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Two recent electronic transport experiments from Columbia University and Harvard University have reported
record high mobility and low channel densities in flux-grown transition metal dichalcogenide (TMD) WSe2

monolayers [J. Pack et al., arXiv:2310.19782 [cond-mat.mes-hall] (2023); A. Y. Joe et al., Phys. Rev. Lett.
132, 056303 (2024)]. A two-dimensional (2D) metal-insulator transition (MIT) is demonstrated in the Columbia
sample at low densities, a regime where the formation of a Wigner crystal (WC) is theoretically anticipated in
the absence of disorder. We employ the finite-temperature Boltzmann theory to understand the low-temperature
transport properties of monolayer TMDs, taking into account realistic disorder scattering. We analyze the
experimental results, focusing on the 2D MIT behavior and the influence of temperature and density on mobility
and resistivity in the metallic phase. We provide a discussion of the nontrivial carrier density dependence of our
transport results. Our analysis elucidates the linear temperature-dependent resistivity observed in the metallic
phase, attributing it to Friedel oscillations associated with screened charged impurities. Furthermore, we explore
whether Coulomb disorder could lead to the MIT through either a quantum Anderson localization transition
or a classical percolation transition in the long-range disorder potential landscape. Our theoretical estimates
of the disorder-induced MIT critical densities, although smaller, are within a factor of approximately 2 of the
experimental critical density. We examine the exceptionally high melting temperature ∼10 K of WCs observed
experimentally in the MoSe2 systems at low density, which is strongly enhanced by the disorder-induced
localization effect, since the pristine melting temperature is an order of magnitude smaller. This suggests that
the observed 2D low-density MIT behavior is likely a result of the complex interplay between disorder effects
and interaction-driven WC physics, offering a comprehensive understanding of the low-temperature transport
phenomena in TMD monolayers.

DOI: 10.1103/PhysRevB.109.245431

I. INTRODUCTION

The atomically thin two-dimensional (2D) transition metal
dichalcogenides (TMDs) hold great promise for future spin-
tronics, valleytronics, and optoelectronics [1–4] due to their
strong spin-valley coupling [5,6], for which high-mobility
samples with long spin and valley lifetimes are essential.
More crucially for our purpose, they are also strongly in-
teracting continuum electron systems with large effective
mass and relatively low lattice dielectric constant enhanc-
ing the inter-particle Coulomb coupling. A wide range of
interaction-induced phenomena have been observed in TMD
monolayers and moiré structures, including Wigner crys-
tals (WCs) [7–9], fractional quantum Hall states [10,11],
integer and fractional Chern insulators (quantization of the
anomalous Hall effect due to band topology, without any
Landau quantization imposed by an external magnetic field)
[12–18], the Kondo lattice [19], and exciton insulators
[20–22]. Despite these advances, the presence of uninten-
tional Coulomb disorder in TMDs arising from random
quenched charged impurities poses significant challenges, in-
fluencing the transport properties and the manifestation of
many interaction-driven phenomena [23–26]. Understanding
and controlling disorder is crucial for enhancing the purity of
TMD samples, thereby unlocking their full potential for both

technological applications and fundamental research. Recent
advances in synthesis techniques and device fabrication have
led to cleaner TMD samples, showcasing record-high mobili-
ties and lower defect densities, which are essential for probing
new quantum phenomena [11,27,28]. For example, scanning
tunneling microscopy (STM) studies have shown that a re-
cently developed flux growth technique reduces the density
of charge-neutral point defects in WSe2 from 1013 cm−2 to
below 1011 cm−2 and reduces the density of charged impuri-
ties near the WSe2 from 1011 cm−2 to around 109 cm−2 [27].
In this context, recent experiments from Columbia [11] and
Harvard University [28] have demonstrated unprecedented
mobilities in flux-grown WSe2 monolayers, alongside the
ability to achieve low channel carrier densities. The Columbia
sample shows a record high mobility ∼8 × 104 cm2/Vs at
a temperature T = 1.5 K, and the Harvard sample shows a
comparable mobility of around 2.5 × 104 cm2/Vs at T =
1.7 K. By contrast, typical mobilities in older TMD sam-
ples are ∼103 cm2/Vs. Using transparent Ohmic contacts,
it is possible to reach a channel carrier density as low as
1.5 × 1011 cm−2 [11], which is an order of magnitude lower
than those reported in past generations of devices. These
advances have facilitated the putative observation of a 2D
metal-insulator transition (MIT) in a density regime near rs ∼
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30 [11] where the WC formation is theoretically expected in
the absence of disorder [29]. Here, the dimensionless inter-

action parameter rs = 1/

√
πna2

B represents the ratio of the
Coulomb interaction to the kinetic energy, where n is the 2D
carrier density and aB = κ h̄2/me2 is the effective Bohr radius.
(In the rest of this paper, we interchangeably refer to n as nh

and ne for hole and electron charge carriers, respectively.) The
magneto-optical measurement on monolayer MoSe2 reported
by the Harvard group also shows evidence of density-tuned
WC (rs > 30) and the microemulsion mixed state (rs ≈ 20–
30) where regions of WCs and Fermi liquid coexist across
multiple lengthscales [8]. Similarly to GaAs hole [30–33],
AlAs [34,35], and ZnO [36] electron systems where WCs are
observed, the large effective mass m ∼ 0.5m0 in TMD mono-
layers suppresses the kinetic energy relative to the Coulomb
energy, where m0 is the free-electron mass. In addition,
the monolayer WSe2 displays high mobility over a large range
of rs, similar to AlAs and ZnO devices, and exceeding the
range of rs values accessible in Si MOSFET (metal-oxide
semiconductor field-effect transistor) devices by more than a
factor of 2, creating the opportunity to observe WCs in TMD
materials. However, it is not clear whether disorder plays an
important role so that the observed MIT is, instead of the
interaction-driven WC formation, actually a quantum Ander-
son localization transition or a classical percolation transition
occurring accidentally at large rs (see Ref. [37] for the discus-
sion in other 2D systems). In this context, we mention that
the extensively studied 2D n-GaAs systems, although hav-
ing much higher mobility 107 cm2/Vs, typically have much
smaller rs (<15) values even at an electron density as low as
109 cm−2 [38].

In this paper, we develop a theory for electronic transport
in TMD monolayers with realistic disorder, explaining the
experimental resistivity data and enhancing our quantitative
understanding of disorder effects in TMDs, which is essential
for further improvement of the sample mobility in the future.
The main goal of this paper is to study the transport scattering
mechanisms due to screened charged impurities and charged-
neutral point defects in the continuum (i.e., non-moiré)
flux-grown TMD monolayers at low temperatures within
the effective-mass approximation and the finite-temperature
Boltzmann transport theory. See Fig. 1 for the device struc-
ture. More specifically, we identify the dominant low-T
scattering mechanism at low (high) carrier densities as the
charged impurity (charge-neutral point defect) scattering,
which gives rise to the characteristic mobility-density de-
pendence μ ∝ n1.5 (μ ∝ n−0.5). We explain the observed
linear-in-T resistivity in the metallic phase, attributed to
the temperature-dependent Friedel oscillations from screened
charged impurities [39,40]. (This physics could qualitatively
be understood as the analog of the 2D Altshuler-Aronov effect
at temperatures T τ/h̄ � 1 [40,41], where τ is the momentum
relaxation time.) The origin of these Friedel oscillations in
real space can be traced back to the kink in the screening
polarizability function at the backscattering momentum, de-
noted as q = 2kF [42,43]. Notably, the effect of temperature
in diminishing the 2kF screening is profound in 2D, following
a T 1/2 trend, in contrast to the exponentially weak temperature
dependence observed in the long-wavelength limit q → 0.

FIG. 1. A schematic illustration of the high-mobility monolayer
TMD reported in Refs. [11,28]. The red, orange, and green cir-
cles represent the δ-layer remote charged impurities (RI), uniform
background charged impurities (BI), and charge-neutral atomic point
defects (PD), respectively.

At low temperatures, the coherent interference of electrons
scattered from the Friedel oscillations surrounding a charged
impurity enhances the backscattering with a correction to
the scattering cross section proportional to T/EF . Here, EF

is the Fermi energy and kF is the Fermi wave vector. This
low-temperature correction eventually leads to the linear-in-T
resistivity, which violates the well-known Sommerfeld ex-
pansion, where the leading correction should be quadratic.
We emphasize that the metallic resistivity in our theory and
presumably in the low-temperature data reported in Ref. [11],
which depends linearly on temperature T , does not origi-
nate from any quantum criticality at T = 0 and does not
suggest any non-Fermi-liquid characteristics. It also does not
arise from phonon scattering since the temperature of interest
(T � 10 K) is in the low-T Bloch-Gruneisen (BG) regime
where phonon scattering is suppressed [25]. In this work, we
explore the possibility that this same Coulomb disorder is also
responsible for producing the 2D MIT at low carrier densities
as (i) a strong disorder-driven quantum Anderson localization
transition, or (ii) a classical percolation transition through the
long-range disorder potential landscape. For the first scenario,
using the Anderson-Ioffe-Regel (AIR) condition kF l = 1 or
equivalently ρ = h/e2 [44,45], we compute the effective MIT
critical density nc and find that the apparent nc increases as
temperature increases, because the effective Coulomb dis-
order is enhanced with increasing temperature leading to
reduced screening. Here, l = vF τ is the transport mean free
path and ρ = m/e2nτ denotes the resistivity. The low-T theo-
retical AIR critical density nc ≈ 6 × 1010 cm−2 agrees with
the estimation reported in Ref. [11], where nc is estimated
by setting EF equal to the disorder broadening �q = h̄/2τq

with the single-particle relaxation time τq ≈ 1 ps measured by
the Shubnikov–de Haas oscillations. However, this theoretical
AIR critical density is somewhat lower than the experimental
critical density ∼1.5 × 1011 cm−2 measured at T = 1.5 K.
The experimental nc is defined as the density where the resis-
tivity slope dρ/dT changes sign at low temperatures, whereas
the AIR criterion for nc is essentially a T = 0 theoretical cri-
terion. This discrepancy could be attributed to four potential
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reasons: first, the breakdown of the Boltzmann theory at low
densities in the presence of Coulomb impurities; second, the
possibility that quantum Anderson localization is replaced by
a classical percolation crossover at finite temperatures; third,
the emergence of an interaction-driven WC transition at large
rs value; fourth, our screening theory based on the random
phase approximation (RPA) becomes increasingly inaccurate
at lower densities where the enhanced rs introduces strong cor-
relation effects (eventually leading to Wigner crystallization)
neglected in the RPA screening. We elaborate on the percola-
tion scenario in the presence of long-range Coulomb disorder
as follows. The 2D system at low densities is broken into inho-
mogeneous charge puddles separated by long-range Coulomb
disorder potential barriers [46–59], so the Boltzmann trans-
port theory with linear screening is no longer applicable. This
scenario supports a classical percolation model, where metal-
lic electron puddles navigate through a disordered potential
landscape. We note that at T = 0 quantum tunneling among
the random puddles becomes important, making the classical
percolation scenario equivalent to the Anderson localization
phenomenon as a matter of principle, but physically, they are
quite different as Anderson localization arises from quantum
interference whereas the percolation transition arises from
the nonexistence of a conducting path through a disorder
landscape. These two localization scenarios may happen at
low densities or high rs, which could be close to the the-
oretical WC values, particularly in clean systems [37]. By
analyzing low-density data in WSe2 monolayers [11], we
identify a percolation threshold density np ≈ 1 × 1011 cm−2

(rs ≈ 30), which, while higher than the AIR critical density
nc ≈ 6 × 1010 cm−2 (rs ≈ 40), remains below the experimen-
tal critical density nc ≈ 1.5 × 1010 cm−2 (rs ≈ 25). All of
them have high values of rs close to the theoretical WC
transition predicted by the quantum Monte Carlo (QMC) cal-
culation in the absence of disorder, where rs ≈ 30 [29]. These
findings suggest that the observed 2D MIT behavior likely
results from the complex interplay between disorder effects
and interaction-driven WC physics. To explore the relation-
ship between disorder and the 2D MIT, we also theoretically
predict the AIR nc as a function of the maximum mobility
μmax deep into the metallic state (the peak mobility achieved
by tuning the carrier density at the lowest accessible tem-
perature) by intentionally adding disorder and making dirtier
samples, finding that nc increases as μmax decreases [60].
Here, μmax serves as an approximate experimental measure
of the sample disorder—the lower the disorder, the higher is
μmax. This analysis emphasizes the significant role of disorder
in the 2D MIT and sets the stage for future experimental
investigations. Moreover, we extend our theoretical predic-
tions to the resistivity and mobility as functions of carrier
densities for the monolayer MoSe2 experiment conducted at
Harvard University [8], despite the lack of direct transport
measurement data. In particular, we comment on the WC
melting temperature Tm ∼ 10 K experimentally measured in
the MoSe2 systems [7], much higher than the mean-field theo-
retical prediction Tm ∼ 1 K for a pristine WC [61]. This shows
that the effective melting temperature is strongly enhanced
by the disorder-induced localization effect [62]. Nevertheless,
the high melting temperature and large critical density of WC
in TMDs, attributed to their large effective mass and small

TABLE I. Material parameters used in the calculations. The ef-
fective mass m is expressed in units of the free-electron mass m0. κ

is the dielectric constant. g is the total quantum degeneracy.

Material m/m0 κ g

WSe2 hole 0.45 [11,23,24,63] 5 [11,64,65] 2 [5,6]
MoSe2 electron 0.7 [8] 4.6 [8] 2 [5,6]

background lattice dielectric constant, make TMDs a suitable
material platform for exploring the WC physics.

The structure of this paper is as follows. Section II sum-
marizes the results of temperature-dependent resistivity and
mobility in WSe2 hole systems, alongside a detailed compar-
ison with the experimental data from both the Columbia [11]
and Harvard [28] groups. Additionally, we discuss the role
of disorder in the context of the magneto-optical experiments
conducted by a different Harvard group on higher-disorder
samples [8], though the transport experimental data are not
available for these samples, making the theoretical analysis
somewhat uncertain. We discuss the disorder-enhanced melt-
ing temperature of WC in Sec. III. In Sec. IV, we provide the
technical details for the 2D polarizability and Friedel oscil-
lations at finite temperatures. This section aims to elucidate
the physical picture of the coherent interference of electrons
scattered by Friedel oscillations, which leads to the observed
linear-in-T resistivity in the metallic phase arising from the
screening of the impurity disorder. Section V gives a more
analytical exploration of the temperature-dependent resistiv-
ity, focusing on the effects of scattering by random charged
impurities and charge-neutral atomic point defects. Section VI
examines the screening effect caused by the double-gate
configuration, commonly used in transport experiments. Sec-
tion VII compares the RI and BI scattering at low densities
and suggests a way to improve the low-density mobility by
increasing the hBN thickness in experiments. Section VIII
comments on the effect of electron-phonon scattering at high
temperatures. Finally, we conclude and summarize in Sec. IX.

II. MAIN RESULTS

In this section, we present our main theoretical results
and the comparison with experimental data of WSe2 hole
systems from the Columbia [11] and Harvard [28] group.
We also comment on the MoSe2 electron system studied by
a different Harvard group [8], although there are no direct
transport measurement data in that sample. The transport
mobility μ = eτ/m is defined through the momentum relax-
ation time τ , and the corresponding resistivity is given by
the Drude formula ρ = m/ne2τ . The detailed calculation of
the temperature-dependent relaxation time can be found in
Sec. V, with the focus being on the calculated results in this
section. The material parameters we use in the calculations are
summarized in Table I. We use the effective mass m = 0.45m0

in WSe2 hole systems [11,23,24,63] and m = 0.7m0 in MoSe2

electron systems [8]. The total quantum degeneracy in mono-
layer TMDs is g = 2 due to spin-valley locking [5,6]. We use
κ ≈ 5 as the background lattice dielectric constant. Mostly the
contribution of the dielectric constant comes from the hBN
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FIG. 2. Mobility μ vs hole density nh in a monolayer WSe2

sample from the (a)–(c) Columbia [11] and (d)–(f) Harvard [28]
groups. (a),(c) Different colored dots represent experimental data
measured at different temperatures. (b),(e) The corresponding the-
oretical results are obtained by assuming only impurity scattering
without phonon. The color legends of the temperature in units of K
are shown as insets. The impurity parameters are obtained from the
best fit of the low-T mobility as shown in (c) and (f), where the solid
black curves represent the theoretically calculated total mobility at
T = 0. The red, orange, and green curves are contributions from
the remote charged impurity (nr), background charged impurity (Nb),
and charge-neutral point defect (nv) scattering, respectively.

environment [64], where the out-of-plane and in-plane dielec-
tric constants are ε⊥ = 3.76 and ε‖ = 6.93, respectively [65],
and κ =

√
ε⊥ε‖. We take the size of the atomic point defects

as the lattice constant a0 = 3.32 Å for monolayer WSe2 [66].
Figure 2 shows both the experimental data and the calcu-

lated mobility μ as a function of hole density nh at various
temperatures, where panels (a)–(c) represent the Columbia
sample, while panels (d)–(f) represent the Harvard sample. At
low temperatures T � 20 K, as depicted in Figs. 2(a) and 2(d),
the mobility μ(nh) exhibits a nonmonotonic behavior, peak-
ing at a specific density nmax. For the Columbia sample, the
maximum mobility, μmax, is observed to be 8.0 × 104 cm2/Vs
at a density of nmax = 1.5 × 1012 cm−2. The Harvard sam-
ple reaches a μmax of 2.5 × 104 cm2/Vs at a higher density
of nmax = 2.0 × 1012 cm−2. These peak mobility values

correspond to very long transport mean free paths of ap-
proximately 2 and 0.5 μm for the Columbia and Harvard
samples, respectively. As temperature increases, μmax de-
creases and nmax increases because of suppressed screening
of the Coulomb disorder. This trend is consistent across both
samples and is similarly observed in commercial chemical
vapor transport (CVT) crystals studied by the Harvard group
[28]. However, the mobility in CVT crystals is an order
of magnitude lower compared to the flux-grown samples,
around ∼3000 cm2/Vs at 4 K. This comparison underscores
the quality of the flux-grown samples and highlights the
temperature-dependent behavior of mobility in these TMD
systems.

The observed nonmonotonic relationship between mobility
and carrier density in TMD systems can be explained by a
combination of two scattering mechanisms. The increasing
mobility as the density increases, μ ∝ n1.5, can be explained
by the enhanced screening of the charged impurity scattering
dominating at low densities n < nmax. While at high densi-
ties n > nmax, the decrease in mobility as density increases,
μ ∝ n−0.5, can be attributed to charge-neutral atomic point
defects (PDs) like Se vacancies [28], since Coulomb disorder
is already suppressed by screening at high densities and the
PD scattering is no longer masked by the Coulomb scattering.
This is due to a constant cross section for the hard-disk scat-
tering of an atomic point defect ∼a0, where a0 is the lattice
constant of WSe2, so that the scattering rate is proportional
to the carrier velocity τ−1 ∝ vF ∝ √

n. The physics is that
the faster the carrier moves, the more frequently the carrier
collides with the scattering targets, and the larger is the scat-
tering rate. As a result, μPD ∝ τ ∝ n−0.5. As shown in Fig. 2,
our theory agrees qualitatively and semiquantitatively with the
data. Our charged-impurity model consists of δ-layer remote
impurities (RIs) and a uniform distribution of background
impurities (BIs). The δ-layer RIs, characterized by a 2D con-
centration nr , are located near the interface between the hBN
dielectric spacer and the gate, at a distance z = d from the
TMD monolayer. We choose d such that the remote impurities
are separated from the gates by a distance d0 ∼ 1 nm. The rea-
son for choosing RIs close to the gate is based on the empirical
observation that transport data can be significantly affected by
changing gate materials and assembly technology, particularly
in van der Waals materials (see, for example, transport data
in bilayer graphene systems [67]). For the Columbia sample,
the thicknesses of the top and bottom hBN gate dielectrics
are d1 = 11 nm and d2 = 25 nm, respectively, whereas for the
Harvard sample, d1 = 50 nm and d2 = 73 nm. The uniform
distribution of BIs within the hBN dielectrics is characterized
by a three-dimensional (3D) concentration Nb. Additionally,
charge-neutral atomic point defects, with a concentration nv ,
are assumed to be situated within the same plane as the TMD
monolayer. See Fig. 1 for a visual representation of the device
structure and the spatial arrangement of these impurities.

To estimate the impurity concentrations, in Figs. 2(c)
and 2(f), we perform a numerical fit to the mobility
curves at the lowest temperature available in experiments,
T ∼ 1 K. From the best fits we get for the Columbia
sample nr = 3.0 × 1012 cm−2, Nb = 1.0 × 1015 cm−3,
and nv = 5.2 × 1010 cm−2; while for the Harvard sample,
Nb = 1.0 × 1016 cm−3 and nv = 2.0 × 1011 cm−2. Note that
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these numbers, although unknown in actual experimental sam-
ples, are reasonable for the TMD materials being studied here.
For example, these numbers are actually consistent with STM
studies of the bulk TMD crystals [27,68]. We do not include
the δ-layer RIs in the calculations for the Harvard sample for
two reasons. First, the distances between the top and bottom
gates are d1 = 50 nm and d2 = 73 nm, which are significantly
larger than those in the Columbia sample. Consequently,
the remote impurity layer is likely to be located at a greater
distance from the TMD monolayer, resulting in a negligible
Coulomb potential. Second, remote impurity scattering mani-
fests itself only at low densities � 1012 cm−2, where there are
no reliable data due to large contact resistance for the Harvard
sample. It should be noted that both experiments report a rapid
increase in contact resistance below certain carrier densities,
denoted as ncon. Specifically, for the Columbia sample, ncon is
identified at 1.7 × 1011 cm−2 (cf. Fig. 1(f) in Ref. [11]), and
for the Harvard sample, it is identified at 1.5 × 1012 cm−2.
Given that the two-terminal resistance comprises both contact
and bulk resistances, the bulk resistance data are more reliable
at densities higher than ncon. The large value of ncon for the
Harvard sample likely surpasses the critical density for ob-
serving a MIT, which accounts for the absence of MIT in their
data. In practice, the charged impurities may also be screened
by the contact electrodes, whose effect is rather complicated
and depends on the specific contact scheme and geometry.
However, the essential physics of Coulomb impurity
scattering should not be affected by contact screening, which
should only change the result by a nominal numerical factor.
For this reason, we do not consider the contact electrode
screening, which would involve a complex calculation with
many unknown parameters (rendering it essentially useless).

Another feature we observe in Fig. 2 is that, at large hole
densities nh � 2 × 1011 cm−2, mobility decreases as the tem-
perature increases. This same feature leads to the linear-in-T
resistivity as we show in Figs. 3(a) and 3(b). On the other
hand, from Fig. 2 at small densities nh � 2 × 1011 cm−2, we
see that μ increases monotonically as a function of tempera-
ture, which is related to the insulating behavior dρ/dT < 0
depicted in Figs. 3(a) and 3(b). (However, it is important to
note that data at low temperatures below 2 K for densities
less than 1.5 × 1011 cm−2 are not available due to signif-
icant noise. This limitation may arise from problems such
as contact resistance and experimental issues such as the
stray capacitance of cryostat wiring and the decoupling of
the electron temperature from that of the immersion cryogen,
which compromise the reliability of measurements in this
low-temperature, low-density regime.)

The observed temperature-dependent mobility and resis-
tivity can be explained by the Boltzmann transport theory
with screened charged impurity scattering. At very low tem-
peratures, the momentum relaxation of electrons, driven by
their elastic scattering from impurities and structural de-
fects in disorder metals, dominates the transport properties
[41,50]. At T = 0, only scattering processes with momentum
q � 2kF contribute to resistivity. However, at finite tempera-
tures, scattering with momentum greater than 2kF becomes
possible, where the nonanalyticity of the 2D polarizabil-
ity function at momentum q � 2kF gives rise to real-space
Friedel oscillations [39]. These Friedel oscillations, in turn,

FIG. 3. Analysis of the metal-insulator transition (MIT) at low
densities of the Columbia sample. Part (a) shows the experimental
temperature-dependent resistivity data. Part (b) shows the theoretical
result of impurity scattering, where the impurity parameters are taken
from Fig. 2(c). The insets show the values of nh in units of 1011 cm−2,
with each density represented by a different color. The solid disks
and empty circles mark ρ(T = TBG ) and ρ(T = EF ), respectively.
(c) Temperature-dependent effective MIT critical densities nc(T )
(solid) and ncq(T ) (dashed). The right vertical axis labels the corre-
sponding value of rs. (d) nc and ncq vs maximum mobility at T = 0.
Different colors indicate that the maximum mobility is tuned by
adding either remote impurities (red), background impurities (or-
ange), or atomic point defects (green), respectively. (e) Percolation
fit of the low-T conductivity data at low density.

enhance backscattering through coherent interference of elec-
trons scattered from these oscillations, thereby contributing
to the observed linear-in-T resistivity at low temperatures
t = T/EF 	 1 [39],

ρ(t 	 1) ≈ ρ0

(
1 + 2s

1 + s
t

)
, (1)

where ρ0 is the resistivity at T = 0, and the screening strength
is characterized by a dimensionless parameter s = qTF/2kF

with the Thomas-Fermi screening wave vector defined as
qTF = g/aB. g is the total quantum degeneracy. Since we are
interested in the temperature dependence of resistivity near
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the 2D MIT (the low-density regime) where kF = √
4πn/g

is rather small compared to qTF, we focus on the limit of
large screening where s 
 1. On the other hand, at high
temperatures t 
 1, the system becomes a classical gas where
the Thomas-Fermi screening is replaced by the Debye-Hückel
screening qDH = qTF/t [50,69]. To the leading order in t 
 1,
the Coulomb potential is unscreened at high temperatures
with a Fourier component U0(q) = 2πe2/q, where the typical
momentum scattering scale is determined by h̄2q2/2m ∼ T
or q ∼ t1/2kF . Using Fermi’s golden rule, the corresponding
scattering rate τ−1 ∝ U0(q)2 ∝ t−1 results in a resistivity that
decreases as the temperature rises [39],

ρ(t 
 1) ≈ ρ0s2t−1, (2)

where an extra factor of s2, in front of the T = 0 resistivity
ρ0, takes care of the fact that the charge is essentially un-
screened at high temperatures, T 
 EF . In the calculations,
we take into account the electron-electron interactions solely
through screening, which is equivalent to the density-density
(Hartree) interaction between the scattered electron and the
Friedel oscillations that results in the linear-in-T resistivity
[cf. Eq. (2.12) in Ref. [40]]. Our theory of transport limited
by scattering from screened disorder is motivated physically
since the regularization of the long-range Coulomb potential
is essential for sensible results. The theory may be construed
as a mean-field transport theory since the screened disorder
is calculated at a mean-field level using the RPA screening.
As mentioned before, any temperature dependence caused by
phonon scattering is irrelevant within the temperature range of
interest, T � 10 K. This is due to the weak electron-phonon
coupling in TMD materials and the negligible phonon-
induced temperature variation at low temperatures, which
scales as (T/TBG)4 at temperatures well below the Bloch-
Grüneisen temperature TBG = 2h̄vskF [25,39,70], where vs =
3.3 × 105 cm/s is the speed of sound in WSe2 [71]. On the
other hand, in the high-temperature range of 50–300 K, mo-
bility decreases due to electron-phonon scattering, following
a power-law relationship μ ∝ T −γ , where γ ranges from 1
to 1.5. We extrapolate the T −1 contribution to the mobility
coming from acoustic phonon scattering as shown by the red
dashed lines in Fig. 4, which is negligible for T < 10 K
by an order of magnitude compared to both our theoretical
results and the experimental results of Refs. [11,28]. The blue
dashed lines shown in Fig. 4 represent the T −1.5 contribution
coming from the optical phonon scattering, which also plays
a minor role in the low-T range. Since the competition be-
tween impurity and electron-phonon scattering is determined
by two energy scales EF and TBG, we mark the resistivity and
mobility at T = EF and T = TBG as empty circles and solid
disks in Figs. 3 and 4, respectively. We find that the typical
temperature scale above which the phonon scattering becomes
important roughly matches the value of TBG. More detailed
discussion of phonon scattering can be found in Sec. VIII,
but our focus in the current work is on the low-T disorder
scattering and Wigner crystallization.

Now, we discuss our theoretical results of the 2D MIT and
the comparison with the experimental data of the Columbia
sample, as shown in Figs. 3(c)–3(e). The MIT, fundamentally
a zero-temperature phenomenon, is characterized by a critical

FIG. 4. Mobility as a function of temperature at various densi-
ties. The solid disks and empty circles mark μ(T = TBG ) and μ(T =
EF ), respectively. The different colors represent different densities nh

in units of 1011 cm−2. The dashed curves in blue and red serve as a
guide to the eyes for the slopes T −1 and T −1.5, respectively.

density nc above which the system exhibits finite resistivity at
T = 0, and below which resistivity diverges exponentially as
T approaches zero, indicative of an insulating state [72]. Ref-
erence [11] suggests that the observed 2D MIT in monolayer
WSe2 could be attributed to Wigner crystal formation, given
a large value of rs ≈ 25 at the experimental critical density
nc ≈ 1.5 × 1011 cm−2. However, we explore an alternative
hypothesis where disorder, particularly from charged impuri-
ties, drives the MIT. This includes scenarios such as Anderson
localization, where coherent electron scattering by random
Coulomb impurities leads to localization, and classical per-
colation transition at finite temperatures, where electrons
navigate through a landscape sculpted by long-range Coulomb
potentials. It is important to emphasize that a pristine WC
is a perfect conductor, and any insulating transport in a WC
must necessarily arise from impurities and disorder pinning
the crystal, thus making transport in the WC regime inherently
a disorder-dominated phenomenon.

Focusing first on Anderson localization, we use the
Anderson-Ioffe-Regel (AIR) criterion [44,45] to estimate nc

by equating the mean free path l = vF τ to the electron
wavelength ∼k−1

F such that kF l = (2/g)(hnhμ/e) = 1, or
equivalently ρ = (2/g)(h/e2). This criterion, when consid-
ered at finite temperatures, reveals a temperature-dependent
effective critical density nc, especially if the resistivity ex-
hibits a strong temperature dependence. Our analysis shows
that as temperature increases, the effective nc also increases,
which is reflected in the resistivity trend observed in Fig. 3(c).
Furthermore, we also estimate the effective critical density
ncq(T ) defined through kF lq = (2/g)(hnhτq/m) = 1, where τq

is the quantum (single-particle) scattering rate. Our result of
ncq = 6.0 × 1010 cm−2 calculated at T = 0 is consistent with
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the value reported in Ref. [11] using τq ≈ 1 ps (or �q =
h̄/2τq ≈ 4 K) experimentally measured from Shubnikov–de
Haas oscillations. Note that in general τq is less than or
equal to τ , defining the transport relaxation time (and nc),
and their difference could be large in 2D systems with strong
Coulomb disorder since τq is limited by small-angle scat-
tering, which does not affect τ [73]. To test the hypothesis
that the origin of the 2D MIT is due to Anderson localiza-
tion, we theoretically predict the AIR critical densities nc

and ncq versus the maximum mobility μmax (peak mobility
reached by tuning the carrier density) for different impurity
scenarios, as shown in Fig. 3(d). Different colors indicate
that the maximum mobility is adjusted by adding remote
impurities (red), background impurities (orange), or atomic
point defects (green), while keeping the other impurity con-
centrations fixed. In all cases, nc and ncq increase as μmax

decreases. The addition of RIs leads to an exponential increase
in nc with decreasing μmax (i.e., nc � nr0e−μmax/μr0 with μr0 �
2 × 104 cm2/Vs and nr0 � 1.6 × 1012 cm−2), whereas BIs
result in a power-law relationship between nc and μmax (i.e.,
nc ∝ μ−α

max with α changes from 0.5 to 2 as μmax decreases
from 8× to 1 × 104 cm2/Vs). Conversely, adding PDs only
marginally affects nc (i.e., nc increases only by �20% while
μmax decreased by a factor of 10), suggesting that PDs play
a minor role in MIT compared to other types of impurities.
The fact that PDs play a relatively minor role in 2D TMD
localization properties is a significant finding of our work.

Next, we discuss the scenario of MIT as a classical
percolation transition. In the presence of long-range Coulomb
disorder, electrons at low densities are separated into inho-
mogeneous metallic puddles by insulating barriers formed
by Coulomb potential fluctuations [46–59,74–77]. The ratio
of metallic to insulating regions decreases as the MIT is
approached from the metallic side, with the MIT signifying
the transition to a regime in which insulating regions
percolate and metallic regions become isolated puddles
(whereas the situation is reversed in the conducting metallic
regime, i.e., the MIT is characterized by the percolation
transition where exactly one percolating path spans the whole
device leading to metallic conductivity). The percolation
threshold of this MIT can be approximately estimated using
np ≈ 0.1

√
nr/d ≈ 1.6 × 1011 cm−2, where we use the remote

impurity concentration nr = 3.0 × 1012 cm−2 and d = 10 nm
obtained from the best fit of the low-T mobility data shown in
Fig. 2(c). Here, only RI plays a role in the percolation transi-
tion, and the BI is simply ignored; this situation is applicable
only when RI is the dominant scattering mechanism at low
carrier densities. This expression of np can be theoretically
understood [78] as the typical density variation induced by
random remote impurities within a square of d × d , where the
distance of remote impurities d plays the role of the screening
length. The typical number fluctuation of random remote
impurities is

√
nrd2 according to the Poisson distribution,

so the corresponding density fluctuation is
√

nr/d , which is
the same as the above expression of np up to a numerical
factor. (This numerical factor is obtained by computational
simulations in Ref. [79].) Assuming that the scaling of
the 2D percolation conductivity follows σ ∝ (nh − np)1.31

[48,52,55–59,80], we obtain the percolation threshold

np = (1.05 ± 0.15) × 1011 cm−2 by fitting the low-T data at
low densities nh < 3 × 1011 cm−2. See Fig. 3(e). We find that
both the AIR nc and the percolation threshold np have high
values of rs close to the theoretical WC transition predicted
by the QMC calculation in the absence of disorder, where
rs ≈ 30 [29], suggesting that the observed 2D MIT behavior
likely results from the complex interplay between disorder
effects and interaction-driven WC physics, since at these low
carrier densities both disorder and correlation are important.

Finally, we comment on the MoSe2 electron system studied
by the second Harvard group [8]. Reference [8] reports a
quantum crystal-to-liquid transition, where the signature of
a mixed state between the Wigner crystal and Fermi liquid,
the microemulsion phase, is observed through the anoma-
lies in exciton reflectance, spin susceptibility, and umklapp
scattering. In the absence of disorder, this variation in local
electron density can arise from the Coulomb-frustrated phase
separation [81–84], leading to the microemulsion phase. How-
ever, when the electron density is small and close to the MIT
critical density nc, there are not enough electrons to screen
the long-range Coulomb disorder, and the electrons break into
inhomogeneous metallic puddles embedded in the insulating
potential barriers [47,50,51,53,54], potentially smearing the
transition into what experimentally appears as a microemul-
sion mixed state [85]. Thus, microemulsion at low densities
is practically the same as Coulomb disorder induced puddles
and percolation scenario, and cannot be distinguished easily.
In Ref. [8], instead of transport measurement that probes
the macroscopic sample globally, cryogenic reflectance and
magneto-optical spectroscopy are used to focus on a local
spot of size ∼760 nm, determined by the laser diameter of
the diffraction limit. This leads to several important ques-
tions that we should address in the following discussion.
What would the corresponding transport data look like? What
impact does disorder have on the MoSe2 electron system?
We emphasize that even in the cleanest samples, it is not
possible to completely eliminate the role of Coulomb disor-
der, which tends to produce long-range variation in the local
electron density, causes the 2D electrons to break up into
itinerant and localized regions, and leaves the WC phase with
only finite-range order [36]. Figure 5 presents the theoreti-
cal result of zero-temperature resistivity and mobility as a
function of density for a monolayer MoSe2 electron system.
We model the disorder as a δ layer of remote impurities of
concentration nr located at a distance d away from the TMD
monolayer. Since there are no experimental transport data
in Ref. [8] for comparison, to obtain an estimate of nr and
d , we make two assumptions in the calculation. First, we
assume the mobility μ = 1.5 × 103 cm2/Vs at high electron
density ne = 4.0 × 1012 cm−2. This is based on the knowl-
edge that the MoSe2 sample used in Ref. [8] is synthesized
by the CVT method, which generally has a peak mobility
of around 1000 cm2/Vs at low temperatures [28]. Second,
we assume that the AIR condition ρ/(e2/h) = �t/EF = 1
or �q/EF = 1 is met at a density somewhere within the
range of the experimental reported densities of WC formation,
nWC = 3.5 × 1011 cm−2, and the microemulsion to Fermi-
liquid transition n∗ = 8.2 × 1011 cm−2. Here, �t = h̄/2τ and
�q = h̄/2τq are the transport and the single-particle scattering
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FIG. 5. Theoretical analysis of zero-temperature resistivity and mobility as a function of density for Harvard experiments on monolayer
MoSe2. (a)–(d) Dimensionless resistivity and scattering rates as a function of density. The black curves are ρ/(e2/h) = �t/EF , while the
blue curves are �q/EF , where �t = h̄/2τ and �q = h̄/2τq are the transport and the single-particle scattering rate, respectively. The vertical
dashed lines mark the Wigner crystal transition density nWC = 3.5 × 1011 cm−2 and the microemulsion to Fermi-liquid transition density
n∗ = 8.2 × 1011 cm−2. The horizontal dashed lines mark the AIR condition ρ/(e2/h) = �t/EF = 1 and �q/EF = 1. (e)–(h) The corresponding
mobility (black) and quantum mobility (blue) as a function of density. In other words, (a) and (e) show ρ/(e2/h) = �t/EF = 1 at nWC, (b) and
(f) show �q/EF = 1 at nWC, (c) and (g) show ρ/(e2/h) = �t/EF = 1 at n∗, (d) and (h) show �q/EF = 1 at n∗. The obtained impurity parameters
nr and d are shown directly in the figures.

rates, respectively. Using these two constraints, we obtain
the estimate of nr ∼ 1011–1012 cm−2 and d ∼ 0.5–2 nm, as
shown in the insets of Figs. 5(a)–5(d). Our estimate is con-
sistent with recently reported STM images of a disordered
pinned Wigner crystal of short-range crystalline order and the
random charged defects in bilayer MoSe2, where the average
distance between adjacent impurities is ∼20 nm, correspond-
ing to a charged impurity density ∼3 × 1011 cm−2 [9]. In the
presence of these Coulomb impurities, the disorder smearing
of the transition which may appear to be the intermediate
microemulsion phase should also cover a range of �ne ∼ nr ,
which is consistent with the experimental range n∗ − nWC =
4.7 × 1011 cm−2. We note that the average distance between
impurities, n−1/2

r ∼ 10–30 nm, is smaller than the reported
correlation length lcorr ∼ 3aWC ∼ 70 nm for the short-range
crystalline order WC, extracted from the line shape of the
umklapp resonance [7], where aWC ∼ n−1/2

e is the WC lattice
constant. This indicates that the laser spot reported in Ref. [8]
probably represents a local region in the sample which is
“cleaner” than the average. (The possibility that this factor of 2
difference is not significant, arising simply from the unknown
system parameters, cannot be ruled out here.) Considering that
these impurity parameters are reasonable and agree with the
previous estimate in similar samples [23,24], and the impurity
concentration is close to the electron densities in the range of
interest (n∗–nWC), disorder should strongly affect the transport
measurement results. On the other hand, we notice that the

melting temperature of WC ∼10 K reported in Refs. [7,8]
is much higher than the value ∼0.8 K predicted by a mean-
field theory in the absence of disorder [61] (see the detailed
discussion in Sec. III). This phenomenon can be explained
by the fact that the disordered crystal at low carrier density
often transforms into an insulating glassy state that nonpertur-
batively incorporates both Anderson localization and Wigner
crystallization physics, which strongly enhances the stability
of the insulating phase and increases its melting tempera-
ture, as the glassy phase is much more thermally stable in
general [62].

Our theoretical findings depicted in Figs. 2–4 mani-
fest a qualitative and semiquantitative agreement with the
experimental data of the WSe2 hole system presented in
Refs. [11,28]. Moreover, we discuss the role of disorder and
predict the transport resistivity and mobility for the MoSe2

electron system reported in Ref. [8]. Specifically, our theory
successfully captures three key characteristics seen in the ex-
perimental data: (i) a linear-in-T metallic resistivity at low
temperatures; (ii) an enhanced slope dρ/dT as the carrier
density approaches the MIT critical density from the metallic
side; and (iii) an increase in the metallic resistivity by a factor
of approximately 2–6 with a modest temperature increment
of about 10 K. We should mention that the theoretical density
range plotted in Fig. 3 is smaller than the experimental density
range. The reasons are twofold. First, the theoretical AIR
MIT happens at a smaller critical density compared to the
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experimental MIT because of the failure of the Boltzmann the-
ory with linear screening at low densities. As a result, we need
to systematically shift the range of carrier density to capture
the regime near the theoretical AIR MIT. Second, given the
inhomogeneous electron puddle picture near the critical den-
sity, the whole system is divided into metallic and insulating
regions, and the actual Fermi surface made by itinerant elec-
trons is smaller than the one calculated using apparent carrier
density (see a two-species model for transport in Ref. [58]).
Therefore, near the MIT, the effective carrier density used in
the Boltzmann transport calculation should be smaller than
the experimental density due to carrier trapping in puddles.
Finally, we note that due to its atomic thinness, monolayer
TMD does not have interfacial roughness, a scattering mech-
anism that typically restricts mobility at high densities in
materials like GaAs and Si quantum wells [11,86,87]. This
suggests that the mobility of monolayer TMDs, eventually
limited by unintentional charged impurities and atomic point
defects, holds significant potential for enhancement through
improved synthesis techniques and the careful assembly of
heterostructure devices so as to suppress the impurity content.

III. MELTING OF WIGNER CRYSTALS

One of the most well-known examples of a quantum
phase transition is the liquid-solid transition for electrons at
T = 0, as predicted by Wigner 90 years ago [88]. It is also
known as the Wigner crystal (WC) transition, which, in its
classical version of thermal melting, was first demonstrated
in a low-density 2D electron system realized on the helium
surface [89]. [This system had such an extreme low electron
density that the resulting electron (Wigner) crystal was
classical (T > EF ), whereas the original work by Wigner
as well as the current interest in WC of 2D semiconductor
and TMD layers is in the T = 0 quantum WC (T < EF ).]
Since then, significant efforts have been made to explore
the WC transition in semiconductor-based platforms. At
high densities, electrons arrange themselves into a metallic
liquid to minimize the quantum kinetic energy, whereas at
lower densities, electrons are anticipated to solidify into
an insulating WC when the Coulomb interaction energy
significantly outweighs the kinetic energy. In this section,
we focus on the 2D WC and briefly discuss its melting.
(One-dimensional WCs consisting of a few electrons have
been imaged in a carbon nanotube experimentally [90], and
have been theoretically studied in Ref. [91].)

We first derive the density-temperature mean-field phase
diagram of the pristine 2D WC transition shown in Fig. 6.
At low temperatures, T < EF , the so-called quantum regime,
the kinetic energy 〈K〉 is given by the zero-point motion of the
crystal, ∼EF ∝ n, while in the classical regime at T > EF , the
dominant contribution to 〈K〉 comes from the thermal motion
∼T ∝ n0. Meanwhile, the Coulomb interaction energy (the
cohesive energy of the solid), expressed as 〈V 〉 = (e2/κ )

√
πn,

is directly proportional to
√

n, indicating that 〈V 〉 always dom-
inates over 〈K〉 at a sufficiently low density and temperature,
causing the electrons to solidify into a WC. On the other hand,
if 〈K〉 > 〈V 〉, then WC melts into an electron liquid. This
leads to a WC dome in the temperature-density phase dia-
gram. See Fig. 6. At T = 0, there is a quantum phase transition

FIG. 6. The density-temperature mean-field phase diagram of the
disorder-free pristine electron solid-to-liquid transition, calculated
using material parameters for (a) Columbia WSe2 hole system and
(b) MoSe2 electron system. The shaded area shows the region of
experimentally reported melted temperatures [7]. �c = 120 [92].

at rs = 〈V 〉/EF = rc or n = nc = (πa2
Br2

c )−1 ∝ m2/κ2, where
rc ≈ 30 suggested by quantum Monte Carlo simulations [29].
At finite temperatures, the classical liquid-solid transition
occurs at � = 〈V 〉/T = �c, where �c ≈ 120 is found from
molecular-dynamics simulations [92] and experimentally con-
firmed in liquid helium [89]. A simple way to interpolate
between the classical and quantum liquid-solid phase transi-
tion boundaries is to replace the definition of � by 〈V 〉/〈K〉,
and smoothly change the value of �c to rc as n approaches nc

[61]. Here, the average kinetic energy at a finite temperature is
given by

〈K〉 =
∑

k ε(k)n0(ε)∑
k n0(ε)

, (3)

where n0(ε) = [e(ε−μ)/T + 1]−1 is the Fermi-Dirac distribu-
tion. The thick black solid lines in Fig. 6 are examples
of such interpolation results calculated for WSe2 hole and
MoSe2 electron systems (the thick black dashed lines show the
corresponding results for fixed �c = 120). Consequently, the
highest melting temperature predicted by this mean-field the-
ory is given by Tm ≈ (e2/κaB)/(4�crc) ∝ m/κ2. Therefore, it
is more likely that we will observe WCs in the experimentally
accessible temperature and density range for a material with
a large effective mass and a small dielectric constant, so that
both Tm and nc are sufficiently large. As a result, TMDs with a
large effective mass m ∼ 0.5m0 and small dielectric constant
in the hBN environment κ ∼ 5 are generally much better plat-
forms (than, e.g., a GaAs electron system where m ∼ 0.067m0

and κ ∼ 13) for observing WCs [7,8]. Table II reviews the
material platforms where WCs are reported experimentally.
Indeed, the monolayer MoSe2 electron system with a critical
density �5 × 1011 cm−2 and an experimental melting temper-
ature Tm ∼ 10 K is by far the best material platform to observe
WCs.

Next, we discuss the disorder effects on the thermal (i.e.,
temperature-induced at fixed low density) and quantum (i.e.,
density-induced at fixed low T ) melting of WC. The main ef-
fects are twofold. First, disorder can significantly increase the
effective melting temperature because the disordered crystal
often transitions into a localized glassy state that combines
Anderson localization and Wigner crystallization physics,
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TABLE II. Melting temperatures of WCs in different materials, where e (h) represents electron (hole). (“BLG” represents bilayer graphene.)
κ and m are the dielectric constant and the effective mass, respectively. The columns of n and rs label the range where WCs are reported in
the corresponding materials. Te is the lowest electronic temperature achieved in experiments. “exp. Tm” represents the experimental melting
temperature, while “MF Tm” represents the highest theoretical melting temperature ≈ (e2/κaB )/(4�crc ) predicted by mean-field (MF) theory,
where �c = 120 [92] and rc = 30 [29].

Material κ m/m0 n rs Te exp. Tm MF Tm

WSe2 h [11] 5 0.45 (1.2–1.5) × 1011 cm−2 25–28 0.5 K not available 0.4 K
MoSe2 e [7,8] 4.6 0.7 �5.0 × 1011 cm−2 �23 80 mK 10 K 0.8 K
AlAs e [34,35] 10.9 0.46 (1.0–1.8) × 1010 cm−2 38–50 300 mK 1 K 90 mK
ZnO e [36] 8.5 0.3 (1.0–1.6) × 1010 cm−2 30–38 10 mK 50 mK 90 mK
GaAs h [30] 12.9 0.5 [93] (0.48–3.72) × 1010 cm−2 21–60 50 mK 145 mK 70 mK
GaAs h [31–33] 12.9 0.5 [93] (2.0–7.9) × 1010 cm−2 15–30 10–40 mK 35–400 mK 70 mK
GaAs e [94–96] 12.9 0.067 (1.2–8.1) × 1010 cm−2 2–5 10–40 mK 50–900 mK 10 mK
BLG e [97] 3 [98] 0.041 [99] (3.1–9.0) × 109 cm−2 15–26 210 mK 3 K 100 mK

leading to an insulating state with enhanced stability [62].
Second, in the presence of disorder, it becomes quite challeng-
ing to obtain a material that is clean enough to achieve such
large rs (small nc) values, so that the interaction-driven WC
transition is not completely hindered by the single-particle
localization. We elaborate on our reasoning as follows. From
Table II, we find that the experimental melting tempera-
ture is generally much higher than the value predicted by
the mean-field theory for the pristine system. This is be-
cause the unavoidable disorder present in the experiments
tends to pin the WC, enhancing its stability. Indeed, nu-
merical studies show that the effective melting temperature
increases as the disorder becomes stronger [62]. We should
emphasize that even in the absence of Coulomb interaction,
there is a metal-insulator transition by lowering the electron
density due to the single-particle Anderson localization. For
materials with a small critical density of the WC transi-
tion, the small number of electrons cannot sufficiently screen
the Coulomb disorder potential, and the system becomes
Anderson-localized before the WC transition. This is why
even fairly clean GaAs systems become highly insulating
when n ∼ (8–9) × 109 cm−2 corresponding to rs ∼ 15, which
is much lower than that necessary for WC [30,100]. This
emphasizes that associating low-density metal-insulator tran-
sitions automatically with WC, as is often done uncritically
in the literature, is unfounded since the cleanest material (i.e.,
2D n-GaAs with mobilities well in excess of 107 cm2/Vs)
reflects a metal-insulator transition at an rs value far below
the putative WC transition point. Besides directly reducing
the carrier density, an alternative to suppress the kinetic en-
ergy (to produce a WC) is to utilize the superlattice moiré
potential, where the so-called “generalized WC” was imaged
in moiré TMD WSe2/WS2 heterostructures [101]. However,
these electron phases with a crystalline structure differ from
the WC phase that is anticipated to emerge naturally without
any periodic potential, as they break a discrete rather than
a continuous translational symmetry. We emphasize that the
reported “WC” in moiré TMD is basically a commensurate
charge-density wave since the lattice constant for this gener-
alized WC is commensurate with the underlying moiré lattice,
whereas, by contrast, the WC in continuum TMD systems
(which is the subject matter of the current work) has a lattice
constant determined entirely by the electron density (with

a lattice constant ∼n−1/2, which is much larger than the
ionic lattice size) with no connection to the underlying ionic
lattice [102]. The connection between the continuum WC
and lattice physics has been elucidated in Ref. [103]. Note
that while a strong external magnetic field can also suppress
kinetic energy to obtain WCs [31–33,94–97], in this paper
we focus specifically on WCs at zero magnetic field. We
should emphasize that observations of WC at rs > 30 without
a magnetic field are quite rare due to the requirement for far
more dilute electron densities where the disorder effect is even
more prominent because of weaker screening. This scenario
is relevant to previous generations of TMDs grown by CVT
methods, where the mobility is ∼103 cm2/Vs with charged
impurity density ∼1011–1012 cm−2 close to the electron crit-
ical density nc [7,8]. For the WC transition to be no longer
overwhelmed by the disorder-induced Anderson localization,
it is necessary to enhance the sample quality and increase
the mobility by reducing disorder. The research groups at
Columbia and Harvard are exploring this direction, demon-
strating an order of magnitude improvement in the mobility
of WSe2 monolayers [11,28]. The quality of the sample is
also reflected in the fact that the estimated critical density
of the Anderson localization transition ∼6 × 1010 cm−2 is
lower than the experimental critical density of MIT ∼1.5 ×
1011 cm−2 [11]. Although the difference between these critical
densities is a factor of ∼2, suggesting that disorder cannot
be completely ignored, this new generation of TMD mono-
layers with record high mobility should be by far the best
material platform for studying the WC physics, and most
likely a continuum WC has already been observed in clean
2D TMDs.

IV. 2D POLARIZABILITY AND FRIEDEL OSCILLATIONS
AT FINITE TEMPERATURES

We provide the temperature-dependent 2D polarizability
and Friedel oscillations in this section. Theoretical results
on 2D polarizability as a function of temperature have been
explored in Refs. [40,42,50,52,70,104–108]. Despite this rich
background, we obtain some analytical results, Eqs. (17) and
(25), as approximations for the low- and high-temperature po-
larizability, which are good even at intermediate temperatures
T ∼ EF , and should be useful in future theoretical works. (See
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FIG. 7. Dimensionless polarizability π̃ (z, t ) as a function of z =
q/2kF at (a) low temperatures t � 1 and (b) high temperatures t � 1.
The solid curves are the complete numerical result calculated using
Eq. (10). The dashed curves are the analytical approximations using
(a) Eq. (17) and (b) Eq. (25).

Fig. 7.) As far as we know, Eqs. (17) and (25) have not been
previously published, so we give a comprehensive derivation
of these equations here. The noninteracting polarizability at
finite temperatures is defined as


(q, ω; T, μ) = g
∫

d2k

(2π )2

nk+q − nk

ω − εk+q + εk
, (4)

where g is the total quantum degeneracy of the 2D system. nk

is the Fermi-Dirac function given by

nk = 1

eεk−μ + 1
=

∫ ∞

0
dμ′ �(μ′ − εk )

4T cosh2[(μ − μ′)/2T ]
, (5)

where �(x) is the Heaviside-step function. Substituting
Eq. (5) into Eq. (4), we arrive at [104]


(q, ω; T, μ) =
∫ ∞

0
dμ′ 
(q, ω; T = 0, μ)

4T cosh2[(μ − μ′)/2T ]
. (6)

The zero-temperature polarizability reads


(q, ω; 0, μ) =
∫

gd2k

(2π )2

�(μ′ − εk+q) − �(μ′ − εk )

ω − εk+q + εk
. (7)

For parabolic energy dispersion εk = h̄2k2/2m, the analytical
expression of 
(q, ω; T = 0, μ) is derived in Ref. [42]. In the
following, we focus on the static polarizability at ω = 0, since
this is what defines the screening of Coulomb disorder. The
static polarizability at T = 0 reads


(q, μ) = g
m

2π h̄2

[
1 −

√
1 − 8mμ

h̄2q2
�(q2 − 8mμ/h̄2)

]
. (8)

Introducing dimensionless notations 
̃ = 
/(gm/2π h̄2), z =
q/2kF , and t = T/EF , where EF = h̄2k2

F /2m is the Fermi
energy defined at zero temperature, the T = 0 dimensionless
static polarizability Eq. (8) can be rewritten as


̃(z) = 1 −
√

1 − z−2�(z2 − 1). (9)

At finite temperatures, the polarizability reads


̃(z, t ) = 1

2

(
1 + tanh

μ

2T

)
−

∫ z2/t

0

dx
√

1 − tx/z2

4 cosh2[(μ/T − x)/2]

= 1 − e−1/t −
∫ z2/t

0

× (
√

t/z)
√

xdx

4 cosh2{[ln(e1/t − 1) − z2/t + x]/2} , (10)

where we use the expression of the chemical potential μ,
μ

T
= ln(eEF /T − 1). (11)

At z = 0, the integral in Eq. (10) vanishes so that the polariz-
ability is given by


̃(z = 0, t ) = 1 − e−1/t . (12)

At low temperatures t = T/EF 	 1, we can expand the inte-
grand of Eq. (10) using

1

4 cosh2(x/2)
= −

∞∑
n=1

n(−e−x )n, x > 0 (13)

so that the polarizability becomes


̃(z, t 	 1) = 1 +
√

πt

2z

∞∑
n=1

enz2/t erf (
√

nz2/t )

n1/2(1 − e1/t )n
, (14)

where erf (x) is the error function with an asymptotic expan-
sion at large x,

erf (x) = 1 − e−x2

√
πx

∞∑
m=0

(−)m(2m − 1)!!

(2x2)m
. (15)

The polarizability at finite momentum z >
√

t has the fol-
lowing series expansion:


̃(z, t 	 1)

= 1 +
√

πt

2z
Li 1

2

(
ez2/t

1 − e1/t

)

−
∞∑

m=0

(−)m(2m − 1)!!

2m+1
Lim+1

[
1

1 − e1/t

](
t

z2

)m+1

,

(16)

where Lis(x) = ∑∞
n=1 xnn−s is the polylogarithm function.

However, Eq. (16) has a convergence radius only at z >
√

t
and diverges at small z 	 √

t . A better analytical approxima-
tion which covers the full range of z at t < 1 reads


̃(z, t < 1) = 1 +
√

πt

2z

×
[

Li 1
2

(
ez2/t

1 − e1/t

)
− Li 1

2

(
1

1 − e1/t

)
e− 2z√

πt

]
.

(17)

For t 	 1, Eq. (17) also recovers the correct limiting values
at z → 0 [cf. Eq. (12)] and at z 
 1,


̃(z 
 1, t 	 1) ≈ 1 −
√

1 − z−2, (18)
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where we use the large argument x → +∞ expansion of the
polylogarithm function,

Lis(−ex ) =
∞∑

k=0

B2k

(2k)!

(−)k (1 − 21−2k )(2π )2kxs−2k

�(s + 1 − 2k)
, (19)

and B2k is the 2kth Bernoulli number. With Li1/2(−ex ) ≈
−2

√
x/π as x → +∞, Eq. (17) recovers the correct zero-

temperature polarizability as t → 0. Moreover, Fig. 7(a)
shows that Eq. (17) is a good approximation of the low-
temperature polarizability all the way through t = 1. For z =
1 and t 	 1, the argument of the polylogarithm function in
Eq. (17) goes to −1 and Lis(−1) = −(1 − 21−s)ζ (s), where
ζ (s) is the Riemann zeta function, so that to the leading order
the polarizability becomes [39]


̃(z = 1, t 	 1) ≈ 1 −
√

πt

2
(1 −

√
2)ζ (1/2). (20)

The full wave-vector-dependent polarizability, which includes
the anomalous

√
T/EF suppression of screening around q ≈

2kF , predicts a strong linear-in-T increase of the metallic
2D resistivity at low temperatures [105,107,109–111]. The
significance of 2kF screening in determining the 2D metallic
temperature dependence in the disorder-limited resistivity was
already pointed out by Stern a long time ago [109]. At high
temperatures t 
 1, the chemical potential μ/T → −∞, and
we can expand the integrand of Eq. (10) using

1

4 cosh2(x/2)
= −

∞∑
n=1

n(−ex )n, x < 0. (21)

The series expansion of Eq. (10) at t > 1 is given by


̃(z, t > 1) = −
∞∑

n=1

(1 − e1/t )n

√
t

nz2
F (

√
nz2/t ), (22)

where F (x) is the Dawson function defined as

F (x) = e−x2
∫ x

0
eu2

du. (23)

Equation (22) has the following asymptotic limits. At z 	 √
t

and t > 1, 
̃(z, t ) = 1 − e−1/t + O(z2/t2); while at z 
 √
t

and t > 1, 
̃(z, t ) = (2z2)−1 + O(t/z4). If t 
 1, Eq. (22) is
well approximated by


̃(z, t 
 1) = F (z/
√

t )

z
√

t
. (24)

Equation (24) is the same result as obtained by Fetter [50,69],
by identifying qλ = z/

√
t , where λ = (2π h̄2/mT )1/2 is the

thermal wavelength. To the leading order at z 	 √
t and

t 
 1, the high-temperature polarizability 
̃ ≈ 1/t is the
well-known two-dimensional analog of the Debye-Hückel
screening [50,69]. Another useful analytical approximation to
recover the correct z = 0 value of the polarizability Eq. (12)
at t > 1 reads


̃(z, t > 1) = F
(
z/

√
t
)

z
√

t
+

(
1 − e−1/t − 1

t

)
e− πz2

2t . (25)

Figure 7(b) shows Eq. (25) is a good approximation of the
high-temperature polarizability all the way through t = 1.

Now we briefly discuss the Friedel oscillations associated
with the polarizability behavior at 2kF . At T = 0, the kink in

(q) at q = 2kF leads to an oscillatory term in the impurity
potential in the real space, known as the Friedel oscilla-
tions [42,112–114]. The real-space single-impurity potential
is given by the Fourier transform

U (r) =
∫ ∞

0

qdq

2π
U (q)J0(qr), (26)

where we can expand U (q) as

U (q) = 2π (e2/κ )e−qd

q + qTF
̃(q/2kF )
(27)

= UTF(q)
∞∑

n=0

(
1 − 
̃(q/2kF )

1 + q/qTF

)n

. (28)

The n = 0 term in Eq. (28) gives the conventional
Thomas-Fermi screened potential, which is simply the long-
wavelength screening

UTF(q) = 2πe2

κ (q + qTF)
e−qd . (29)

In real space [cf. Eq. (26)], the Thomas-Fermi screened po-
tential can be well-approximated by the following analytical
expression:

UTF(r) = e2

κ
√

r2 + d2

1 + qTFd

(1 + qTF

√
r2 + d2)2

, (30)

which gives the correct limits in the parameters r/d , qTFr,
and qTFd . For example, in the limits of r 
 d and qTFr 
 1,
Eq. (30) reduces to the expression of the dipole potential
given by Stern in Ref. [42], while Eq. (30) reduces to the
point-charge Coulomb potential UTF(r) = e2/κ

√
r2 + d2 in

the limits of weak screening qTFr, qTFd 	 1. Now we cal-
culate the correction terms to UTF(r) which are the Friedel
oscillations arising from the finite wave-vector screening. The
leading correction is related to the n = 1 term in Eq. (28),

�(1)U (r) =
∫ ∞

0

qdq

2π
J0(qr)UTF(q)

1 − 
̃(q/2kF )

1 + q/qTF
(31)

≈ e2qTFe−b

κ (1 + s)2

∫ ∞

1
dz

√
1 − z−2J0(2kF rz)e−b(z−1),

(32)

where z = q/2kF [cf. Eq. (9)], s = qTF/2kF , and b = 2kF d .
We immediately see that the Friedel oscillation is exponen-
tially suppressed in the case of a remote impurity far from the
2D system such that b 
 1. For a nearby impurity with b 	 1,
Eq. (32) is given by

�(1)U (r) ≈ e2qTFe−b

κ (1 + s)2

[
Si(ξ ) + cos ξ

ξ
− π

2

]
(33)

≈ − e2qTFe−b

κ (1 + s)2

[
sin ξ

ξ 2
+ O(ξ )−3

]
, (34)

where Si(ξ ) = ∫ ξ

0 (sin x/x)dx is the sine integral function and
ξ = 2kF r. In the second step to obtain Eq. (34), we employ the
large-r limit such that ξ = 2kF r 
 1, and the large-argument
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expansion of Si(ξ ),

Si(ξ 
 1) = π

2
− 1

ξ
cos ξ − 1

ξ 2
sin ξ + O(ξ )−3. (35)

Following the same procedure, we get the n = 2 correction
term in Eq. (28) in the limit of b 	 1 and ξ 
 1,

�(2)U (r) ≈ − e2qTFse−b

κ (1 + s)3

×
[

2(cos ξ + sin ξ )√
πξ 5/2

+ O(ξ )−7/2

]
. (36)

Combining Eqs. (34) and (36), we obtain the same expression
as given by Stern [cf. Eq. (11) in Ref. [42]]:

�U (r) ≈ − e2qTFe−b

κ (1 + s)2

×
[

sin ξ

ξ 2
− 23/2 cos(ξ − π/4)√

π (1 + s−1)ξ 5/2
+ O(ξ )−3

]
. (37)

Higher-order corrections can be obtained systematically in a
similar way. Since the Friedel oscillations in Eq. (37) cor-
respond to Fourier components only for q > 2kF while the
largest T = 0 backscattering momentum is q = 2kF , there is
no scattering from Friedel oscillations at zero temperature. At
low temperatures, T 	 EF , there is a small probability for
an electron to have a momentum k larger than kF , so that
the correction to the scattering cross section is proportional
to (k − kF )/kF ∝ T/EF , leading to the linear-in-T resistivity.
However, this is not the only contribution to the linear-in-T
resistivity. The polarizability also acquires a temperature de-
pendence that gives rise to the temperature-dependent Friedel
oscillations [40]

�U (r, T ) ≈ − e2qTFe−b

κ (1 + s)2

sin(2kF r)

(2kF rt )2 sinh2 (r/rt )
, (38)

where rt = h̄vF /T = 2/(tkF ). At r 	 rt , the denominator
rt sinh(r/rt ) → r, and Eq. (38) reduces to Eq. (34), while at
r 
 rt , rt sinh(r/rt ) → rt er/rT /2, and the Friedel oscillations
are exponentially damped by a factor of e−2r/rt . In the context
of impurity scattering, rt has the physical meaning of the
longest distance up to which the interference between the
scattering from the impurity and from the Friedel oscillations
can persist. In this case, an electron with momentum k can
maintain phase coherence of the scattering from Friedel oscil-
lations as long as (k − kF ) ∝ r−1

t ∼ (T/EF )kF , again leading
to the scattering cross section proportional to T/EF . A more
detailed derivation of the coefficient of the linear-in-T resis-
tivity associated with the screened Coulomb impurity is given
in Sec. V.

V. TEMPERATURE-DEPENDENT RESISTIVITY

In this section, we discuss the general numerical procedure
to compute the temperature-dependent resistivity, and we pro-
vide some analytical results for the low- and high-temperature
asymptotics. We start with the Boltzmann kinetic equation,

∂n

∂t
+ v · ∂n

∂r
+ eE · ∂n

∂p
= −n − n0

τ
, (39)

where n(r, p) is the distribution function in the presence of an
external electric field E, and n0 is the equilibrium distribution
function without the electric field. (We note that our notation n
is used for both the charge carrier density and the distribution
function, although the distinction between them should be
evident from the context.) τ is the scattering time. v = p/m
is the velocity. In the steady state, which is spatially homo-
geneous, the first two terms of Eq. (39) vanish. Assuming a
weak external electric field, we substitute n = n0 + n1 with a
perturbation n1 	 n0 and obtain the following:

eE · ∂n0

∂p
= −n1

τ
. (40)

Since n0(ε) = [e(ε−μ)/T + 1]−1 depends on the momentum
only through the energy ε(p) = p2/2m, we have ∂n0/∂p =
v · ∂n0/∂ε and the corresponding n1 reads

n1 = −eE · vτ
∂n0

∂ε
. (41)

The electric current is expressed through the distribution func-
tion in the following manner:

j = ge
∫

vn
dd p

(2π h̄)d
(42)

= −e2
∫

v(v · E)τ
∂n0

∂ε
ν(ε)dε

d�

�0
, (43)

where ν(ε) is the single-particle density of states (DOS), g
is the total quantum degeneracy (e.g., spin/valley degrees of
freedom), d is the spatial dimensionality, d� is the corre-
sponding differential solid angle in d-dimensional space, and
�0 is the total solid angle. For example, if d = 2, then d� =
dφ and �0 = 2π ; while if d = 3, then d� = sin θdθdφ and
�0 = 4π . The physical meaning of the integral d�/�0 is to
take the average of the angle between p and E, and we have∫

v(v · E)
d�

�0
= 1

d
v2E. (44)

The conductivity σ defined through j = σE is given by

σ = e2
∫

Dν(ε)dε

(
−∂n0

∂ε

)
, (45)

where we introduce the diffusion constant D = v2τ/d . At
zero temperature, −∂n0/∂ε = δ(ε − μ) and the conductiv-
ity becomes σ = e2[Dν(ε)]ε=μ, which is the well-known
Einstein relation in the single-particle approximation. As a
side note, if we take into account the interaction between
electrons, the Einstein relation will incorporate the compress-
ibility ∂n/∂μ instead of the single-particle density of states.
Expressing the diffusion constant in terms of the energy
D = (ετ/m)(2/d ), we can rewrite the conductivity at finite
temperatures through

σ = nee2τT

m
, (46)

where ne is the electron density and τT is the energy-averaged
scattering time at finite temperatures,

τT =
∫ ∞

0 ετ (ε)ν(ε)dε
(− ∂n0

∂ε

)
∫ ∞

0 εν(ε)dε
(− ∂n0

∂ε

) . (47)
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The temperature-dependent mobility is μT = eτT /m. The
energy-average scattering rates of two different mechanisms
τ−1

T,1 and τ−1
T,2 do not add in general, i.e., τ−1

T � τ−1
T,1 + τ−1

T,2
[115,116]. The denominator in Eq. (47) can be calculated
explicitly,

−
∫ ∞

0
εν(ε)dε

∂n0

∂ε
=

∫ ∞

0
[εν ′(ε) + ν(ε)]n0dε = d

2
ne,

(48)

where we use ne = ∫
n0ν(ε)dε and the energy scaling of the

d-dimensional DOS ν(ε) ∝ ε (d/2)−1 for a parabolic energy
dispersion. In the following, we focus on the case of interest
in which d = 2. The transport scattering time τ at energy
ε = h̄2k2/2m can be evaluated using the Born approximation

1

τ
= 4m

π h̄3

∫ 2k

0

dq√
4k2 − q2

( q

2k

)2
〈|U (q)|2〉, (49)

where U (q) is the screened potential of a given scattering
source. For charged impurity scattering, the potential corre-
lator averaged over impurity positions is given by

〈|U (q)|2〉 =
∫ +∞

−∞
dz N (z)U 2

1 (q, T, z), (50)

where N (z) is the 3D concentration of impurities at a distance
z from the center of the 2D system. U1(q, T, z) is the screened
Coulomb potential for a single impurity located at z,

U1(q, T, z) = 2πe2

κqε(q, T )
e−q|z|, (51)

where the dielectric function is given by

ε(q, T ) = 1 + V (q)
(q, T ). (52)

Here V (q) = 2πe2/κq is the Coulomb interaction within the
2D system, and 
(q, T ) is the static polarizability at finite
temperatures defined through Eq. (4). The temperature de-
pendence enters the calculation of τT through two parts. The
first temperature dependence is determined through the en-
ergy average weighted by the factor (−∂n0/∂ε). We note that
this temperature dependence, arising entirely from the Fermi
surface averaging, is always present, and contributes typically
an increasing conductivity of O(T/TF )2 with increasing T
(which is the case for the 3D metal) simply because the
effective scattering wave vector increases with increasing T ,
leading to a weaker Coulomb potential because of its 1/q
dependence. The second temperature dependence is due to the
polarizability 
(q, T ) appearing in the screened potential, and
this implies reduced screening at higher T and q � 2kF , thus
actually suppressing the conductivity, and giving an O(T/TF )
contribution as discussed before.

Next, we present an example of the calculation of τT result-
ing from remote charged impurity scattering, where there is a
layer of Coulomb impurities at distance d from the 2D system
and the impurity concentration is given by N (z) = nrδ(z − d ).
Introducing dimensionless quantities s = q/2kF , t = T/EF ,
a = ε/EF , b = 2kF d , we have

1

τ (s, t, a, b)
= 1

τ0
f (s, t, a, b), (53)

where

1

τ0
= nr

π2h̄

m

(
2

g

)2

(54)

and

f (s, t, a, b) = 2

π

∫ 1

0

2x2e−2b
√

axdx√
1 − x2[x

√
a/s + 
̃(x

√
a, t )]2

, (55)

where 
̃(z, t ) is the dimensionless polarizability defined
through Eq. (10). Substituting Eq. (53) into Eq. (47), we
obtain

τT (s, t, b) = τ0t
∫ ∞

0

f (s, t, ut, b)−1udu

4 cosh2 [(u/2) − ln(e1/t − 1)/2]
. (56)

The zero-temperature scattering time is given by

τT (s, t = 0, b) = τ0 f0(s, b)−1, (57)

where

f0(s, b) = 2

π

∫ 1

0

2x2e−2bx dx√
1 − x2(x/s + 1)2

, (58)

so that the zero-temperature resistivity reads

ρ0 = m f0(s, b)

nee2τ0
= h

e2

nr

ne

(
2

g

)2
π

2
f0(s, b). (59)

For in-plane impurities b = 0, we have f0(s, b = 0) = f0(s),
where

f0(s) = 2s2 + 4s3

π (1 − s2)

+
⎧⎨
⎩

4s3(2−s2 ) ln[(1−√
1−s2 )/s]

π (1−s2 )3/2 , s < 1,

4s3(2−s2 ) sec−1(s)
π (s2−1)3/2 , s � 1.

(60)

We have the limits f0(s 
 1) = 1 and f0(s 	 1) = 2s2,
which are well captured by the interpolation expression
f0(s) ≈ (1 + s−1/

√
2)−2. For remote impurities far from the

2D system b 
 1, we have f0(s 
 1, b 
 1) = (πb3)−1. The
finite-temperature resistivity is given by

ρ(t ) = ρ0
τ0

f0(s, b)τT (s, t, b)
. (61)

Next, we give some analytical results of the low- and high-
temperature asymptotics of the resistivity for scattering from
in-plane, remote, and background charged impurities, and
charge-neutral atomic point defects.

A. In-plane charged impurity scattering

The low- and high-temperature resistivity for in-plane im-
purity scattering [cf. Eq. (61) with b = 2kF d = 0] can be
asymptotically expanded as [39,107]

ρ(t 	 1) = ρ0

[
1 + 2s

1 + s
t + O(t )3/2

]
, (62)

ρ(t 
 1) = ρ0s2t−1[1 + O(t )−3/2]. (63)

Figure 8(a) compares the asymptotical expansions Eqs. (62)
and (63) with the numerical resistivity as a function of t =
T/EF at s = qTF/2kF = 10 and b = 2kF d = 0. In Ref. [107],
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FIG. 8. Resistivity ρ(t )/ρ0 as a function of t = T/EF due to
scattering from (a) in-plane charged impurities, (b) remote charged
impurities, (c) background charged impurities, and (d) charge-neutral
point defects. The solid curves are the numerical result calcu-
lated using (a) Eq. (61) with s = qTF/2kF = 10 and b = 2kF d =
0; (b) Eq. (61) with s = 10 and b = 1, 2, 4, 8; (c) Eqs. (109) and
(110) with s = 10; and (d) Eq. (120). The dashed curves show
the low- and high-temperature asymptotics (a) Eqs. (62) and (63),
(b) Eqs. (99) and (107), (c) Eqs. (112) and (115), and (d) Eqs. (124)
and (123), respectively. The black dot-dashed curve in (b) represents
the low-temperature resistivity Eq. (102) valid at b 
 1, which is
independent of the value of b.

it was pointed out that the low-temperature expansion results
of ρ(t 	 1) in Ref. [105] have incorrect coefficients, and we
confirm it here. Equation (2a) in Ref. [107] is the same as the
Hartree term Eq. (2.12) in Ref. [40]. Both are different from
Eq. (28) in Ref. [105], where the coefficient of the linear-in-T
term is larger by a factor of 2 ln 2. Here we present a way to
fix the result of Ref. [105] and obtain the correct linear-in-
T coefficient. At low temperatures t 	 1, the correction to
the polarizability is small, �
̃(z, t ) = 
̃(z, t ) − 
̃(z, 0) 	

̃(z, 0), such that one can expand τ−1 or the dimensionless
scattering rate f [cf. Eqs. (53) and (55)] in terms of �
̃(z, t )
as follows:

f (s, t, a)

= 2

π

∫ 1

0

2x2dx√
1 − x2[x

√
a/s + 
̃(x

√
a, 0)]2

− 2

π

∫ 1

0

2x2dx√
1 − x2

2�
̃(x
√

a, t )

[x
√

a/s + 
̃(x
√

a, 0)]3
+ O(�
̃)2

= f (s, t = 0, a) + �t f (s, t, a). (64)

We can further expand f (s, t = 0, a) around a = 1 in terms
of �
̃(x

√
a, 0) = 
̃(x

√
a, 0) − 
̃(x, 0) 	 
̃(x, 0), since in

the end we should do the energy average of τ (ε) using the
Fermi-Dirac distribution, where the dominant contribution

comes from |ε/EF − 1| = |a − 1| � t 	 1:

f (s, t = 0, a)

≈ 2

π

∫ 1

0

2x2
[
1 − 2�
̃(x

√
a,0)

x/s+
̃(x,0)

]
dx

√
1 − x2[x/s + 
̃(x, 0)]2

+ O(�
̃)2

= f0(s) + �a f (s, a). (65)

As a result, at low temperatures t 	 1, we can expand the
dimensionless scattering rate as

f (s, t, a) = f0(s) + �a f (s, a) + �t f (s, t, a) (66)

= f0(s) +
∞∑

n=1

(
�(n)

a f + �
(n)
t f

)
, (67)

or the dimensionless scattering time as

f −1 = f0(s)−1 − f0(s)−2
∞∑

n=1

(
�(n)

a f + �
(n)
t f

)
, (68)

where �(n)
a f and �

(n)
t f are given by

�(n)
a f = 2

π

∫ 1

0

(2x2)(−)n(n + 1)�
̃(x
√

a, 0)ndx√
1 − x2[x/s + 
̃(x, 0)]n+2

, (69)

�
(n)
t f = 2

π

∫ 1

0

(2x2)(−)n(n + 1)�
̃(x
√

a, t )ndx√
1 − x2[x/s + 
̃(x, 0)]n+2

. (70)

The corresponding corrections in the temperature-dependent
scattering time τT read

τT = τ0

f0(s)
− τ0

f0(s)2

∞∑
n=1

(
�(n)

a fT + �
(n)
t fT

)
, (71)

where �
(n)
i fT is the energy average of �

(n)
i f with i = a, t :

�
(n)
i fT =

∫ ∞

0

(
ε

EF

)[
�

(n)
i f (ε/EF )

](−∂n0

∂ε

)
dε (72)

=
∫ ∞

0

tu
[
�

(n)
i f (tu)

]
du

4 cosh2 [(u/2) − ln(e1/t − 1)/2]
. (73)

First, we evaluate �(n)
a fT and show n = 1 and 2 corresponding

to O(T ) and O(T 3/2) contributions, respectively. Using the
expression of �
̃(x

√
a, 0),

�
̃(x
√

a, 0) =
√

1 − x−2�(x − 1)

−
√

1 − (x2a)−1�(x − 1/
√

a), (74)

�(n)
a f can be rewritten as

�(n)
a f = 8

π

∫ 1

1/
√

a

x2(1 − 1/x2a)n/2dx√
1 − x2(x/s + 1)(n+2)

�(a − 1) (75)

≈ 8Nn(a)�(a − 1)

π (1/s + 1)(n+2) . (76)
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In the second step, we use the fact that 0 < (a − 1) 	 1,
where Nn(a) for a positive integer n is given by

Nn(a) =
∫ 1

1/
√

a
dx

(x2 − 1/a)n/2

√
1 − x2

(77)

=
√

π�
(

n
2 + 1

)
�

(
n
2 + 3

2

) (a − 1)(n+1)/2 + O(a − 1)(n+3)/2.

(78)

For example, N1(a) = (π/4)(a − 1) + O(a − 1)2 and
N2(a) = (2/3)(a − 1)3/2 + O(a − 1)5/2. As a result,

�(1)
a f = �(a − 1)

[
2(a − 1)

(1/s + 1)3
+ O(a − 1)2

]
, (79)

�(2)
a f = �(a − 1)

[
8

π

(a − 1)3/2

(1/s + 1)4
+ O(a − 1)5/2

]
. (80)

Substituting Eqs. (79) and (80) into Eq. (73), we obtain

�(1)
a fT = 2 ln 2

(1/s + 1)3
t + O(t )2, (81)

�(2)
a fT = 6(1 − 1/

√
2)ζ (3/2)√

π (1/s + 1)4
t3/2 + O(t )5/2. (82)

Next, we evaluate �
(n)
t fT and show that n = 1 and 2

correspond to another O(T ) and O(T 3/2) contributions, re-
spectively. Using the expression of �
̃(x

√
a, t ),

�
̃(x
√

a, t ) =
√

πt

2x
√

a
Li 1

2

(
ex2a/t

1 − e1/t

)

+ �(x − 1/
√

a)

√
1 − 1

x2a
. (83)

For a � 1 and t 	 1, we have

�
(n)
t f = 4(n + 1)

π

∫ 1

0

x2
[− √

πt
2x

√
a
Li1/2(−e(x2a−1)/t )

]n
dx

√
1 − x2(x/s + 1)n+2

≈ �
(n)
t f (a = 1)

[
Li1/2(−e−|1−a|/t )

Li1/2(−1)

]n

. (84)

Therefore,

�
(n)
t fT ≈ Ln�

(n)
t f (a = 1), (85)

where

Ln =
∫ +∞

−∞
dx

[Li1/2(−e−|x|)]n

4 cosh(x/2)2[Li1/2(−1)]n
. (86)

For example, L1 = 0.4655 and L2 = 0.2989. From Eq. (84)
we see that �

(n)
t f (a) peaks at a = 1 and exponentially decays

to zero with a small “decay energy” equal to t . The peak value
is given by

�
(n)
t f (a = 1)

≈ (n + 1)πn/2t (n+1)/2

π2n−1(1/s + 1)n+2

∫ ∞

0

du√
u

[−Li1/2(−e−u)]n

= (n + 1)(πt )(n+1)/2

π2n−1(1/s + 1)n+2
Mn, (87)

where

Mn = (−)n
∑
{mk}

(−)
∑

k mk√(∏
k mk

)(∑
k mk

) , (88)

and the dummy indices mk sum over all positive integers, and
the subscript k ranges from 1 to n. For example,

M1 = −
∞∑

m=1

(−)m

m
= ln 2, (89)

M2 =
∞∑

m1=1

∞∑
m2=1

(−)m1+m2√
m2

1m2 + m1m2
2

≈ 0.3066, (90)

and we have

�
(1)
t f (a = 1) = t

2 ln 2

(1/s + 1)3
, (91)

�
(2)
t f (a = 1) = t3/2 0.8150

(1/s + 1)4
. (92)

Substituting them into Eq. (85), we obtain

�
(1)
t fT = t

0.6453

(1/s + 1)3
, (93)

�
(2)
t fT = t3/2 0.2436

(1/s + 1)4
. (94)

Combining Eqs. (61), (71), (81), (82), (93), and (94), we
finally obtain

ρ(t 	 1)

ρ0
≈ 1 + 2.031 t

(1/s + 1)3 f0(s)
+ 2.834 t3/2

(1/s + 1)4 f0(s)
, (95)

whose numerical coefficients are close to Eq. (62) within a
few percent difference, if we identify f0(s) ≈ (1 + 1/s)−2 for
s 
 1. On the other hand, in the high-temperature limit t 
 1,
the polarizability 
̃ ≈ 1/t and we obtain

f (s, t, a) ≈ t2 f0(s/t
√

a), (96)

where f0(x) is given by Eq. (60). For example, the lead-
ing term in t 
 1 is f0(s/t

√
a → 0) ≈ 2s2/t2a and f (s, t 


1, a) ≈ 2s2/a. Together with the large-t limit of Eq. (56),

τT ≈ τ0

∫ ∞

0
e−uu f −1(s, t, ut )du, (97)

we obtain τT = τ0t/s2 and ρ(t 
 1) ≈ ρ0s2/t . Following the
same procedure for the higher-order terms, we obtain Eq. (63),

ρ(t 
 1) ≈ ρ0
s2

t

[
1 − 3st−3/2

4
√

π

(
1.09 + ln

t3

s2

)]
. (98)

B. Remote charged impurity scattering

For remote impurities whose location z = d is not too
far from the 2D system such that b = 2kF d � 1, Eq. (95)
becomes

ρ(t 	 1)

ρ0
≈ 1 + 2.031e−2b t

(s−1 + 1)3 f0(s, b)
+ 2.834e−2b t3/2

(s−1 + 1)4 f0(s, b)

+
(

1 − b − 7π

8

)
π2

12

e−2b t2

(s−1 + 1)3 f0(s, b)
. (99)
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Since the linear-in-T temperature dependence arises from
2kF -screening, but the remote impurities are ineffectively
screened, the effect is suppressed by an exponential factor
e−2b as shown in Eq. (99). However, if remote impurities
are very far from the 2D system such that b = 2kF d 
 1,
the above result will be dramatically modified so that the
resistivity decreases as the temperature increases, in contrast
to the case b � 1, where impurities are close to the 2D system.
The reason, essentially a thermal averaging effect, for such a
qualitative change of temperature dependence is as follows.
From Eq. (55) we see that due to the exponential suppres-
sion of the remote impurity potential, the relevant momentum
is at x = q/2k ∼ (2b

√
a)−1, or q/2kF = x

√
a ∼ (2b)−1 	 1.

Therefore, the strong low-temperature suppression of screen-
ing at q � 2kF is irrelevant if b 
 1, and we obtain

f (s, t 	 1, a, b 
 1) ≈ 1

πb3a3/2
. (100)

Substituting it into Eq. (47) and performing the integral using
Eq. (13), we get

τT ≈ τ0πb3�(7/2)t5/2(−)Li5/2(1 − e1/t ). (101)

Using the asymptotic expansion of the polylogarithm function
Eq. (19), we get the resistivity at low temperatures in the limit
b 
 1:

ρ(t 	 1)

ρ0
≈ [�(7/2)t5/2(−)Li5/2(1 − e1/t )]−1 (102)

≈ 1 − 35π2

48
t2 + O(t )4, (103)

which is independent of b. Equation (102) is the same as
Eq. (B19) in Ref. [70] up to a numerical factor. On the other
hand, at high temperatures t 
 1, the polarizability 
̃ ≈ 1/t ,
and the relevant energy scale in the integral of τT is ε ∼ T
or a = ε/EF ∼ t 
 1, so that the relevant momentum x ∼
(2b

√
a)−1 	 1, and we obtain

f (s, t, a, b) ≈ 2

π

∫ 1

0

2x2e−2b
√

axdx

(x
√

a/s + 1/t )2
≈ fa1(s, t, b)

a3/2
, (104)

where

fa1(s, t, b) = f (s, t, a = 1, b)

≈ 2s2

π

[
2bs + t

bt
+ 4s(bs + t )e2bs/t Ei

(− 2bs
t

)
t2

]
,

(105)

and Ei(x) = − ∫ ∞
−x (e−t/t )dt is the exponential integral func-

tion. Substituting Eq. (104) into Eqs. (47) and (61), we obtain

τT ≈ τ0�(7/2)t3/2

fa1(s, t, b)
(106)

and

ρ(t 
 1)

ρ(0)
≈ fa1(s, t, b)

f0(s, b)�(7/2)t3/2
. (107)

The comparison of the numerical results of ρ(t ) with low-
and high-T asymptotics at different values of b = 1, 2, 4, 8 is
shown in Fig. 8(b).

C. Background charged impurity scattering

For uniform background impurity concentration N (z) =
Nb, the potential correlator is given by [cf. Eq. (50)]

〈|U (q, T )|2〉 = Nb

q

[
2πe2

κqε(q, T )

]2

. (108)

Introducing the effective 2D impurity concentration nb =
Nb/2kF , the scattering rate [cf. Eqs. (55) and (58)] for back-
ground impurity scattering τ−1

b = τ−1
0 (nb) fb can be rewritten

as

fb(s, t, a) = 2

π

∫ 1

0

2(x/
√

a)dx√
1 − x2[x

√
a/s + 
̃(x

√
a, t )]2

. (109)

At zero temperature, τ−1
b = τ−1

0 (nb) f0b, where

f0b(s) = 2

π

∫ 1

0

2xdx√
1 − x2(x/s + 1)2

(110)

= 4

π

⎧⎨
⎩

s2

s2−1 − s2sec−1(s)
(s2−1)3/2 , s � 1,

s2

s2−1 + s2 ln(
√

s−2−1+s−1 )
(1−s2 )3/2 , s < 1.

(111)

If s 
 1, we have f0b(s) ≈ (4/π )(1/s + 1)−2. At low tem-
peratures t 	 1, the most important momentum scale for
background impurity scattering is q � 2kF similar to the case
for the in-plane impurity scattering discussed in Sec. V A.
Therefore, following a similar procedure, we obtain the low-
temperature asymptotic expansion of the resistivity,

ρ(t 	 1)/ρ0

≈ 1 + 2.031 t

(1/s + 1)3 f0b(s)
+ 2.834 t3/2

(1/s + 1)4 f0b(s)
. (112)

At high temperatures, 
̃(x
√

a, t ) ∼ 1/t , and a ∼ t 
 1, such
that the scattering rate becomes

fb(s, t, a) ≈ 2

π

∫ 1

0

2xdx√
1 − x2(x

√
a/s + 1/t )2

(113)

= s2

a3/2
f0b(s/t

√
a) ≈ 4

π

s2

a3/2
ln

(
t
√

a

s

)
, (114)

where we use f0b(x 	 1) ≈ (4/π ) ln(1/x). As a result, we
obtain the high-temperature asymptotic expansion of the re-
sistivity,

ρ(t 
 1)

ρ0
≈ 4s2 ln(t3/2/s)

π�(7/2) f0b(s)
t−3/2. (115)

The comparison of the numerical results of ρ(t ) with low- and
high-T asymptotics is shown in Fig. 8(c).

D. Charge-neutral atomic point defect scattering

The scanning tunneling microscopy (STM) images re-
ported in Ref. [27] explicitly show short-range intrinsic
charge-neutral point defects in monolayer WSe2 (most likely
Se vacancies). The density of charged and isovalent (charge
neutral) point defects is of the order 3 × 109 and 8 ×
1010 cm−2, respectively, for a flux-grown Se:W ratio of 100:1.
In addition, theoretical density functional theory (DFT) calcu-
lations of midgap states induced by point defects at either the
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W or Se sites also show a limited density of states (DOS) for
Se vacancies [117]. Since the charge carriers are entirely re-
pelled by the depletion region around the atomic point defects
such as Se vacancies, the scattering from the depletion region
cannot be described by the Born approximation, but rather
should be described by a hard-core scattering. The scattering
cross section � is given by

� = 1

nvl
, (116)

where nv is the density of the vacancies and l = vF τ is the
mean free path. The corresponding scattering rate reads

1

τ
= nvvF � = 1

τ0(nv )

kF �

π2

( g

2

)2
, (117)

where τ−1
0 (nv ) = nv (2/g)2π2h̄/m. The Drude conductivity

can be rewritten in terms of the scattering cross section,

σ = ne2τ

m
= ne2

mvF nv�
, (118)

and the corresponding mobility is given by

μPD = σ/en = e

h̄kF n�
. (119)

We see that the mobility decreases as the density increases.
In both classical and quantum mechanics, the scattering cross
section can be analytically evaluated and � = (8/3)a0 [118],
where a0 is the radius of the atomic point defects and is
roughly equal to the lattice constant ∼0.33 nm of WSe2.
Using Eqs. (47) and (117) and introducing a dimensionless
quantity c = kF �, we get the temperature-dependent scatter-
ing time contributed from the atomic vacancies,

τT (t, c) =
∫ ∞

0

τ0(nv )t fv (c
√

ut )−1udu

4 cosh2 [(u/2) − ln(e1/t − 1)/2]
, (120)

where

fv (c) = c

π2

( g

2

)2
. (121)

Equation (120) can be evaluated analytically, and we obtain

τT (t, c)

τ0(nv )
= π2

(
2

g

)2 √
πt

2c
(−)Li1/2(1 − e1/t ). (122)

As t → 0, we have (−)Li1/2(1 − e1/t ) → (2/
√

πt ), and
Eq. (122) recovers the zero-temperature result Eq. (117). At
high temperatures t → ∞, we have (−)Li1/2(1 − e1/t ) → 1/t
and

ρ(t 
 1)/ρ0 ≈ 2
√

t/π. (123)

Using Eq. (19), we get the resistivity at low temperatures,

ρ(t 	 1)

ρ0
≈ [�(3/2)t1/2(−)Li1/2(1 − e1/t )]−1 (124)

≈ 1 + π2

24
t2. (125)

The low- and high-T asymptotics are shown in Fig. 8(d).

VI. DOUBLE-GATE SCREENING

We consider the effect of double-gate screening in this
section. The distance from the top (bottom) gate to the 2D
system is d1 (d2). The single-impurity Coulomb potential in
the presence of double-gate screening is given by [119]

U1(q, T, z) = 2πe2

κqε(q, T )
D(qz, qd1, qd2), (126)

where

D(qz, qd1, qd2) = e−q|z|

− eqz(e2q(d1−z) − 1) + e−qz(e2q(d2+z) − 1)

e2q(d1+d2 ) − 1
. (127)

The dielectric function is given by Eq. (52), where the bare
Coulomb interaction within the 2D system is also screened by
the double gates V (q) = (2πe2/κq)D(0, qd1, qd2), where

D(0, qd1, qd2)

= tanh[q(d1 + d2)/2]

+ 1 − coth[q(d1 + d2)]

2
(eqd1 − eqd2 )2. (128)

For symmetric gates such that d1 = d2 = dg, we
have V (q) = (2πe2/κq) tanh(qdg). If qd1, qd2 
 1,
then D(0, qd1, qd2) → 1; while if qd1, qd2 	 1, then
D(0, qd1, qd2) → 2qd1d2/(d1 + d2). The double gate
screening changes the remote-impurity scattering by
modifying Eqs. (55) and (58) as

f (s, t, a, b, b1, b2)

= 2

π

∫ 1

0

2x2(1 − x2)−1/2D(x
√

ab, x
√

ab1, x
√

ab2)2dx[ x
√

a
s + 
̃(x

√
a, t )D(0, x

√
ab1, x

√
ab2)

]2

(129)

and

f0(s, b, b1, b2) = 2

π

∫ 1

0

2x2D(xb, xb1, xb2)2dx√
1 − x2

[
x
s + D(0, xb1, xb2)

]2 ,

(130)

where b1 = 2kF d1 and b2 = 2kF d2. If the gates are far away
such that b1, b2 → +∞, then D(xb, xb1, xb2) ≈ e−2bx and
D(0, xb1, xb2) ≈ 1. As a result, the remote impurity scattering
results Eqs. (129) and (130) reduce back to the results without
gate screening, Eqs. (55) and (58). If the δ-layer remote im-
purities are very close to the gate with a separation distance
d0 	 d1, d2, we can further simplify Eqs. (127). For example,
for RIs located at z = d1 − d0, we have

D(qd1 − qd0, qd1, qd2) ≈
{

2qd0e−qd1 , qd1, qd2 
 1,

2qd0
d2

d1+d2
, qd1, qd2 	 1.

(131)
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As a result, the transport scattering rate for RIs near the top
gate reads

f0(s, b1 − b0, b1, b2) ≈
⎧⎨
⎩

3(2d0 )2

d2
1

1
πb3

1
, b1, b2 
 1,

(2d0 )2d2
2

[q−1
T F (d1+d2 )+2d1d2]2 , b1, b2 	 1.

(132)

In the limits of b1, b2 
 1 (i.e., kF d1, kF d2 
 1), if we com-
pare the result Eq. (132) with the conventional RI scattering
rate expression in the absence of gate screening where

1

τRI
= nr

(
2

g

)2
π h̄

8m(kF d1)3
= 1

τ0(nr )

1

πb3
1

, b1 
 1, (133)

we find the RI scattering rate is reduced by a factor of
3(2d0)2/d2

1 due to the screening from the image charges in-
side the gate. On the other hand, in the opposite limits when
the carrier density is low, kF d1, kF d2 	 1, RIs behave as in-
plane charged impurities (i.e., τ−1

RI becomes independent of
kF at small kF ) with an extra geometrical factor as defined in
Eq. (132). On the other hand, for in-plane charged impurity
scattering with z = 0, the transport scattering rate has a rather
weak dependence on density. In the limit of low density, we
obtain the analytical scattering rate

f0(s) ≈ 4d2
1 d2

2[
q−1

TF (d1 + d2) + 2d1d2
]2 , (134)

which reduces back to the result without gate screening,
Eq. (60), in the limit of d1, d2 → ∞.

For BI scattering, the potential correlator is given by
Eq. (50) with 3D impurity concentration N (z) = Nb[�(d1 −
z) − �(z + d2)]

〈|U |2〉 = Nb

q

[
2πe2

κqε(q, T )

]2

Db(qd1, qd2), (135)

where the form factor Db(qd1, qd2) is given by

Db(qd1, qd2)

=
∫ d1

−d2

qdzD(qz, qd1, qd2)2 (136)

= csch(qd1 + qd2)2[[sinh(2qd1) − 2qd1] sinh(qd2)2

+ [sinh(2qd2) − 2qd2] sinh(qd1)2]. (137)

For symmetric gates d1 = d2 = dg, Eq. (137) can be simpli-
fied as Db(qdg) = [tanh(qdg) − qdgsech(qdg)2]. Introducing
the effective impurity concentration nb = Nb/2kF , the back-
ground impurity scattering rate [cf. Eqs. (55) and (58)] τ−1

b =
τ−1

0 (nb) fb can be rewritten as

fb(s, t, a, b1, b2)

= 2

π

∫ 1

0

2x(1 − x2)−1/2Db(x
√

ab1, x
√

ab2)dx[ x
√

a
s + 
̃(x

√
a, t )D(0, x

√
ab1, x

√
ab2)

]2

(138)

and

f0b(s, b1, b2) = 2

π

∫ 1

0

2xDb(xb1, xb2)dx√
1 − x2

[
x
s + D(0, xb1, xb2)

]2 .

(139)

In the limits of b1, b2 
 1 where the gates are far away,
Db(xb1, xb2) ≈ 1 and D(0, xb1, xb2) ≈ 1, such that Eqs. (138)
and (139) recover the results without gate screening,
Eqs. (109) and (110). On the other hand, in the limit of low
density kF d1, kF d2 	 1, we have

Db(xb1, xb2) ≈ 4b2
1b2

2x3

3(b1 + b2)
, b1, b2 	 1. (140)

Substituting Eqs. (140) into (139), we obtain

f0b(s, b1, b2) ≈ 4b2
1b2

2

3(b1 + b2)
(
s−1 + 2b1b2

b1+b2

)2 , b1, b2 	 1.

(141)

As a result, BIs behave as in-plane charged impurities at low
densities, kF d1, kF d2 	 1, where the BI scattering rate τ−1

BI is
independent of kF ,

1

τBI
=

(
2

g

)2
π2h̄

m

4Nbd2
1 d2

2

3(d1 + d2)
(
q−1

TF + 2d1d2
d1+d2

)2 . (142)

The zero-temperature mobility contributed by remote and
background charged impurity scattering is given by μRI =
eτ0(nr )/m f0 and μBI = eτ0(nb)/m f0b, respectively. Using the
Matthiessen addition rule μ−1 = μ−1

RI + μ−1
BI + μ−1

PD, we ob-
tain the total mobility at zero temperature as shown by the
solid black curves in Figs. 2(c) and 2(f). The correspond-
ing results of the mobility and resistivity as a function of
temperature are shown in Figs. 2(b) and 2(e) and Fig. 3(b),
respectively.

VII. COMPARISON BETWEEN DIFFERENT CHARGED
IMPURITY SCATTERING AT LOW DENSITIES

In this section, we discuss the low-density and low-
temperature (T = 0) mobility dominated by charged impurity
scattering, and we ignore all other scatterers such as atomic
point defects unless explicitly mentioned. Note that (see, e.g.,
Fig. 9) the low (high) density mobility is determined by re-
mote (background) impurity scattering, which is a generic
result for 2D transport in the presence of both background
and remote impurities. This discussion is directly related to
the Columbia sample [11], where the low-density data are
accessible because of more transparent contacts. Remote im-
purities are always important for sufficiently low density,
where kF d 	 1 (i.e., n � d−2). This can be seen in the expo-
nential suppression factor e−qd appearing in the RI Coulomb
potential U (q, d ), which becomes ineffective at low densities
kF d 	 1. As a result, RIs behave similarly to in-plane charged
impurities at low densities, where τ−1

RI saturates and becomes
independent of n. If those RIs are close to the double gates,
τ−1

RI is modified by a geometrical factor given by Eq. (132).
Similarly, BIs also behave as in-plane charged impurities at
low densities, since BIs can be viewed as many layers of
RIs separated from the 2D channel by difference distances.
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FIG. 9. Mobility μ vs hole density nh in a monolayer WSe2. Parts (a),(c),(e),(g) show the results in linear-linear scale, while (b),(d),(f),(h)
show the corresponding results in log-log scale. Purple dots are experimental data measured at T = 1.5 K. Solid curves represent the best-fit
results, the same as shown in Fig. 2(c), where RI is the dominant scattering mechanism at low densities. Dashed curves show different
results described by the titles above the figures, respectively. The black curve represents the total mobility. Red (orange) curves represent the
contribution from RI (BI) scattering. Green curves represent the PD scattering contribution.

In the presence of double gates, τ−1
BI for kF d 	 1 is given by

Eq. (142). In our theory, at such low densities, depending on
the details (for example, the impurity concentrations nr and Nb

and the hBN thickness d1 and d2 that determines the geometric
factors), one may get RI dominating over BI scattering since,
for kF d 	 1, RI behaves the same as BI. For example, if very
large values of nr are used, obviously they will eventually
dominate in the limit of very low density when kF d 	 1
even for the remote value of d . On the other hand, to obtain
concrete estimates of nr and Nb and to determine which better
fits the data, we need to use the difference between BI and
RI scattering. At intermediate densities kF d 
 1, while the
densities are still low enough such that point defect scattering
is irrelevant, the RI and BI mobilities behave differently where
μRI ∝ n1.5 and μBI ∝ n0.5 [120]. It is this distinction between
μRI and μBI that determines which scattering mechanism is
more suitable for fitting the low-density (more precisely, the
intermediate-density) data. The point to emphasize is that the
distinction between “remote” and “background” is meaning-
ful only when the two types of scatterer have different values
of the dimensionless “distance” parameter kF d with kF d 
 1
being remote and kF d 	 1 being background (or “near”) scat-
tering. Since kF ∼ n1/2, for a sufficiently low carrier density
n, the condition kF d 
 1 cannot be satisfied for any scatterer,
and all scattering becomes scattering by near impurities. In
such a situation, if there is a large amount of remote impuri-
ties, the remote scattering always dominates mobility, making
the low-density mobility sensitive to the concentration of the
remote scatterers. By contrast, the high-density mobility is

dominated typically by background scattering since for large
n, the remote scattering is strongly suppressed by virtue of
the 2kF d factor. The key point is that all scattering becomes
important (i.e., both RI and BI mobility are independent of n)
for sufficiently low carrier density. The easiest way to enhance
the low-density mobility is therefore to set the separation of
the remote scatterers large, which for the TMD layers under
consideration can be done by increasing the hBN thickness.
We predict that increasing the separation of the remote scat-
terers from the TMD layer will substantially enhance the
low-density mobility without much affecting the high-density
mobility.

For the Columbia sample [11], to demonstrate that RI is
the dominant scattering source at low densities, we show
the comparison between BI and RI in Figs. 9(a) and 9(b).
Solid (dashed) curves represent the fits where the RI (BI)
scattering dominates at low densities. As seen clearly in
Fig. 9(b) plotted in the log-log scale, the BI mobility follows
a power law μBI ∝ n0.5

h , while the RI mobility follows
μRI ∝ n1.5

h for kF d 
 1 [120]. Since the low-density mobility
data are proportional to nα

h with α ≈ 1.5, this indicates
that RI (with a large value of nr and a small value of Nb)
fits the data better. In addition, the RI dominant fit starts
to deviate from the data at a density nh � 5 × 1011 cm−2,
while the BI dominant fit starts to deviate from the data at a
higher density nh � 1 × 1012 cm−2. This also makes the RI
dominant fit better compared to BI. We see that at sufficiently
low densities, nh � 1 × 1011 cm−2, the theoretical RI and
BI mobility curves acquire smaller slopes and eventually
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saturate, as anticipated (i.e., RI and BI behave the same, and
the distinction between them has disappeared as kF d 	 1
for all scatterers). We should emphasize that, since the
Boltzmann transport theory becomes increasingly unreliable
as one approaches the low-density metal-insulator transition,
it is reasonable that both the RI and BI results deviate from
the experimental data at sufficiently low carrier density.

Next, we comment on the relatively large number of nr =
3 × 1012 cm−2 obtained from the RI dominant best-fit result
in Fig. 2(c). This number is obtained specifically for the case
in which the RIs are separated from the gate by a distance
d0 = 1 nm, and it changes sensitively when d0 changes. For
example, we show the mobility results for the same impurity
concentrations, but with d0 = 2 nm [twice as large as the
value d0 = 1 nm used in Fig. 2(c)], plotted as dashed lines
in Figs. 9(c) and 9(d). The RI mobility drops by a factor of
∼5, because the gate screening effect is weaker for larger d0.
This can be seen from the fact that the dipole length made
by the RI and its image charge is proportional to d0, and
the scattering rate is proportional to d2

0 [cf. Eq. (132)]. This
implies that the RI concentration nr should be reduced by a
factor ∼5 to fit the data. As a result, nr strongly depends on the
choice of d0, but d0 is an unknown parameter. In this sense, the
number nr = 3 × 1012 cm−2 is only our best estimate based
on the empirical guess that if there are RIs, then they should
be located near the interface. In experimental samples, the
only remote interface is the hBN/graphite-gate interface, and
d0 ∼ 1 nm is not an unreasonable number.

We suggest a way to improve the peak mobility in ex-
periments if the low-density mobility is indeed limited by
RI scattering near the hBN/graphite-gate interface. Given
that RI scattering is sensitive to d , as seen by μRI ∝ (kF d )3

[cf. Eq. (132)], the low-density mobility can be enhanced by
increasing d . For example, we theoretically predict the mo-
bility by increasing the top hBN thickness to d1 = 25 nm (cf.
d1 = 11 nm in the original experiment [11]), plotted as dashed
curves in Figs. 9(e) and 9(f), while keeping all other param-
eters the same in calculations. We find that the peak mobility
reaches 105 cm2/Vs, because the low-density RI mobility
increases by more than an order of magnitude and becomes
comparable to the BI mobility. Note that this also obviously
shifts the occurrence of the peak mobility to a lower carrier
density nh ∼ 3 × 1011 cm−2 since remote scattering is being
suppressed by increasing the hBN thickness. (On the other
hand, we note that the contact resistance increases strongly
around �1.7 × 1011 cm−2 in experiments, which could some-
how affect the observation of the peak mobility around the
same density.) In conclusion, by increasing the hBN thickness
d , RI scattering is suppressed and the low-density mobility
increases. At sufficiently large d , BI scattering becomes the
dominant scattering source at low carrier densities.

We comment on the in-plane charged impurity scattering
at low densities. The in-plane charged impurities contribute to
a mobility almost independent of the density [see Figs. 9(g)
and 9(h) and Eq. (134)], which cannot explain the sharp de-
crease in mobility at low densities. This implies that in-plane
charged impurities are not the dominant scattering source at
low densities, and the corresponding impurity concentration
is likely to be smaller than 109 cm−2 in the flux-grown WSe2

monolayers [11].

VIII. PHONON SCATTERING

In this section, we briefly discuss and compute the phonon
scattering rate within the deformation potential approxima-
tion [71,121–123]. The acoustic phonon scattering rate reads
[124,125]

1

τA
= mD2

h̄3ρmv2
s

T . (143)

The linear-in-T resistivity regime crosses over to the Bloch-
Grüneisen (BG) regime ∝(T/TBG)4 at low temperatures, T �
TBG/3 [25,70,123], where TBG = 2h̄vskF and vs is the sound
velocity. As a crude estimate, the mobility of WSe2 monolayer
at room temperature T = 300 K assuming only longitudi-
nal acoustic phonon scattering is μLA = 1.3 × 103 cm2/Vs,
where we use the 2D mass density ρm = 6.0 × 10−7 g/cm2,
the electron-phonon coupling D = 3.78 eV [122], and the
sound velocity vs = 3.3 × 105 cm/s [71]. This number of μLA

agrees reasonably well with the experimental data as shown
in Fig. 4. The optical phonon scattering rate for the zero-order
deformation potential scattering reads [121]

1

τO(ε)
= mD2

0

2h̄2ρmωλ

[Nλ + (Nλ + 1)�(ε − h̄ωλ)], (144)

where D0 is the zero-order deformation potential and ωλ is the
energy of the λth optical phonon mode with an average occu-
pation number Nλ = (eh̄ωλ/T − 1)−1. The two terms inside the
bracket represent the absorption ∝ Nλ and emission ∝ (Nλ +
1) of phonons, respectively. The Heaviside � function ensures
that only electrons with sufficiently large energy can emit a
phonon. The dominant temperature dependence of the optical
phonon scattering comes from the phonon occupation number
even after doing the energy average, such that τO ∝ N−1

λ .
The effective power-law temperature dependence of the mo-
bility μ ∝ τO ∝ T −γ can be obtained by γ = d ln Nλ/d ln T ,
and we get γ = 1 at T 
 h̄ωλ while γ = 1.58 at T 	 h̄ωλ.
Since the energy of typical optical phonon modes in WSe2

is ∼300 K [71], we get γ ≈ 1.2 at room temperature. This
analysis is in reasonable agreement with the fitting curves to
experimental data with a slope ranging from γ = 1 to 1.5 as
shown in Fig. 4.

IX. CONCLUSION

In summary, our research focuses on examining electronic
transport at low temperatures in monolayer TMDs under
realistic disorder conditions inspired by recent experiments
[8,11,28]. We analyze various aspects of the experimental
resistivity data, such as the 2D MIT behavior, the Wigner
crystallization, and the temperature and density dependence of
mobility and resistivity in the metallic phase. The linear-in-T
metallic resistivity experimentally observed at low temper-
atures is explained by the temperature-dependent Friedel
oscillations associated with screened charged impurities. We
explore the possibility that this Coulomb disorder may also
be responsible for triggering the MIT as either a disorder-
driven quantum Anderson localization transition or a classical
percolation transition through the long-range disorder poten-
tial landscape. The theoretically predicted critical density for
disorder-induced MIT is lower than the experimental critical

245431-21



YI HUANG AND SANKAR DAS SARMA PHYSICAL REVIEW B 109, 245431 (2024)

density, but only by a factor of ∼2 (which is not unreason-
able given the approximations involved in the theory and the
many unknown experimental details). This suggests that the
observed 2D MIT behavior in the high rs ∼ 30 regime likely
results from the interplay between disorder and interaction-
driven Wigner crystal physics. Nevertheless, because of their
large effective mass and low dielectric constant, TMDs have
a substantial melting temperature and high critical density for
the Wigner crystal as predicted by the mean-field theory, mak-
ing them one of the most suitable materials for investigating
Wigner crystal physics. (The bi- or multilayer TMDs without
moiré should have similar advantages in observing WCs, and
indeed WCs have been observed in bilayer MoSe2 via STM
recently [9].)

We briefly discuss the weak-localization effect, although
it is not observed in the experimental data. In the diffu-
sive limit T τ/h̄ 	 1, the conductivity acquires a logarithmic
correction whose numerical prefactor depends on the de-
tails of the weak-localization effect and the electron-electron
interaction [40,41,126–130]. If the phase coherent time τϕ

is determined by inelastic electron collisions, then both the
weak localization corrections to the Boltzmann conductivity
and the corrections originating from interaction are propor-
tional to ln T and will differ only in numerical coefficients
[40,41]. However, this ln T insulating behavior is difficult to
observe due to the competing linear-in-T metallic Boltzmann
resistivity, which may only become apparent at extremely
low temperatures outside the experimental temperature
range [59].

There are many approximations made in our theory in or-
der to calculate actual numerical results for a comparison with
experiments. We use the Boltzmann transport theory within
the leading-order relaxation-time approximation, which be-
comes increasingly inaccurate as the carrier density is lowered
toward the MIT, but the theory never becomes invalid until
there is an actual phase transition (e.g., at the MIT). However,
the theory should be quantitatively accurate deep into the
metallic phase, and indeed we get quantitative agreement with
the experimental resistivity at high carrier density, but our es-
timate of the critical density for the MIT is off by a factor of 2.

Our screening of the Coulomb disorder uses the random phase
approximation, which is also exact only at high densities,
becoming inaccurate at lower densities. Going beyond these
approximations is difficult, if not impossible, and therefore
it is satisfying that we get a reasonable agreement with the
experimental transport data over a broad density range with
our theory becoming quantitatively inaccurate at low densities
as expected.

We also find that associating the very low density (i.e.,
large rs) observation of the MIT does not necessarily imply the
observation of WC since disorder-induced localization effects
are also strongly enhanced at lower densities—this point has
already been emphasized earlier in the literature focusing on
2D semiconductor systems [37]. In fact, the reported obser-
vation of the lowest critical density (highest critical rs) MIT
was interpreted as a percolation transition rather than a WC
transition, although the critical rs for the MIT in that 2D hole
p-GaAs system was �50, much higher than the putative theo-
retically accepted value (∼30) for the 2D WC transition [55].
We believe that low-density 2D systems manifest a complex
interplay of disorder and correlation effects, which cannot
be easily described as a simple WC transition, even when
the critical rs is as large as 30 (or higher), provided that the
AIR condition predicts a localization MIT also near this high
critical rs. This becomes obvious once we take into account
the fact that the mean free path for the localization MIT ac-
cording to the AIR criterion is l ∼ 1/kF , which, by definition,
is comparable to the WC lattice constant, implying that any
such WC necessarily manifests periodic coherence only over
one (or at most, a few) lattice constants. Such a strongly
disordered WC could also be construed equivalently as an
Anderson insulator with short-range correlations induced by
interactions.
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