
PHYSICAL REVIEW B 109, L020201 (2024)
Letter Editors’ Suggestion

Non-Hermitian Hamiltonians violate the eigenstate thermalization hypothesis

Giorgio Cipolloni 1,* and Jonah Kudler-Flam 1,2,†

1Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA
2School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540, USA

(Received 3 April 2023; revised 18 November 2023; accepted 15 December 2023; published 3 January 2024)

The eigenstate thermalization hypothesis (ETH) represents a cornerstone in the theoretical understanding of
the emergence of thermal behavior in closed quantum systems. The ETH asserts that expectation values of
simple observables in energy eigenstates are accurately described by smooth functions of the thermodynamic
parameters, with fluctuations and off-diagonal matrix elements exponentially suppressed in the entropy. We
investigate to what extent the ETH holds in non-Hermitian many-body systems and come to the surprising
conclusion that the fluctuations between eigenstates are of equal order to the average, indicating no eigenstate
thermalization. We support this conclusion with mathematically rigorous results in the Ginibre ensemble and
numerical results in other random matrix ensembles, the non-Hermitian Sachdev-Ye-Kitaev model, and a local
non-Hermitian spin chain, indicating universality in a broad class of chaotic non-Hermitian quantum systems.
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Introduction. Thermalization in quantum systems de-
scribes the dynamical process of out-of-equilibrium states set-
tling down to quasiequilibrium states that are well described
by quantum statistical mechanics and thermodynamics. Un-
derstanding which systems thermalize and how they do so is
a foundational question in quantum physics that has received
tremendous attention in the past decades [1].

In recent years, the field of non-Hermitian quantum physics
has emerged as a generalization of the standard paradigm of
Hermitian physics to describe systems with dissipation [2]. It
is natural to ask if and how thermalization manifests in these
systems. This direction goes under the name of dissipative
quantum chaos and has recently enjoyed several interesting
results [3–24].

The eigenstate thermalization hypothesis (ETH) is the
archetypal description or definition of thermality in closed
quantum systems. The ETH asserts that for chaotic quantum
systems, the matrix elements of simple [25] operators are
smoothly varying on the diagonal in the energy eigenbasis
{|Ei〉} with entropically suppressed fluctuations

〈Ei|O |Ej〉 = fO(E )δi j + e−S(E )/2ωO(E ,�E )Ri j . (1)

Here, fO and ωO are smooth O(1) functions, E = Ei+Ej

2 ,
�E = |Ei − Ej |, and Ri j are pseudorandom numbers with
unit variance. This describes thermalization because it implies
that expectation values of simple operators can be accurately
approximated using only the thermodynamic parameters such
as energy. This statement applies to late-time states following
time evolution and the energy eigenstates themselves.

In this Letter, we ask if there is an analog of (1) for a
large class of non-Hermitian Hamiltonians that characterizes
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dissipative quantum chaos. Certain features of Hermitian
quantum chaos, such as level repulsion of eigenvalues [26],
remain when relaxing Hermiticity [27], while others, such
as volume-law entanglement [28], do not [12]. Answering
whether non-Hermitian Hamiltonians obey ETH is an open
question, requiring different techniques from the Hermitian
case. Non-Hermitian operators generally have distinct left and
right eigenvectors, {〈Li|} and {|Ri〉}, that form a biorthonormal
basis

〈Li| Rj〉 = δi j . (2)

Surprisingly, we observe that the eigenstates of the non-
Hermitian version of the Sachdev-Ye-Kitaev (SYK) model
[21–23], the canonical model of many-body quantum chaos
[29–31], do not satisfy the ETH; the fluctuations, both on and
off the diagonal, are just as large as the mean for expectation
values of simple operators. The stark contrast between matrix
elements for the Hermitian and non-Hermitian SYK (nSYK)
models is shown in Fig. 1. In the Supplemental Material
[32] we also investigate ETH in a local non-Hermitian spin
chain observing a similar behavior. The Nψ Majorana fermion
Hamiltonians are of the form

HnSYK =
Nψ∑

i1<i2<i3<i4

(Ji1i2i3i4 + iMi1i2i3i4 )ψi1ψi2ψi3ψi4 , (3)

where Ji1i2...iq and Mi1i2...iq are independent and identically
distributed (i.i.d.) real Gaussian random variables with zero
mean, variance 2

N3
ψ

, and {ψi, ψ j} = 2δi j . Mi1i2...iq = 0 in the

Hermitian case.
We will explain this striking phenomenon analytically by

modeling non-Hermitian quantum chaotic Hamiltonians by
random matrices. The connection between chaotic quantum
systems and random matrix theory for both Hermitian and
non-Hermitian systems is well known [27,33,34] and provides
a simple way to motivate (1). Indeed, it is widely believed
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FIG. 1. The absolute value of the matrix elements of the single-
site number operators, n̂i j := | 〈Li| n̂ |Rj〉 |, are shown for a single
realization of the Hermitian SYK model (left) and non-Hermitian
SYK model (right) with Nψ = 14. The x and y axes label the left
and right eigenvectors, respectively. While n̂i j is almost exclusively
supported on the diagonal in the Hermitian case, there are large
fluctuations across the entire matrix in the non-Hermitian case.

that nonintegrable quantum systems exhibit the same spec-
tral statistics as Hermitian random matrices. In the context
of random Hamiltonians, “simple” operators are determin-
istic operators, independently chosen from the Hamiltonian.
For N×N Wigner matrices, (1) has been proven rigorously
[35,36].

In order to model typical chaotic non-Hermitian Hamil-
tonians, we study the eigenvectors of matrices drawn from
the Ginibre ensemble defined by matrices with i.i.d. complex
Gaussian matrix elements [37]. We compute the behavior
of the matrix elements of deterministic operators, precisely
characterizing the large fluctuations. These phenomena, not
seen in the Hermitian case, include the aforementioned large
fluctuations as well as correlations between matrix elements
[38]. Moreover, we demonstrate that our rigorous results for
the Ginibre ensemble are universal, with extended regimes
of validity in highly non-Gaussian ensembles such as the
complex Bernoulli and uniform ensembles.

Structure of Ginibre eigenvectors. Let H be an N×N matrix
drawn from the complex Ginibre ensemble. We normalize
the entries of H so that the limiting eigenvalue distribution
is given by the uniform distribution on the unit disk. We
denote its (nonordered) eigenvalues by λ1, . . . , λN and the
corresponding biorthonormal left and right eigenvectors by
〈Li| , |Ri〉. The distribution of H is invariant under unitary
conjugation. Following Refs. [39–41], we write H = UTU †,
with U independent of T [42] and uniformly distributed on
the unitary group, and

T :=

⎛
⎜⎜⎝

λ1 T12 . . . T1N

0 λ2 . . . T2N
...

. . .
. . .

...

0 . . . 0 λN

⎞
⎟⎟⎠, (4)

where Ti j are uncorrelated Gaussian random variables. The
first two eigenvectors of T are of the form

|R̃1〉 = (1, 0 . . . , 0)T , |R̃2〉 = (a, 1, 0 . . . , 0)T ,

|̃L1〉 = (b1, . . . , bN )T , |̃L2〉 = (d1, . . . , dN )T , (5)

with b1 = 1, d1 = 0, d2 = 1, a = −b∗
2. Additionally, using the

relation H = UTU †, we can express the left/right eigenvec-
tors of H as

|Li〉 = (U †)T |̃Li〉 , |Ri〉 = U |R̃i〉 . (6)

Eigenvector overlaps. A fundamental quantity in the analy-
sis of the spectrum of H are the so-called eigenvector overlaps

Oi j := 〈Rj | Ri〉 〈Li| Lj〉. (7)

In contrast to the eigenvectors of Hermitian Hamiltonians,
where 〈Ri| Rj〉 = 〈Li| Lj〉 = δi j , the eigenvector overlaps can
be quite large and highly correlated. We point out that the
study of the quantity (7) has attracted significant interest in
recent years [39–41,43–47].

From now on, even if not stated explicitly, the left/right
eigenvectors |Li〉 , |Ri〉 depend on U and T through the relation
(6). We will only need to consider overlaps involving one or
two eigenvectors, which will be denoted by O11, O12, O22, i.e.,
we drop the i, j dependence. These overlaps can be expressed
in terms of the quantities appearing in (5) as

O11 =
N∑

i=1

|bi|2, O12 = −b∗
2

N∑
i=2

bid
∗
i ,

O22 = (1 + |b2|2)
N∑

i=2

|di|2. (8)

Critical to our analysis are Theorems 1.1 and 1.4 of Ref. [43],
where the overlaps are evaluated at large N (see also Ref. [44]
for the diagonal overlaps). The full distribution of the diagonal
overlaps converges to

O11 → N (1 − |λ1|2)

γ2
, (9)

with γ2 being a gamma random variable with density xe−x.
The other overlaps that we will make use of are only known
in expectation and in second moment (for two typical eigen-
values λ1, λ2 in the bulk of the spectrum),

EU,T O12 → − 1 − λ1λ2
∗

N |λ1 − λ2|4 , (10)

EU,T |O12|2 → (1 − |λ1|2)(1 − |λ2|2)

|λ1 − λ2|4 , (11)

EU,T O11O22 → (1 − |λ1|2)(1 − |λ2|2)

|λ1 − λ2|4

× 1 + N2|λ1 − λ2|4 − e−N |λ1−λ2|2

1 − e−N |λ1−λ2|2 . (12)

The expectations above are with respect to the whole Ginibre
matrix H . Recall that the typical distance between nearby
eigenvalues is ∼N−1/2, when the last line of (12) is actually
independent of N . In the regime, |λ1 − λ2| � N−1/2 (12) sim-
plifies to EO11O22 → EO11EO22.

To study the ETH we consider 〈Li| A |Rj〉, and their corre-
lations. In particular, we will compute the expectation and the
variance for these quantities using Weingarten calculus, which
provides closed form expressions for integrals of the unitary
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group with respect to the Haar measure [48]:∫
[dU ]Ui1, j1 · · ·Uin, jnU

∗
i′1, j′1

· · ·U ∗
i′n, j′n

=
∑

σ,τ∈Sn

δi1i′σ (1)
· · · δini′σ (n)

δ j1 j′τ (1)
· · · δ jn j′τ (n)

Wg(N, σ τ−1). (13)

Here, Wg are the so-called Weingarten functions, whose ex-
plicit form may be written in terms of the characters of
the symmetric group. For our purposes, we will only need
up to the fourth moment of the unitary group. We find the
Mathematica package RTNI [49] to be helpful in explicit eval-
uations of the 576 terms in the sum when evaluating the fourth
moment in (19) and (20). We will only present the leading
order (in N) results.

Importantly, the expectations we compute are only with
respect to the U ’s. The independent random variables in the T
matrix are not averaged over, leaving a resulting distribution
that aids in conjectures.

Diagonal ETH. We first consider the expectation values
of operators, i.e., the diagonal portion of ETH. The Haar
integral is straightforward, giving the normalized trace of the
observable [32]

EU 〈Li| A |Ri〉 = Tr(A)

N
. (14)

To estimate the average size, we instead need the square

EU |〈Li|A|Ri〉|2

= 1

N2
|Tr(A)|2 + O11

N2
[Tr(A†A) − N−1|Tr(A)|2]. (15)

From (9) we see that the second line is the same order as
the first, so the fluctuations in the expectation values are not
suppressed, strongly violating (1).

We may expect that at large N (for a motivation see the
Universality section below)

N

(1 − |λi|2)Tr(A†A)
|〈Li|A|Ri〉 − N−1 Tr(A)|2 → |ξ |2

γ2
, (16)

in distribution, where ξ is a complex Gaussian random vari-
able independent of γ2. The probability density function of
(16) is

p(x) = 2

(1 + x)3
. (17)

Due to the γ2 in the denominator of (16), there is a heavy tail
in this distribution, a characteristic of non-Hermitian systems,
also seen in the entanglement spectrum of typical states [12],
which is in stark contrast with the Hermitian case. We verify
this expectation numerically in Fig. 2.

Off-diagonal ETH. Off of the diagonal, the ETH im-
plies that the matrix elements are exponentially suppressed
in the entropy. Because there is a scaling ambiguity
in (2) taking |Ri〉 → ci |Ri〉 and 〈Li| → c−1

i 〈Li|, a well-
defined (scale-independent) notion of the off-diagonal ele-
ments is 〈Li| A |Rj〉 〈Lj | A |Ri〉. Averaging over unitaries, we

FIG. 2. The absolute value squared of the matrix elements
weighted as in the left-hand side of (16) of a deterministic matrix.
We take 1000 realizations for N = 200. The blue line is (17). The
inset is the same data but with logarithmic scaling of the y axis. We
have taken A to be independently Ginibre to speed up convergence.
The result is identical for all choices of A.

find (for i 
= j)

EU 〈Li| A |Rj〉 〈Lj | A |Ri〉

= 1

N2
[Tr(A2) − N−1Tr(A)2]. (18)

There is no O12 dependence because we have not taken the
complex conjugate of the second term. While the above ex-
pression is suppressed in N , the average size is large which
can be seen from the absolute value squared

EU |〈Li|A|Rj〉〈Lj |A|Ri〉|2

= O11O22Tr[A†A]2 + |O12|2Tr[A†A]2

N4
, (19)

where the Oi j’s are random variables defined in (7). From (9)
and (12), we see that the expectation of the above equation is
O(1), so there is no entropic suppression off the diagonal,
our second exhibition of a strong violation of the ETH. The
second term is only the same order as the first when the
eigenvalues are very close.

Correlation for nearby energies. The final feature in
non-Hermitian Hamiltonians that we explore is the large cor-
relation between nearby eigenvalues. This means that even
though there are large fluctuations in the diagonal elements
[see (15)], these fluctuations are correlated. For simplicity, we
present the answer for traceless observables

EU |〈Li|A|Ri〉〈Lj |A|Rj〉|2

− EU |〈Li|A|Ri〉|2EU |〈Lj |A|Rj〉|2 = |O12|2 Tr[A†A]2

N4
.

(20)

As seen from (11), the correlation is large when the eigenval-
ues are very close (λi − λ j ∼ N−1/2) but quickly decays as the
eigenvalues are separated.

Universality. We expect that the results that we have de-
rived for Ginibre matrices are universal. In particular, if we
consider a matrix H with i.i.d. entries but not necessarily with
Gaussian distribution (or even with some specific correlation
structure), then the same convergence results should hold.
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To see this we rely on the Hermitization trick from
Ref. [50] and used in Ref. [12]. The following discussion is
similar to the one presented in Ref. [12], but we repeat it here
for the reader’s convenience. More precisely, we define the
Hermitian matrix

Hz :=
(

0 H − z
(H − z)† 0

)
, (21)

with z ∈ C. Observing that

λ ∈ Spec(H ) ⇔ 0 ∈ Spec(Hλ), (22)

one can use Hz to study spectral properties of H itself when
z is very close to one of its eigenvalues. We point out that Hz

satisfies a chiral symmetry which induces a symmetric spec-
trum about zero. As a consequence, the eigenvectors |wz

±i〉
are of the form |wz

±i〉 = (|uz
i 〉 ,± |vz

i 〉), with |uz
i 〉 , |vz

i 〉 ∈ CN .
Here, |uz

i 〉 , |vz
i 〉 denote the left and right singular vectors of

H − z, i.e.,

(H − z)
∣∣vz

i

〉 = Ez
i

∣∣uz
i

〉
, (H − z)†

∣∣uz
i

〉 = Ez
i

∣∣vz
i

〉
, (23)

with Ez
i � 0 the corresponding singular values. Since the sin-

gular values coincide with the eigenvalues of Hz (in absolute
value), these two representations are equivalent. We choose to
present both since in the following discussion it may be more
convenient to refer to one or the other.

Using the relation (23) and the definition of left and right
eigenvectors 〈Li| , |Ri〉, we write

〈Li| A |Ri〉 = 〈u| A |v〉
〈u| v〉 , (24)

Here, |u〉 = |uλi
1 〉, |v〉 = |vλi

1 〉. The key feature of the equality
(24) is that we can express the non-Hermitian quantity in the
left-hand side (LHS) in terms of Hermitian singular vectors,
which are much better understood. For fixed z, the distribution
of |uz

i 〉 , |vz
i 〉 can be understood using the Dyson Brownian

motion (DBM) for eigenvectors introduced in Ref. [51] (see
also Refs. [36,52–57] for a detailed explanation of the DBM
analysis in the mathematics literature). More precisely, in
order to apply DBM, for fixed z we write

〈uz
1| A |vz

1〉 = 〈wz
1|A |wz

1〉 , A :=
(

0 A
0 0

)
, (25)

and notice that (25) consists of a quadratic form with
Hermitian eigenvectors |wz

1〉 for which the Hermitian DBM
techniques from Refs. [36,51–57] can apply. We refer
the interested reader to Ref. [12] and the Supplemental
Material [32] for a gentle introduction to the DBM anal-
ysis for Hermitian eigenvectors. In particular, as a con-
sequence of the representation (25) we can conclude that
N−2(Tr[A†A])−1| 〈uz

1| A |vz
1〉 | is (the absolute value of) a stan-

dard Gaussian [see the argument above in Ref. [12], Eq. (13)].
This gives an insight to motivate the convergence in (16),
i.e., to conclude that the numerator of (24) converges to a
Gaussian; the fact that the square of the denominator in (24)
converges to a γ2 random variable follows similarly. However,
here there is a caveat; the equality in (24) holds only for
z = λi in (23), i.e., when z is not fixed independently but
rather equal to an eigenvalue. Even though computing the
distribution of (25) for fixed z is not enough to compute the

FIG. 3. The absolute value squared of the matrix elements
weighted as in (16) are shown for the complex Bernoulli and ran-
dom complex uniform matrices. The blue line is (17), motivating
universality. We take 1000 realizations for N = 200 and a fixed
deterministic matrix A.

distribution of the LHS of (24), we expect that this gives
the correct answer. Indeed, we also confirm this universality
phenomenon numerically in Fig. 3 where we consider two
non-Hermitian random matrix ensembles obeying the circular
law (eigenvalues uniformly distributed in unit circle). These
are the complex Bernoulli ensemble (entries are independent
± real and imaginary parts) and random complex uniform
ensemble (entries are uniformly drawn from the complex
unit circle).

Returning to the non-Hermitian SYK model, we note that
all of the qualitative phenomena observed in Fig. 1 have now
been explained from the Ginibre ensemble. However, we do
not expect the equations for the Ginibre ensemble to quanti-
tatively agree with the SYK model because the eigenvalues
of the SYK model do not obey the circular law. We do still
expect that, after performing the proper z rescaling the LHS
of (16), the expectation values of operators are distributed
as in (17). This is analogous to the Hermitian case where
analytical results in the Gaussian ensembles only qualitatively
agree with chaotic Hamiltonians because the eigenvalues of
generic Hamiltonians do not obey the semicircle law. A cer-
tain unfolding is necessary.

Discussion. In this Letter, we have shown that the
eigenstate thermalization hypothesis is strongly violated in
non-Hermitian many-body systems. While initially observed
in the SYK model, we gained an analytical understanding
of this general phenomenon by modeling quantum chaotic
non-Hermitian Hamiltonians using random matrix theory. We
rigorously proved various features of the matrix elements of
simple operators. These include (1) large fluctuations along
the diagonal in the energy eigenbasis, of the same order as the
mean, (2) fluctuations off the diagonal that were just as large
as those on the diagonal, and (3) strong correlations between
matrix elements with nearby energies. None of these phenom-
ena are seen in quantum chaotic Hermitian Hamiltonians.

Non-Hermitian Hamiltonians possess strikingly different
features from their Hermitian counterparts. The developing
field of non-Hermitian random matrix theory presents a pow-
erful tool set, which has only just begun to be applied, for
uncovering universal phenomena in the emerging field of
dissipative quantum chaos. We hope to make connections to
dissipative dynamics in the near future.
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[56] G. Cipolloni, L. Erdős, and D. Schröder, Rank-uniform local
law for Wigner matrices, arXiv:2203.01861.

[57] P. Bourgade, H.-T. Yau, and J. Yin, Random band matrices
in the delocalized phase, I: Quantum unique ergodicity and
universality, arXiv:1807.01559.

[58] L. Foini and J. Kurchan, Eigenstate thermalization hypothesis
and out of time order correlators, Phys. Rev. E 99, 042139
(2019).

[59] S. Pappalardi, L. Foini, and J. Kurchan, Eigenstate thermal-
ization hypothesis and free probability, Phys. Rev. Lett. 129,
170603 (2022).

L020201-6

https://doi.org/10.1063/1.1704292
https://doi.org/10.1103/PhysRevLett.81.3367
https://doi.org/10.1063/1.533302
https://doi.org/10.1002/andp.199851005-610
https://doi.org/10.1007/s00440-019-00953-x
https://doi.org/10.1007/s00220-018-3163-3
https://doi.org/10.1142/S201032632050015X
https://arxiv.org/abs/1805.08993
https://doi.org/10.1063/1.4904451
https://doi.org/10.1155/S107379280320917X
https://doi.org/10.1088/1751-8121/ab434b
https://doi.org/10.1016/S0550-3213(97)00502-6
https://doi.org/10.1007/s00220-016-2627-6
https://arxiv.org/abs/2005.08425
https://doi.org/10.1007/s00220-022-04314-z
https://arxiv.org/abs/2212.10694
https://doi.org/10.1214/21-AOP1552
https://arxiv.org/abs/2203.01861
https://arxiv.org/abs/1807.01559
https://doi.org/10.1103/PhysRevE.99.042139
https://doi.org/10.1103/PhysRevLett.129.170603

