize the Wilson-loop operator Ŵy(k1)|vq

y (k1)〉 =
ei2πv

q
y (k1 )|vq

y (k1)〉 and calculate the Wannier bands as
|wq

y (k)〉 = ∑Nocc
n=1[vq

y (k1)]n|un(k)〉 with [vq
y (k1)]n being the

nth component of the qth eigenket |vq
y (k1)〉. Here, Nocc is

the number of occupied bands. The associated polariza-
tion in the subspace of Wannier bands is given by pq

x =
− 1

2π

∫
BZ Ãq

x (k)d2k, where Ãq
x (k) = i〈wq

y (k)|∂k1 |wq
y (k)〉 is the

Berry connection defined in the Wannier bands. Likewise, one
can define the polarization in the y direction by changing x
into y (k1 into k2).

A nonzero polarization in the x (y) direction implies that
the Wannier Hamiltonian Ĥx (Ĥy) is a first-order topological
insulator if the system is cut parallel to the x (y) direction. Nat-
urally, the topological quadrupole moment is defined as qxy =
2px py. A nonzero qxy guarantees a second-order topological
insulator with corner states, if open boundary conditions are
applied in both directions. Here, px(y) = ∑

q pq
x(y). Figure 1(c)

shows the numerically obtained qxy as a function of t . It is
seen that qxy = 0.5 and 0 for t <

√
2 and t >

√
2. Hence a

topological phase transition from QQIs to normal insulators
happens at t = √

2, where the bulk gap closes. This is further
supported by the energy spectrum plot of model (1) on a
square sample of Lx = Ly = 5; see Fig. 1(e).

Remarkably, non-Hermitian potentials can drive a quan-
tum phase transition from normal insulators to QQIs,
even when the system is topologically trivial in the Her-
mitian limit [41]. We generalize the Wilson-loop oper-
ators to non-Hermitian systems by rendering the Berry
connection as Ax(y)

mn = i〈uL
n (k)|∂k1(k2 )|uR

m(k)〉 with |uR
m(k)〉

and |uL
m(k)〉 being the right and left Bloch kets, re-

spectively, i.e., h(k)|uR
m(k)〉 = εm(k)|uR

m(k)〉, h†(k)|uL
m(k)〉 =

ε∗
m(k)|uL

m(k)〉, and 〈uL
m(k)|uR

n (k)〉 = δmn [42]. The numerically
calculated qxy as a function of γ for t = 3 is plotted in
Fig. 1(d). Similar to the Hermitian cases, QQIs appear for
γ > 6, which is also consistent with calculations of the com-
plex energy spectrum of H ; see Figs. 1(f) and 1(g).

Hermitian systems. Having illustrated the existence of
QQIs in the clean limit, we now investigate the disorder-
induced quantum phase transitions. Consider Hermitian QQIs
first. Model (1) preserves both time-reversal symmetry (TRS)
and particle-hole symmetry (PHS) with symmetry operators
UT = τ0s0σ0 ⊗ I and UP = τ3s0σ3 ⊗ I , respectively. (Here, I
is the unit matrix acting on the coordinate space.) Therefore
model (1) of γ = 0 belongs to class BDI according to the
Altland-Zirnbauer classification [43].

For t <
√

2 where qxy = 0.5, we first compute the par-
ticipation number p2(E ) = 〈∑i |ψi(E )|4〉−1 for a state with
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FIG. 2. (a) p2(0) as a function of W for the zero-energy state
for L = 15 (black circles), 32 (red squares), 63 (blue inverted trian-
gles), 101 (cyan diamonds), 159 (orange stars), and 200 (magenta
hexagrams). Inset: wave-function dimension D as a function of W .
(b) ln[ηE=0] as a function of W for L = 15 (black circles), 32
(red squares), 63 (blue inverted triangles), 101 (cyan diamonds),
159 (orange stars), 200 (magenta hexagrams), and 241 (dark blue
upward pointing triangles). Inset: enlargement of (b) near Wc. The
arrow locates the Wc obtained by the finite-size scaling analyses.
(c) ln[ηE=0] as a function of various disorder strengths W . To have
a better view, we shift each of the curves by −0.08 starting from
W = 0.11. (d) Spatial distribution |ψi|2 for W = 0.05 in a typical
realization. |ψi|2 for the four corners are marked. (e) Same as (d),
but for W = 0.35. (f) Scaling function ln[ηE=0] = f (L/ξ ) with ξ ∝
exp[α/

√|W − Wc|]. Inset: same as (f), but ξ ∝ |W − Wc|−ν . (g) Av-
erage DOS ρ(E ) (arbitrary units) for W = 0.02, 0.1, 0.2, 0.25, 0.3.
Those above (below) Wc are dashed (solid) curves.

energy E and amplitude ψi(E ), which measures how many
sites the state effectively occupies [44–46]. It scales with the
system size Lx = Ly = L as p2 ∝ LD with D = d (embedded
spatial dimensionality), D < d , and D = 0 for extended, crit-
ical, and localized states, respectively [47].

Figure 2(a) exemplifies p2(0) as a function of W for t =
0.5 and L ranging from 15 to 200. It is seen that p2(0) <

3 until L = 200. The dimension D(W ), obtained by a log-
log plot of L and p2(0), is almost 0 [D < 0.1; see inset of
Fig. 2(a)]. These features suggest that the zero-energy states
are localized [48]. This is the main difference between our
model and that of Ref. [26], where delocalized states appear
near topological phase transition points, even though both
belong to class BDI. Indeed, our numerical calculations are
consistent with the one-parameter scaling theory of localiza-
tion, which predicts that extended states are prohibited in
the presence of TRS and spin-rotational symmetry (U 2

T =
I) [49]. We further substantiate that all states of our model
are localized by analyzing the dimensionless conductance ob-
tained using the Landauer formalism [50] (see Supplemental
Material Sec. S1 [51]).

As p2(0) is not a good scaling variable to identify the
quantum phase transition in this system, we use the corner
density ηE=0(W, L) to distinguish corner states from con-
ventional localized states. ηE=0(W, L) = ∑

i∈corners |ψi(0)|2,
where the summation is over the four corner sites of Fig. 1(b)
for given disorder W and size L. Since ηE=0(W, L) describes
the wave-function distribution of the zero-energy states on the
corners, it should approach a finite nonzero constant for corner
states and is zero for topologically trivial (both localized and
extended) states. These features can be used to see whether a
state with E = 0 is a corner state or not [27,28].

We calculate the ensemble-average ln[ηE=0(W, L)] for var-
ious W and L ranging from 15 to 241, as shown in Fig. 2(b)
and its inset (enlargement near the critical disorder Wc).
Clearly, there exists a critical disorder Wc separating two
different regimes. (i) For W < Wc, ln[ηE=0] � −0.15, and
∂ ln[ηE=0]/∂L = 0, indicating that the zero-energy states are
corner states. (ii) For W > Wc, ln[ηE=0] decreases with L.
This feature, together with the p2(0) results in Fig. 2(a),
suggests that the zero-energy states are conventional localized
states (at corners, edges, or bulk).

Such a transition from the QQIs to the AIs can also be
seen by Fig. 2(c), where we plot ln[ηE=0] as a function of
L for various W . We can see that below Wc the corner densi-
ties are size independent, while above Wc they decrease with
size. Therefore Fig. 2(c) is an additional scaling argument
to support the transition. Besides, the wave-function distribu-
tions for two typical disorders, W = 0.05 and W = 0.35, are
plotted in Figs. 2(d) and 2(e), which are consistent with our
analysis above.

We expect that ln[ηE=0] satisfies the finite-size scaling
hypothesis [18]

ln[ηE=0(W, L)] = f (L/ξ ) + CL−y, (4)

where ξ (W ) is the correlation length, f (x) is a scaling func-
tion, C is a constant, and y > 0 is the exponent for the
irrelevant scaling variable. On the AI side, the correlation
lengths can be treated as the localization lengths of localized
states, like those for ALTs [2]. Differently, on the QQI side,
the correlation lengths are infinite, i.e., ξ = ∞, such that
the scaling function becomes ln[ηE=0] = f (0) for large sizes.
This indicates that ln[ηE=0] is size independent for W < Wc,
consistent with the numerical data shown in Fig. 2(b). There-
fore we cannot properly define ξ on the QQI side.

To substantiate the single-parameter scaling hypothesis, we
show in Fig. 2(f) and its inset that all curves of ln[ηE=0] on the
AI side collapse into a single smooth curve f (L/ξ ) if proper
ξ is chosen and the effect of irrelevant scaling variables is re-
moved [20]. If ξ is assumed to follow a power-law divergence
like conventional ALTs [3], ξ ∝ |W − Wc|−ν , the critical ex-
ponent ν = 5.9 ± 0.6 is obtained. On the other hand, we can
assume that such transitions are BKT-like with the correlation
length ξ exponentially diverging as ξ ∝ exp[α/

√|W − Wc|]
and find a scaling function with α = 4.5 ± 0.5 and Wc =
0.17 ± 0.01. This assumption can be supported by the ex-
istence of the disorder-driven BKT-like transitions in other
systems [16–18].

To judge whether the transition is an ALT or is BKT-
like, we calculate the goodness of fit through the χ2 fittings
for both exponential divergence ξ ∝ exp[α/

√|W − Wc|] and
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FIG. 3. Critical exponents of ν (power-law divergent assumption
of ξ ) and α (exponential divergent assumption of ξ ) as a func-
tion of Lmax. The critical exponents are obtained using data for
L = 15, 32, . . . , Lmax with various Lmax.

power-law divergence ξ ∝ |W − Wc|−ν . The former is Q =
0.3, far better than that of the power-law fit Q = 4 × 10−4,
thereby supporting our claim pertaining to a BKT-like tran-
sition. In addition, we calculate the correlation lengths by
χ2 fitting of different system sizes. If the correlation lengths
diverge in a power law like ALTs, the critical exponent ν

should be size independent, as shown in Ref. [11]. However,
we find that the obtained ν increases with size (see black curve
in Fig. 3), such that our data do not support the power-law
divergence assumption. On the other hand, if we assume an
exponential divergence of ξ , the obtained α is size indepen-
dent; see Fig. 3.

The origin of the quantum phase transition in Fig. 2(b) is
revealed by the average density of states (DOS) plot, defined
as ρ(E ) = 〈∑q δ(E − Eq)〉/L2, as shown in Fig. 2(g). ρ(E ) is
obtained from the kernel polynomial method [52]. The DOS
is symmetric about E = 0 due to PHS. For W < Wc, we see

a gap in the bulk states near E = 0, which becomes smaller
with the increase in W and disappears when W > Wc. The
in-gap peak that stands for corner states also disappears when
W > Wc. Hence this topologically quantum phase transition is
a gap-closing transition, similar to those in three-dimensional
second-order topological insulators [27] and Weyl semimet-
als [53].

Non-Hermitian systems. BKT-like transitions also appear
in non-Hermitian QQIs. For γ = 10 and t = 3, model (1) is
a non-Hermitian QQI with corner states at Re[ε] = 0; see
Fig. 1(f). Now, we generalize the participation numbers and
the corner density by replacing ψi(E = 0) by the right eigen-
function ψR

i (Re[ε] = 0).
Figure 4(a) and its inset display p2(0) and D as a func-

tion of W for γ = 10 and t = 3, from which one can see
that all states are also localized. Model (1) with γ �= 0 pre-
serves TRS†, PHS†, and chiral symmetry with symmetry
operators UP+ = τ0s0σ0 ⊗ I , UT− = τ0s0σ3 ⊗ I , and UC =
UP+UT− and belongs to class BDI† of the non-Hermitian
Altland-Zirnbauer classification [54]. A theory proposed by
Luo et al. predicts an equivalence of criticality between class
BDI† and class AI in Hermitian systems [55], where all states
are localized in 2D. Our calculations are consistent with this.

Although there is no delocalization-localization transition,
a localization-localization transition from QQIs to AIs can be
seen from the plot of ln[ηRe[ε]=0], where ∂ηRe[ε]=0/∂L = 0 for
W � Wc = 0.08 ± 0.01 and ∂ηRe[ε]=0/∂L < 0 for W > Wc.
One can choose a proper correlation length ξ (W ) such that
ln[ηRe[ε]=0] on the AI side merges into a single scaling func-
tion f (x). The correlation length ξ diverges either in a power
law ξ ∝ |W − Wc|−ν with ν = 7.61 ± 0.02 or an exponen-
tial decay ξ ∝ exp[α/

√|W − Wc|] with α = 4.56 ± 0.04; see
Fig. 4(c). Similar to the Hermitian cases, the goodness of fit
Q for the fitting of ξ ∝ exp[α/

√|W − Wc|] is 0.2, which is

FIG. 4. (a) p2(0) as a function of W for the Re[ε] = 0 state for L = 15 (black circles), 32 (red squares), 63 (blue inverted triangles), 101
(cyan diamonds), 159 (orange stars), and 200 (magenta hexagrams). Inset: D(W ) for Re[ε] = 0. (b) ln[ηRe[ε]=0] as a function of W for different
L [same sizes as in (a)]. (c) Scaling function ln[ηRe[ε]=0] = f (L/ξ ) with ξ ∝ exp[α/

√|W − Wc|]. Inset: same as (c), but for ξ ∝ |W − Wc|−ν .
(d) ln[ηE=0] data as a function of W from circuit simulation for L = 4, 8, 12. The system is a QQI when W = 0.
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much larger than Q = 10−4 for the fitting of ξ ∝ |W − Wc|−ν .
Since the goodness of fit for the power-law divergence is quite
small and that for the exponential divergence is acceptable, we
argue that the transition in Fig. 4(b) is BKT-like.

Experimental relevance. We design an LC circuit which is
equivalent to model (1) in the Hermitian limit at resonance fre-
quency (see Supplemental Material Sec. S2 [51]). The corner
density is measurable: ηE=0(W, L) = ∑

i∈corners |Zi|/Z with Zi

and Z being the ground impedance of the four corner sites and
the total impedance, respectively. We use LTSPICE [56], a well-
established electric circuit simulator, to calculate ln[ηE=0]
as a function of W for L = 4, 8, 12; see Fig. 4(d), which
exhibits similar behaviors to those shown in Fig. 2(b) and
serves as strong evidence for the localization-localization
transitions.

Summary. In summary, we have shown that 2D QQIs, both
Hermitian and non-Hermitian, can undergo disorder-driven
localization-localization transitions, whose criticality is BKT-
like. The BKT-like localization-localization transitions of
corner states can also be seen in second-order topological
insulators characterized by Z3 Berry phases [25] (see Sup-
plemental Material Sec. S3 [51]). Although our claim of
BKT-like localization-localization transitions agrees with the
field-theoretical approach on BDI class (same as our Hermi-
tian QQIs) [57], whether the BKT-like transitions can happen
for class BDI† (non-Hermitian QQIs) remains unclear.
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