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Effects of spin-orbit coupling in a valley chiral kagome network
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Valley chiral kagome networks can arise in various situations like, for example, in double-aligned graphene-
hexagonal boron nitride and periodically strained graphene. Here, we construct a phenomenological scattering
model based on the symmetries of the network to investigate the energy spectrum and magnetotransport in this
system. Additionally, we consider the effects of a finite Rashba spin-orbit coupling on the transport properties
of the kagome network. We identify conditions where the interplay of the Rashba spin-orbit coupling and the
geometry of the lattice results in a reduction of the periodicity of the magnetoconductance and characteristic
sharp resonances. Moreover, we find a finite spin polarization of the conductance, which could be exploited in
spintronic devices.
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I. INTRODUCTION

Twistronics [1] has introduced a new route to manipulate
the band structure of crystalline systems, yielding the emer-
gence of correlated phases by selectively altering the energy
dispersion of the bands. The first realization of twistronics
was found in twisted bilayer graphene, where close to the
so-called magic angle correlated phases arise, such as super-
conducting, strange metal, and Mott insulating phases [2–14].
Also, it has opened the possibility to design new phases of
matter, like the Chern mosaic system, where the local valley
Chern number is changing within different regions of the
bulk, leading to the emergence of a network of valley chiral
modes propagating inside the material. An example of this
phase was predicted in minimally twisted bilayer graphene in
the presence of an interlayer bias [15,16]. There, a triangular
Chern mosaic arises with a valley Chern number difference of
±2 between different plackets, yielding a triangular network
with two valley chiral modes propagating in the bulk. This
system has been analyzed theoretically [15–28] and measured
experimentally [29–35]. Chern mosaic systems are not unique
to twisted bilayer graphene; they have been also found in
trilayer graphene [36], double-aligned graphene-hexagonal
boron nitride [37,38], and periodically strained graphene [39].
In these two latter cases, instead of having a triangular lattice
structure it exhibits a kagome lattice structure and a single val-
ley chiral mode propagating along the sides of the hexagons
and triangles [see Fig. 1(a)].

A simple way to model phenomenologically these net-
works consists of using the Chalker-Coddington scattering
model [40] adapted to the geometry and symmetries of the
system. In this way, one can obtain the band structure and
magnetotransport in a straightforward way [41–43]. Indeed,
it also allows to study topology [44], interactions [18,24–
26,28,45], effective Bloch oscillations [27], or multiterminal
transport [46]. Here, we follow the same principles and set
up a phenomenological scattering model to study the energy
spectrum and the transport properties of the valley chiral

kagome network. Additionally, we consider the presence of
Rashba spin-orbit coupling, which could be interesting for
spintronic applications [47,48]. Although the primary ex-
amples of such networks are graphene-based systems and
spin-orbit coupling in graphene itself is very small (order of
μeV) [49–53], one could increase it through proximity to a
substrate. Of special interest are transition metal dichalco-
genides, which can enhance the spin-orbit coupling up to
order meV [54–59]. Motivated by these realizations, we in-
clude spin-orbit coupling into the scattering network and
study its impact on the energy spectrum and magnetotrans-
port.

The structure of the paper is as follows: First we introduce
the scattering model of the kagome network in Sec. II. Also,
we show how to transform the kagome network into a tri-
angular network by combining scattering matrices. Then, we
calculate the network energy spectrum and magnetotransport
in Sec. III. Next, in Sec. IV we add the presence of a finite
spin-orbit coupling and calculate the corresponding energy
spectrum in Sec. IV A and magnetotransport in Sec. IV B.
Finally, we analyze the spin polarization of the conductance
in Sec. IV C.

II. KAGOME SCATTERING NETWORK MODEL

The kagome chiral network of a given valley consists of
chiral modes propagating along the links of hexagons and
triangles and scattering on the nodes [see in Fig. 1(a)]. This
system preserves time-reversal symmetry and, thus, on the
opposite valley, chiral modes propagate in the opposite direc-
tion. Here, we introduce a phenomenological scattering model
based on the symmetries of the lattice (C3 and MxT 1) to
describe the propagation and scattering processes of the chiral
modes.

1Here, Mx is the mirror symmetry relative to the y axis [cf. inset
Fig. 1(c)] and T is time-reversal symmetry.
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FIG. 1. (a) The kagome network consists of hexagons with area
A� and triangles with area A�. The unit cell is given by one
hexagon and two triangles and therefore has an area of A = A� +
2A�, which is the shaded area in the figure. The green arrows show
the direction of the chiral modes. The characteristic length scale of
the system l is shown. Through combining the scattering matrices of
triangles inside of the red circles the kagome scattering network is
transformed to a triangular one [see (b)]. (c) Single triangle in the
kagome network. Incoming modes are labeled with ai (αi ) outside
(inside) of the triangle. Outgoing modes are labeled similarly with
bi (βi ). Also, the coordinate axes in x and y directions and the lattice
vectors l i are depicted here.

We start describing the scattering processes taking place
at the nodes of the triangles. Using the notation depicted
in Fig. 1(c), we relate the incoming and outgoing scattering
modes participating on a single triangle by the S matrices(

b2

β2

)
= S1

(
a1

α1

)
, (1)(

b3

β3

)
= S2

(
a2

α2

)
, (2)(

b1

β1

)
= S3

(
a3

α3

)
. (3)

We have used greek and latin symbols to differentiate between
the modes encircling the inner triangle and the outer ones.

Here, the presence of C3 and MxT symmetries imposes
that the S matrices used in Eqs. (1)–(3) become equal, namely,
S0 := S1 = S2 = S3 and symmetric S0 = St

0, yielding the most
general (up to a global phase) 2 × 2 unitary symmetric matrix

S0 =
(

eiϕ
√

PR i
√

1 − PR

i
√

1 − PR e−iϕ
√

PR

)
, (4)

where PR = 1 − PL is the probability to scatter to the right,
and ϕ is the phase difference between scattering to the right
inside or outside of the triangle depicted in Fig. 1(c). In a
realistic situation, we expect PR > PL because the geometry
of the kagome lattice forces a larger overlap between the
incoming and right outgoing wave functions (60◦) than for left
outgoing wave functions (120◦). Only in the limit of strongly
localized wave functions, the geometry of the lattice stops
favoring a right reflection, yielding PR ≈ PL ≈ 0.5.

The incoming αi and outgoing βi modes inside the single
triangles are related by

αi = exp [iπε/2]βi, (5)

where ε = El/(π h̄vF ) is the dynamical phase gathered af-
ter propagating along the links, vF is the Fermi velocity of
graphene, and l/2 is the length of the link.

We simplify the structure of the network by contracting the
S matrix of individual triangles, which are encircled in red in
Fig. 1(a), onto single scattering nodes. In this way, the kagome
chiral network is mapped onto a triangular chiral network [see
Fig. 1(b)]. The resulting S matrix of one triangle is energy-
dependent due to the dynamical phases picked up along the
contracted links. Using Eq. (5), we combine Eqs. (1)–(3) into
a single S matrix ⎛⎝b1

b2

b3

⎞⎠ = S�

⎛⎝a1

a2

a3

⎞⎠ (6)

with

S� = 1

e3iϕ − e
3iπε

2 P3/2
R

⎛⎜⎝ −e2iϕeiπεPL
√

PR −e3iϕe
iπε
2 PL

(
e3iϕ − e

3iπε
2

√
PR

)
eiϕ

√
PR(

e3iϕ − e
3iπε

2
√

PR
)
eiϕ

√
PR −e2iϕeiπεPL

√
PR −e3iϕe

iπε
2 PL

−e3iϕe
iπε
2 PL

(
e3iϕ − e

3iπε
2

√
PR

)
eiϕ

√
PR −e2iϕeiπεPL

√
PR

⎞⎟⎠, (7)

being the total S matrix of a single triangle. The S matrix
for the opposite valley can be obtained using symmetry ar-
guments, that is, SK

� = (SK ′
� )t .

III. KAGOME NETWORK WITHOUT
SPIN-ORBIT COUPLING

In this section, we analyze the energy spectrum and the
magnetoconductance of the kagome network without spin-
dependent scattering effects. Therefore, the S matrices for
spin-up and -down electrons are identical and remain decou-
pled.

A. Network bands

Once we have contracted a single triangle into a scatter-
ing center, the kagome network is turned into a triangular
network, similar to the one arising in minimally twisted
bilayer graphene under an interlayer bias [15,41,42,46].
Thus, to set the triangular network, we place the scatter-
ing centers at positions ml1 + nl2 with m, n ∈ Z and l1/2 =
l/2(−1/2,±√

3/2).
To obtain the network energy spectrum, we make use of

Bloch’s theorem, which relates the scattering amplitudes bmn

at the node (m, n) to the outgoing scattering amplitudes at
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FIG. 2. Network bands along high-symmetry lines; see inset in (c) for K (solid black) and K ′ (red dashed) in units of El = π h̄vF /l for
different values of PR and ϕ.

different unit cells by⎛⎝ b1m+1n

b2m−1n−1

b3mn+1

⎞⎠
k

= M(k)

⎛⎝b1mn

b2mn

b3mn

⎞⎠
k

, (8)

with M(k) = diag(eik1 , eik3 , eik2 ) where k j = k · l j ( j =
1, 2, 3) and l3 = −(l1 + l2). The incoming and outgoing
modes of different nodes are related by [41,60]

(a1mn, a2mn, a3mn)t = eiπε/2(b1m+1n, b2m−1n−1, b3mn+1)t . (9)

Finally, the energy bands are obtained substituting bmn =
S�amn and Eq. (9) into (8), leading to

M(k)S� ak = e−iπε/2ak, (10)

from which we obtain the equation

det
(
M(k)S� − e−iπε/213

) = 0, (11)

whose solution gives the network energy bands. Note that S�
is energy-dependent, i.e., S� = S�(ε). This equation results in

f (kx, ky) = cos

(
3πε

2

)
(12)

with

f (kx, ky ) = √
PR

[
PR cos(3ϕ) − (1 − PR) cos(kxl/2 − ϕ)

− 2(1 − PR) cos

(
kx

2

l

2
+ ϕ

)
cos

(√
3ky

2

l

2

)]
(13)

with a periodicity of 4/3 in ε. We find two solutions of this
equation within the interval ε ∈ [−2/3, 2/3], namely,

ε± = E±l

π h̄vF
= ± 2

3π
arccos[ f (kx, ky)]. (14)

Here, the periodicity of the network bands is reduced due to
the presence of a phase-rotation symmetry [39]. The smallest
energy window that contains all unique solutions is called
the fundamental domain [61], which is in our case ε ∈
[−2/3, 2/3]. For the parameter ϕ all unique cases are realized
in the interval [−π/3, π/3]. This can be seen by noticing
that shifting ϕ by 2π/3 in Eq. (13) gives the same result
as if we would shift the center of the Brillouin zone � to

K (K ′), which is consistent with Ref. [39]. The energy spec-
trum of the other valley is obtained by (kx, ky) → (−kx,−ky )
and SK ′ = St

� [see Eq. (7)]. Since Eq. (13) is invariant under
(kx, ky) → (−kx,−ky) for ϕ = 0, the bands for K and K ′
coincide [see Figs. 2(a)–2(c)].

In Fig. 2, we show the resulting network bands along high-
symmetry lines, depicted in the upper right inset in Fig. 2(c).
We start with the case of ϕ = 0. In the limit PR → 1(0), the
combined S matrix S� has no forward scattering probability
and, thus, electrons encircle individual triangles (hexagons),
which result in the appearance of flat bands [see Figs. 2(a) and
2(c)]. For intermediate values of 0 < PR < 1, the band struc-
ture acquires a finite group velocity since now there is a finite
forward scattering probability that allows a coupling between
modes encircling triangles and hexagons [see Fig. 2(b)]. How-
ever, the spectrum remains gapped in these cases. As a next
step, we therefore study in which parameter regimes the gaps
become closed. The band structure exhibits a gap closing at
the � point for PR = 1/4 [see Fig. 2(e)]. Indeed, this result
can be generalized for ϕ 	= 0, where now the gap closing
occurs for PR = 1/[4 cos2(ϕ)]. In addition, we can find a gap
closing at the K (K ′) point for PR = 1/[4 cos2(ϕ ± 2π/3)]
[see Figs. 2(d)–2(f)]. The gaps at the � and K (K ′) points
can get simultaneously closed for PR = 1/3 and ϕ = ±π/6.
We notice that for finite ϕ, the symmetry kx → −kx becomes
lifted and, therefore, the bands of the two valleys are no longer
the same for all k. However, along � → M this symmetry
is never lifted because the bands remain symmetric under
ky → −ky for all values of ϕ. Furthermore, ϕ → −ϕ has the
same effect on the bands as K → K ′.

B. Magnetoconductance

We calculate the conductance of a network strip with width
W and length L 
 W . To this aim, we combine recursively
the S matrices along L and sum over the good quantum
number ky in the transversal direction (see further details in
Refs. [42,43,46] and Appendix C).

The magnetoconductance for finite temperature is given by
[62]

G = G0
W√
3l/2

∫
dE T (E )

(
−∂ f0

∂E

)
, (15)
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FIG. 3. Conductance as a function of EF of a network strip for
different values of PR and ϕ at zero temperature with L = 10l .

where G0 = e2/h, W is the width of the strip, f0 = {exp[(E −
EF )/kBT ] + 1}−1 is the Fermi-Dirac distribution with EF the
Fermi energy, and T (E ) is the transmission function for one
unit cell of the strip. At zero temperature, Eq. (15) reduces to

G = G0
W√
3l/2

T (EF ). (16)

We only discuss the transmission from the left to the right
terminal here, which is the same as from right to left in each
valley in these kind of strip systems for W � L [42].

Conductance at B = 0. In Fig. 3, we present the conduc-
tance as a function of the Fermi energy, in units of El =
π h̄vF /l . As expected, the conductance reaches its maximum
at PR = 0.5 [Fig. 3(b)], as both right and left scattering
contributions are needed for transport through the network.
We observe an energy periodicity of 4/3El , similarly to the
network bands (see Fig. 2). Additionally, the conductance
vanishes at PR → 0 and PR → 1 [Fig. 3(a)], corresponding
to the appearance of flat bands discussed in Figs. 2(a) and
2(c). We show in Figs. 3(c) and 3(d) two examples of the
conductance that exhibit gap closings in the corresponding
bands Figs. 2(d) and 2(e). In the case of PR = 1/3, ϕ =
π/6 [Fig. 3(c)], we observe a reduction of the periodicity
of the conductance to 2/3El , which is half of the previous
periodicity. Interestingly, we observe conductance peaks at
EF = ±(2n/3 + 1/3)El with n ∈ N, which are higher than
the peaks observed for PR = 0.5 and ϕ = 0. This resonance
phenomenon occurs for ϕ = ±(2n + 1)π/6 with n ∈ N.

To have more insight into this resonance phenomenon, we
construct a reduced version of the network model consist-
ing of three contracted triangles [see Fig. 1(b)]. To simplify
the calculations we consider periodic boundary conditions
in the vertical direction of the strip. Under these condi-
tions, the phase factors in the transmission function are all
of the form exp(3im1ϕ) exp(3im2πεF /2) with εF = EF /El ,
m1, m2 ∈ N, and m1 + m2 ∈ 2N. For ϕ = ±(2n1 + 1)π/6
and εF = ±(2n2/3 + 1/3), with n1, n2 ∈ N, these phase fac-
tors become all ±1, indicating an interference effect. The
transmission function for these values of εF and ϕ is for a

FIG. 4. Conductance as a function of 
 of a network strip for
PR = 0.5, ϕ = 0, EF = 0 (top) and PR = 1/3, ϕ = π/6, EF = El

(bottom) for different temperatures and with L = 5l . Here, El =
π h̄vF /l and Tl = π h̄vF /(kBl ).

single valley and spin

T = 2 + 25

(5 ± √
PR + PR)2

− 10

5 ± √
PR + PR

. (17)

We observe a constant term in the transmission function, in-
dependent of PR, that lead to the discussed peaks in Fig. 3.

Conductance at B 	= 0. We introduce the effects of a per-
pendicular magnetic field by means of the shift of momentum
by a vector potential A = Bxey. As a result, the modes acquire
a Peierls phase, which is proportional to the magnetic flux

 = BA. Here, A = √

3l2/2 represents the area of the struc-
tural element of the kagome network, consisting of a hexagon
(A� = 3

√
3l2/8) and two triangles (A� = √

3l2/16) [see
Fig. 1(a)]. It is important to note that the S matrix for one
triangle is modified in the presence of a magnetic field. We
provide its analytical expression in Appendix A in Eq. (A5).

We show the magnetoconductance in Fig. 4 for different
values of PR, ϕ and temperature T . For finite 
 	= 0, the
conductance has a periodicity of 
/
0 = 8, which arises due
to the possibility of encircling a single triangle with an area
A� that is an eighth of the area of the unit cell of the kagome
network A.

Electrons propagating through the network gather dy-
namical and Peierls phases, which can lead to destructive
and constructive interference between different trajectories.
Aharonov-Bohm (AB) conductance resonances occur when
electronic paths encircle multiples of the unit cell of the
kagome network, with an area A. Thus, these paths have all
the same length and, therefore, they accumulate the same dy-
namical phase, yielding an energy-independent transmission
probability. This has a crucial consequence at finite temper-
ature since paths with different lengths accumulate different
dynamical phases are averaged out in energy [42,63]. We see
this effect in Fig. 4, where the AB conductance resonances
become more prominent at finite temperature for 
 = n
0

with n ∈ Z. Aside from the AB resonances, we also observe
an energy-dependent background, which becomes less visi-
ble with higher temperature and/or larger system size and
depends on the value of the Fermi energy EF .
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EFFECTS OF SPIN-ORBIT COUPLING IN A VALLEY … PHYSICAL REVIEW B 109, 245429 (2024)

FIG. 5. Conductance as a function of 
 of a network strip for
PR = 0.5, ϕ = 0, EF = 0 (left) and PR = 1/3, ϕ = π/6, EF = El

(right) for T/Tl = 0.1 and with L = 5l . Here, El = π h̄vF /l and
Tl = π h̄vF /(kBl ).

In addition, it is also possible to encircle larger areas in
this network, which would result in additional peaks in the
magnetoconductance at fractions of 
0. More specifically,
encircling an area of nA with n ∈ N would lead to a peak
at 
/
0 = 1/n. To make this effect visible, we show in Fig. 5
the results from Fig. 4 in a smaller range of flux 
 for finite
temperature T/Tl = 0.1. We find between two larger peaks at
integer multiples of 
0 also smaller peaks due to encircling
higher multiples of A, as expected. Note that these conduc-
tance peaks are smaller because it is less probable to encircle
larger areas.

IV. INTERPLAY OF RASHBA SPIN-ORBIT COUPLING
AND THE KAGOME NETWORK

Next, we explore the influence of Rashba spin-orbit (SO)
coupling on the spectrum and transport properties of the net-
work. To do so we have to include the presence of SO coupling
into the network calculations. The two primary examples or
proposed kagome networks are based on graphene systems,
namely, an hBN-graphene-hBN heterostructure with a relative
twist angle between each layer [37] and a single graphene
layer in a periodic strain field [39]. Therefore, we model the
system with the graphene Hamiltonian. For low energies the
Hamiltonian around the K/K ′ valley with Rashba spin-orbit
coupling [49,64,65] is given by

H = H0 + HR, (18)

H0 = h̄vF (τkxσx + kyσy), (19)

HR = αR(τσxsy − σysx ), (20)

with si (σi) the ith Pauli matrix in spin and sublattice spaces,
αR the SO coupling constant, and vF the Fermi velocity of
graphene. The factor τ = ±1 takes different values for the
K/K ′ valley. We can rewrite this Hamiltonian as a spin-
dependent shift (s × αR) in momentum, namely,

H = h̄vF σ · (k + s × αR) (21)

with αR = (0, 0, αR/(h̄vF ))t , s = (sx, sy, sz )t , σ =
(τσx, σy, σz )t , and k = (kx, ky, 0)t . Note that we have
changed the notation here to an equivalent representation
with three-dimensional vectors. Similar to the effect of a
magnetic field [66,67] that leads to the Peierls phase, we can
describe this momentum shift as a geometric phase picked up

along the links in the form of

ψ̃ (r) = exp

(
−i

∫
C

(s × αR)dl
)

ψ (r) (22)

= exp[−i(s × αR)r]ψ (r) =: A(θ )ψ (r), (23)

where r = (x, y, z)t describes the end point of the curve, ψ

is the eigenfunction of Eq. (21) for αR = 0 and ψ̃ for finite
spin-orbit coupling. We assumed here that the start point of
the curve C is zero. We can write the geometric phase factor
in Eq. (23) as

A(θ ) = exp{iπα[sx sin(θ ) − sy cos(θ )]/2} (24)

with α = αRl/(π h̄vF ) and θ the angle between the direction
of the mode relative to the x axis (see Fig. 1). Note that this
form is similar to the way it was implemented in previous
publications in different network systems [68,69]. To give
an estimate for the value of α we find in the literature that
for graphene on WSe2 a Rashba spin-orbit coupling constant
of αR ≈ 15 meV [59] has been measured. Furthermore, it is
reasonable in a moiré system with small twist angle to assume
that l ∼ 100 nm [37,43,46]. With the graphene Fermi velocity
vF ≈ 106 m/s [46] we find α ∼ 0.7.

The outgoing modes relate to the incoming modes inside
the triangle (see notation in Fig. 1) as

(α1,↑, α1,↓)t = M(2π/3)(β1,↑, β1,↓)t , (25)

(α2,↑, α2,↓)t = M(0)(β2,↑, β2,↓)t , (26)

(α3,↑, α3,↓)t = M(−2π/3)(β3,↑, β3,↓)t , (27)

by means of the matrix

M(θ ) = exp [iπs0ε/2]A(θ ) (28)

with s0 the identity matrix in spin space.
We have now everything to describe a single triangle of

the kagome network in the presence of Rashba spin-orbit
coupling. Thus, we replace the dynamical phase introduced
in Eq. (9) by Eqs. (25)–(27) and calculate the network bands
and magnetoconductance calculations in Secs. IV A and IV B,
respectively.

A. Network bands

Instead of contracting each triangle into an energy-
dependent scattering node, we enlarge our basis set to account
for all incoming and outgoing modes at each subnode inside
the triangle, yielding a larger, but energy-independent S ma-
trix. As it was pointed out in Ref. [39], this way of calculating
the energy spectrum makes the calculation of the network
bands more stable.

Thus, using the notation of the incoming and outgoing
modes depicted in Fig. 1, we write for a given spin σ

(b2,σ , β2,σ , b3,σ , β3,σ , b1,σ , β1,σ )t

= Sσ (a1,σ , α1,σ , a2,σ , α2,σ , a3,σ , α3,σ )t (29)

with

Sσ =
⎛⎝S0,σ 0 0

0 S0,σ 0
0 0 S0,σ

⎞⎠. (30)
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FIG. 6. Network bands along high-symmetry lines of the kagome network for PR = 0.5 and ϕ = 0 (a)–(c) and PR = 1/3 and ϕ = π/6
(d)–(f) for different values of spin-orbit coupling α.

Here, we have assumed that the S matrix at every node is spin-
independent, so that Eq. (4) is still valid, i.e., S0,σ = S0.

For the next step, we label each of these triangles, which
describe the unit cell of the kagome network, by its posi-
tion ml1 + nl2 with m, n ∈ Z and l1/2 = l/2(−1/2,±√

3/2).
Then, we can relate the incoming scattering amplitudes at a
unit cell (m, n) to the outgoing scattering amplitudes bmn at
different unit cells by

(a1mn,↑, a1mn,↓)t = M(−π/3)(b1m+1n,↑, b1m+1n,↓)t , (31)

(a2mn,↑, a2mn,↓)t = M(π )(b2m−1n−1,↑, b2m−1n−1,↓)t , (32)

(a3mn,↑, a3mn,↓)t = M(π/3)(b3mn+1,↑, b3mn+1,↓)t . (33)

These equations, together with Eqs. (25)–(27), allow to write
the matrix

D(α, ε) = diag[M(−π/3), M(2π/3), M(π ), M(0),

M(π/3), M(−2π/3)] (34)

containing the dynamical and geometric phases [70,71] gath-
ered when propagating between the nodes specified in the
corresponding equations (see more details in Appendix B).

Analogously to Eq. (10), we use Bloch’s theorem to obtain

M(k)S ak = D(α, ε)−1ak. (35)

In contrast to Eq. (10), here the S matrix accounts for both
spins S = Sσ ⊗ 12×2 and the dynamical phase is replaced
by the matrix D(α, ε), introduced previously. Moreover, the
specific form of the matrix M(k) is given in Appendix B.

We obtain the S matrix of the other valley by performing
a time-reversal transformation, that is, M(θ ) → M(θ + π )
and (kx, ky) → (−kx,−ky). In addition, S remains invariant
because it is symmetric S = St .

The energy bands for a given valley are obtained from the
solutions of

det[M(k)S − D(α, ε)−1] = 0. (36)

In Fig. 6 we show the energy bands along high-symmetry
lines as depicted in the upper left inset. We can observe the
typical spin-momentum splitting in the bands together with a

band flattening, which indicates a localization effect (see also
Refs. [68,69]). Additionally, we find for α = 1 and ϕ = 0,
bands, that are constant from � → M, see Fig. 6(c). These
flattened bands will lead to conductance resonances, which
we discuss next.

B. Magnetoconductance

We calculate the conductance of the spinful network by
combining recursively S matrices of consecutive single trian-
gles, as specified in Appendix C. Again, the conductance is
obtained with Eq. (15). Due to the basis enlargement and the
presence of off-diagonal terms introduced by Eqs. (30) and
(25)–(27), we are forced to calculate S� numerically, which
relates ⎛⎜⎜⎜⎜⎜⎜⎝

b1,↑
b1,↓
b2,↑
b2,↓
b3,↑
b3,↓

⎞⎟⎟⎟⎟⎟⎟⎠ = S�

⎛⎜⎜⎜⎜⎜⎜⎝
a1,↑
a1,↓
a2,↑
a2,↓
a3,↑
a3,↓

⎞⎟⎟⎟⎟⎟⎟⎠. (37)

We obtain the S matrix for the other valley performing a
spinful time-reversal symmetry transformation, namely,

S�,K ′ (
) = gSt
�,K (−
)g−1, (38)

where g = −i(13 ⊗ σy) and 
 is the flux.
In Figs. 7(a) and 7(b), we can observe the impact of the

presence of a finite SO coupling on the conductance of the
network strip as a function of EF /El for PR = 0.5, ϕ = 0,

 = 0. We observe a larger number of peaks with a reduced
height. These results are consistent with the split bands with a
flattened dispersion due to the SO coupling, as seen in Fig. 6.

Next, we study the interplay of the spin-orbit coupling and
a perpendicular magnetic field defined by a vector potential
of the form A = Bxey as we have introduced in Sec. III B. We
show the conductance as a function of the magnetic flux 
/
0

in Figs. 7(c) and 7(d), with PR = 0.5, ϕ = 0, EF = 2.5El , and
different values of αR and temperature. For α = 0, we observe
a periodicity of 
 = 8
0 and the AB resonances occurring at
higher temperatures at 
 = m
0 with m ∈ Z [see Fig. 7(c)].
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FIG. 7. (a), (b) Conductance of a network strip of the kagome
network as a function of EF in units of El = π h̄vF /l with dif-
ferent values of spin-orbit coupling α. We show here the case of
PR = 0.5, ϕ = 0 and with L = 10l . (c), (d) Magnetoconductance of
a network strip of the kagome lattice with different values of spin-
orbit coupling α as a function of 
 for different temperatures, PR =
0.5, ϕ = 0 and length L = 5l . EF is given in units of El = π h̄vF /l
and temperature T in units of Tl = π h̄vF /(kBl ).

For higher values of α [Fig. 7(d)], the AB resonances are di-
minished, indicating a localization effect of the SO coupling.
This reduction makes it challenging to differentiate the reso-
nances at multiples of 
0 from the higher-order resonances
in-between.

The interplay of the network geometry and the SO is maxi-
mally visible when the spin of a particle propagating between
two nodes rotates 180◦. Due to the triangular geometry, the
effective periodicity of the lattice is doubled since an electron
traveling through the network needs to encircle two triangles
to return to the same state as before the propagation. This oc-
curs when M(θ ), given in Eq. (28), is completely off-diagonal,
which appears for

α = 2n + 1, (39)

with n ∈ Z. We show in Fig. 8(a) the magnetoconductance,
where Eq. (39) is fulfilled. Remarkably, the periodicity of the

FIG. 8. (a) Conductance as a function of 
 of a network strip
of the kagome network with α = 1 for different temperatures. EF

is given in units of El = π h̄vF /l and temperature T in units of
Tl = π h̄vF /(kBl ). (b) Conductance of a network strip of the kagome
network as a function of EF in units of El = π h̄vF /l for α = 1. We
show here the case of PR = 0.5, ϕ = 0 and with L = 10l .

magnetoconductance is reduced to 
 = 4
0, which indicates
that paths encircling a single triangle no longer contribute to
the conductance. Such geometry-dependent interference ef-
fects are typical for non-Abelian phase fields, like in this case
due to SO coupling, which are responsible for the Aharonov-
Casher effect [71].

Additionally, a resonance phenomenon occurs if apart of
fulfilling Eq. (39), we also have

3

2
εF π − π


4
0
= (2m + 1)

π

2
, m ∈ Z (40)

where εF = EF /El . When both conditions are fulfilled and

/
0 is an integer, a sharp conductance peak arises [see
Fig. 8(b)].

We can understand this resonance phenomenon
by calculating analytically the probability amplitude
of a particle crossing a small version of the net-
work, i.e., a single triangle. The propagator for a
single round trip around a triangle is given by P1 =
exp(−iπ
/4
0)M(2π/3)M(−2π/3)M(0) for a contracted
triangle or P2 = exp(−iπ
/4
0)M(−π/3)M(π/3)M(π )
for an outer triangle (see Fig. 1). Thus, summing over paths
with different number of round trips leads to

∞∑
n=0

Pn
j = (1 − Pj )

−1, j = 1, 2. (41)

This expression exhibits divergences if both conditions are
fulfilled, indicating a resonance effect. For finite temperature,
the periodicity remains the same [see Fig. 8(a)]. Similar as
in Eq. (17), we can calculate the transmission function for a
given valley for a small system consisting of three triangles
[see Fig. 1(b)] with periodic boundary conditions. If Eqs. (39)
and (40) are fulfilled, we find

T = 1250 + 2PR{475 + PR[147 + 2PR(13 + PR)]}
[25 + PR(9 + PR)]2

. (42)

We notice again, like in the case of Eq. (17), that we have
a term in the transmission function that remains finite in the
limit of PR → 0(1), leading to the observed resonances.

To summarize our findings, we represent the conductance
of the network strip as a function of the Fermi energy EF

and magnetic flux 
 for different values of the SO coupling
strength α in Fig. 9. We observe that the Hofstadter pattern
[42,46,72] becomes distorted due to the finite SO coupling.
More concretely, we observe a progressive reduction of cer-
tain areas of the magnetoconductance by the increase of α [see
Figs. 9(a)–9(c)]. These results show the localization effect of
the SO coupling observed in other systems [69].

C. Spin polarization

We now study the spin-dependent transmission, which can
have applications in the field of spintronics. The S matrix of
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FIG. 9. Conductance as a function of 
 and EF of a network strip of the kagome network in units of El = π h̄vF /l and flux 
 in units of

0 with different values of spin-orbit coupling α. We show here the case of PR = 0.5, ϕ = 0 and with L = 5l .

the full network can be written in the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1,↑
b1,↓
b2,↑
b2,↓
b3,↑
b3,↓
b4,↑
b4,↓

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= S

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,↑
a1,↓
a2,↑
a2,↓
a3,↑
a3,↓
a4,↑
a4,↓

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(43)

(see Fig. 13). Similarly as in Eq. (38), time-reversal symmetry
relates

SK ′ (
) = gSt
K (−
)g−1, (44)

where g = −i(14 ⊗ σy) and 
 is the flux. With this matrix we
can calculate the transmission function of the network. To an-
alyze the spin polarization, we split the transmission function
into its spin components Tnm = ∑

j=K,K ′
∑

σ,σ ′ T j
nσ,mσ ′ , which

obey

T K
nσ,mσ ′ (
) = T K ′

mσ ′,nσ (−
), (45)

with n, m = R, L for the right and left leads and σ, σ ′ =↑
(=̂1),↓ (=̂ − 1), respectively. This relation is a direct con-
sequence of Eq. (44), which can be written componentwise in
the form

sK
iσ, jσ ′ (
) = σσ ′sK ′

jσ ′,iσ (−
), (46)

with i, j = 1, 2, 3, 4 denote the modes (see Fig. 13). A
similar expression was obtained in a different context of
time-reversal symmetric scattering without valley degree of
freedom [73,74]. Also, we notice that the full transmission
function fulfills

T K/K ′
nm (
) = T K ′/K

mn (−
). (47)

This follows from Eq. (45). Equation (47) implies the typical
reciprocity relation [62]

GRL(
) = GLR(−
). (48)

We show in Fig. 10 the transmission for 
 = 0 for a certain
spin species calculated with the transmission function T K/K ′

Rσ,Lσ ′
as indicated in the inset of each panel. To simplify the notation

we omit the index R, L, so that the total transmission function
is given by

T =
∑

ν=K,K ′
(T ν

↑↑ + T ν
↑↓ + T ν

↓↓ + T ν
↓↑). (49)

First of all, we notice the finite deviations between T↑↑ and
T↓↓ within each valley and between the valleys. Due to the
angle dependence of the spin-orbit coupling [see Eq. (28)]
every path accumulates a different phase and they are there-
fore inequivalent. Thus, the S matrix of the contracted triangle
shows deviations between different spin species depending on
the path, which leads to this difference. Furthermore, we see a
series of small sharp peaks for the spin-flip conductance [see
Figs. 10(b) and 10(c)] as we discussed in Sec. IV B. At these
specific points, the resonance conditions in Eqs. (39) and (40)
are fulfilled, which lead to these sharp peaks. Remarkably,
these peaks are dominant in the spin-flip transmission, which
is natural considering that under the resonance condition the
spin flips for each transition between different nodes.

FIG. 10. Spin-resolved transmission function from left to right of
a network strip with length L = 10l for PR = 0.5, ϕ = 0, α = 0.2 as
a function of EF in units of El = π h̄vF /l . We show the transmission
function T K

Rσ,Lσ ′ for both valleys, where σ ′ is the incoming and σ is
the outgoing spin.
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FIG. 11. (a), (b) Polarization of the conductance of the network
strip with length L = 10l for PR = 0.5(1/3), ϕ = 0(π/6) at EF =
1.2El as a function of the spin-orbit coupling parameter α for 
 =
0. (c), (d) Polarization of the conductance of the network strip with
length L = 10l for PR = 0.5, ϕ = 0(0.2) at EF = El and α = 0.2 as
a function of the flux 
 in units of 
0.

To make a quantitative prediction of how spin polarized the
transmission is, we introduce the spin polarization Pβ along
the β axis as [73]

Px + iPy = 2

T
∑

ν=K,K ′

∑
i, j,σ ′

tν
i↓, jσ ′

(
tν
i↑, jσ ′

)∗
, (50)

Pz = 1

T
∑

ν=K,K ′
(T ν

↑↑ + T ν
↑↓ − T ν

↓↓ − T ν
↓↑), (51)

where i, j denote the modes going from left to right and
T is the full transmission function. We also define the total
polarization as

P =
√

P2
x + P2

y + P2
z . (52)

In Figs. 11(a) and 11(b) we show results for the po-
larization of the conductance for different parameters for

 = 0 as a function of the spin-orbit coupling parameter
α. For α → 0, we recover the spinless limit with zero po-
larization P = Pβ = 0. For larger values of α, Pβ and P
vary non-monotonically respecting the symmetries Px,y(α) =
−Px,y(−α), Pz(α) = Pz(−α). These symmetries are fulfilled
because the elements of the S matrix fulfill

sK/K ′
iσ, jσ ′ (α) = σσ ′sK/K ′

iσ, jσ ′ (−α). (53)

The symmetries for the polarization as a function of spin-orbit
coupling α hold within each valley for arbitrary 
.

For the sake of completeness, we show in Figs. 11(c) and
11(d) the polarization at finite magnetic field as a function
of the flux 
. The polarization depends on all parameters
PR, ϕ, EF , and 
 in a non-monotonic and noisy fashion.
Nevertheless, P is still periodic in 8
0. We note that the polar-
ization in the other directions shows the same noisy behavior.

V. CONCLUSIONS

In this paper, we have constructed a phenomenological
scattering kagome network model based on the symmetries

of the system. By combining S matrices of single triangles,
we have reduced the kagome network to a triangular network
with an energy-dependent S matrix. We have used this model
to study the band structure and magnetotransport in different
limits of the parameter regime finding Aharonov-Bohm reso-
nances at finite temperature for integer values of the flux. This
is in agreement with previous qualitative studies and general-
izes former perturbation magnetotransport analysis [37,38].

Furthermore, motivated by the presence of Rashba spin-
orbit coupling in graphene systems due to, for instance,
proximity of transition metal dichalcogenides [54–58], we
have investigated its interplay with the kagome lattice struc-
ture. We find a localization effect in the network bands and
also in the conductance due to the presence of a finite spin-
orbit coupling. Moreover, we find conductance resonances
that reflect the geometry of our system. These resonances
occur when a spin-flip process takes place during the prop-
agation between two nodes. In addition, this condition leads
to the reduction of the periodicity in the magnetoconductance
because an incoming electron with a certain spin needs to do
two round trips around a triangle to go back to the same state
instead of one. Lastly, we have studied the spin polarization of
the current, finding a finite spin polarization in the presence
of spin-orbit coupling due to interfering network paths with
different phases induced by the angle dependence of the spin-
orbit coupling. We observe numerically that the polarization
varies in a noisy fashion as a function of all parameters in the
model, reaching highly polarized values up to P ≈ 0.9.

Regarding experimental implications resulting from our
work, it might be interesting to analyze a graphene layer under
a periodic strain field [39] on a substrate that induces spin-
orbit coupling, like WSe2 [59]. In such a system, the effects
of the valley chiral kagome network such as Aharonov-Bohm
conductance resonances and the spin-orbit effects should be
both visible in transport measurements.
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APPENDIX A: S MATRIX OF ONE TRIANGLE
WITH MAGNETIC FIELD

Together with Eqs. (1)–(3) and

α1 = β1 exp

(
in

π


8
0

)
exp(iπε/2), (A1)

α2 = β2 exp(iπε/2), (A2)

α3 = β3 exp

(
−i(n + 2)

π


8
0

)
exp(iπε/2), (A3)
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where ε = El/(π h̄vF ) is the dynamical phase and vF is the Fermi velocity in graphene, we can eliminate the αi and βi to find a
S matrix of the form ⎛⎝b1

b2

b3

⎞⎠ = S

⎛⎝a1

a2

a3

⎞⎠, (A4)

with

S�(
) = 1

e3iϕ − e− iπ

4
0 e

3iπε
2 P3/2

R

×

⎛⎜⎜⎝ −e2iϕe−i(n+2) π
8




0 eiπεPL

√
PR −e3iϕe−i(n+2) π

8



0 e

iπε
2 PL

(
e3iϕ − e− iπ


4
0 e
3iπε

2
√

PR
)
eiϕ

√
PR(

e3iϕ − e− iπ

4
0 e

3iπε
2

√
PR

)
eiϕ

√
PR −e2iϕe− iπ


4
0 eiπεPL
√

PR −e3iϕein π
8




0 e

iπε
2 PL

−e3iϕe
iπε
2 PL

(
e3iϕ − e− iπ


4
0 e
3iπε

2
√

PR
)
eiϕ

√
PR −e2iϕe

inπ

8
0 eiπεPL

√
PR

⎞⎟⎟⎠, (A5)

where PL = 1 − PR. The parameter n is an integer that is nec-
essary for the conductance calculations and accounts for the
position-dependent Peierls phase (see Fig. 12). For the magne-
toconductance we have used the gauge A(x) = Bxey, where �ey

is the standard Cartesian basis vector in the y direction. Note
that this matrix is C3 symmetric for 
 = 0 as expected. The S
matrix for the other valley is given by SK ′ (
) = St

�(−
).

APPENDIX B: CALCULATION OF NETWORK BANDS
WITH SPIN-ORBIT COUPLING

The S matrix relating the incoming amn with the outgo-
ing bmn modes at a given node (m, n) at position ml1 + nl2

(m, n ∈ Z) is given by

bmn,σ = Samn,σ (B1)

with S = Sσ ⊗ 12×2 and

amn = (a1mn,↑, a1mn↓, α1,↑, α1,↓, a2mn,↑, a2mn,↓,

α2,↑, α2,↓, a3mn,↑, a3mn,↓, α3,↑, α3,↓)t , (B2)

FIG. 12. Kagome network. Red circles depict scattering matrices
of single triangles, which we combine in the first step. Also, the
Peierls phase accumulated between nodes is depicted here in the
form φp = x
/
0, where x can be found in the figure.

bmn = (b2mn,↑, b2mn,↓, β2,↑, β2,↓, b3mn,↑, b3mn,↓,

β3,↑, β3,↓, b1mn,↑, b1mn,↓, β1,↑, β1,↓)t . (B3)

Note the absence of mn indices in the inner triangle scattering
amplitudes αi,σ , βi,σ , which are equal at every node.

Using the Bloch’s theorem, we relate the outgoing states of
different unit cells by means of⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1m+1n,↑
b1m+1n,↓

β1,↑
β1,↓

b2m−1n−1,↑
b2m−1n−1,↓

β2,↑
β2,↓

b3mn+1,↑
b3mn+1,↓

β3,↑
β3,↓

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= M(k)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b2mn,↑
b2mn,↓
β2,↑
β2,↓

b3mn,↑
b3mn,↓
β3,↑
β3,↓

b1mn,↑
b1mn,↓
β1,↑
β1,↓

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B4)

with M(k) = Mσ (k) ⊗ 12×2 and

Mσ (k) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 eik1 0
0 0 0 0 0 1

eik3 0 0 0 0 0
0 1 0 0 0 0
0 0 eik2 0 0 0
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠. (B5)

Using Eqs. (25)–(27) and (31)–(33), we relate⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1mn,↑
a1mn,↓
α1,↑
α1,↓

a2mn,↑
a2mn,↓
α2,↑
α2,↓

a3mn,↑
a3mn,↓
α3,↑
α3,↓

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= D(α, ε)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1m+1n,↑
b1m+1n,↓

β1,↑
β1,↓

b2m−1n−1,↑
b2m−1n−1,↓

β2,↑
β2,↓

b3mn+1,↑
b3mn+1,↓

β3,↑
β3,↓

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B6)
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FIG. 13. Minimal element of the network that is repeatedly com-
bined to calculate the transmission function of the network strip. The
spin index is omitted here.

with the transfer matrix

D(α, ε) = diag[M(−π/3), M(2π/3), M(π ), M(0),

M(π/3), M(−2π/3)] (B7)

which reduces to D(0, ε) = eiπε/2112×12 in the absence of
spin-orbit coupling.

Now, we combine Eq. (B4) with (B6) to obtain

D(α, ε)−1ak = M(k)bk = M(k)Sak, (B8)

from which we obtain the equation to compute the network
energy bands, yielding the condition to obtain the energy
spectrum of the network, that is,

det[M(k)S − D−1] = 0. (B9)

APPENDIX C: COMBINING PROCEDURE

Here, we explain how we have calculated the transmission
function T (E ) for our transport calculations in Eq. (15) by the
combination of scattering matrices. We show the general idea
how to combine the first two scattering matrices. Finally, we
explain the recursive loop that we have implemented for our
calculations. One part of the network is shown in Fig 13. The
first S matrix is given by

S(1) =
(
1 0
0 S

)
(C1)

in the basis (b(1)
1,↑, b(1)

1,↓, b(1)
2,↑, b(1)

2,↓, b(1)
3,↑, b(1)

3,↓, b(1)
4,↑, b(1)

4,↓)t =
S(1)(a(1)

1,↑, a(1)
1,↓, a(1)

2,↑, a(1)
2,↓, a(1)

3,↑, a(1)
3,↓, a(1)

4,↑, a(1)
4,↓)t , where S is the

S matrix S�(
) ⊗ 12×2 [see Eq. (A5)] for α = 0, or for α 	= 0
see Eq. (37).

The second S matrix of the network can be calculated from
S(1) by interchanging the first and the third modes, i.e.,

S(2) = R13S1R13, R13 =

⎛⎜⎜⎝
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎞⎟⎟⎠. (C2)

Now we need to combine these two matrices. Before we look
into that, we change the basis a little bit to make the process

of combining easier. We rewrite S(1), so that it fulfills(
b(1)

L

b(1)
R

)
=

(
r (1)

L t (1)
LR

t (1)
RL r (1)

R

)(
a(1)

L

a(1)
R

)
. (C3)

To bring these notations together we define

b(1)
L := (

b(1)
1,↑, b(1)

1,↓, b(1)
3,↑, b(1)

3,↓
)t

, (C4)

b(1)
R := (

b(1)
2,↑, b(1)

2,↓, b(1)
4,↑, b(1)

4,↓
)t

, (C5)

a(1)
L := (

a(1)
4,↑, a(1)

4,↓, a(1)
2,↑, a(1)

2,↓
)t

, (C6)

a(1)
R := (

a(1)
1,↑, a(1)

1,↓, a(1)
3,↑, a(1)

3,↓
)t

. (C7)

With that we bring the S matrix into a block structure with
the submatrices ri that contain the reflection processes to
the direction i = L, R, and ti j , that contains the transmission
processes from j = L, R to i = L, R, where L means left and
R means right. Note that ri and ti j are 4 × 4 matrices. We can
write it in the following way:

r (1)
L =

(
0 0

sl,2 sr,2

)
, t (1)

RL =
(

sr,1 s f ,3

s f ,2 sl,3

)
, (C8)

r (1)
R =

(
0 sl,1

0 sr,3

)
, t (1)

LR =
(

1 0
0 s f ,2

)
, (C9)

s f ,1 =
(

s11 s12

s21 s22

)
, s f ,2 =

(
s33 s34

s43 s44

)
, s f ,3 =

(
s55 s56

s65 s66

)
,

(C10)

sl,1 =
(

s13 s14

s23 s24

)
, sl,2 =

(
s35 s36

s45 s46

)
, sl,3 =

(
s51 s52

s61 s62

)
,

(C11)

sr,1 =
(

s15 s16

s25 s26

)
, sr,2 =

(
s31 s32

s41 s42

)
, sr,3 =

(
s53 s54

s53 s64

)
,

(C12)

where si j is the matrix element of S in Eq. (37).
The second S matrix can be written in a similar way as(

b(2)
L

b(2)
R

)
=

(
r (2)

L t (2)
LR

t (2)
RL r (2)

R

)(
a(2)

L

a(2)
R

)
(C13)

with

b(2)
L := (

b(2)
1,↑, b(2)

1,↓, b(2)
3,↑, b(2)

3,↓
)t

, (C14)

b(2)
R := (

b(2)
4,↑, b(2)

4,↓, b(2)
2,↑, b(2)

2,↓
)t

, (C15)

a(2)
L := (

a(2)
2,↑, a(2)

2,↓, a(2)
4,↑, a(2)

4,↓
)t

, (C16)

a(2)
R := (

a(2)
1,↑, a(2)

1,↓, a(2)
3,↑, a(2)

3,↓
)t

, (C17)

r (2)
L =

(
e−i

√
3k l

2 sr,2 sl,2

0 0

)
, (C18)

t (2)
RL =

(
sl,3 ei

√
3k l

2 s f ,3

e−i
√

3k l
2 s f ,1 sr,1

)
, (C19)

r (2)
R =

(
ei

√
3k l

2 sr,3 0
sl,1 0

)
, (C20)

t (2)
LR =

(
s f ,2 0
0 1

)
. (C21)
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We have added in the second S matrix also the transversal
momentum [42] 0 � k < 4π/

√
3l . Due to the translational

symmetry in the y direction, the modes that leave and enter
Fig. 13 in the y direction are related by Bloch’s theorem.
We integrate over the transversal momentum at the end. Now
we need to know how the incoming and outgoing modes are
related. To do so we define

W (θ ) := exp[iπs0ε/4] exp{iπα[sx sin(θ ) − sy cos(θ )]/4}.
(C22)

Then it follows

a(1)
R = γ b(2)

L , a(2)
L = β1b(1)

R , (C23)

with

γ = 12×2 ⊗ W (π ), (C24)

β1 =
(

W 2(−π/3) 0

0 W 2(π/3)

)
∗ [P1 ⊗ 12×2], (C25)

β2 =
(

W 2(π/3) 0

0 W 2(−π/3)

)
∗ [P2 ⊗ 12×2], (C26)

P1(
, n) =
⎛⎝e−i(n−2) π

8



0 0

0 ein π
8




0

⎞⎠, (C27)

P2(
, n) =
⎛⎝ein π

8



0 0

0 e−i(n−2) π
8




0

⎞⎠. (C28)

The matrix βn contains the dynamical phase and the Peierls
phase due to the magnetic field of a mode traversing from
one node to the next. The matrix γ contains the phase ε and
the dynamical phase of a mode traversing in the x direction.
Therefore, it does not accumulate a Peierls phase due to the
used gauge A = Bxey. The parameter n ∈ 4N + 1 will be
counted up for every combining step. The dynamical phase
is influenced by the spin-orbit coupling α. To combine these
matrices we can write

r(1+2)
L = r (1)

L + t (1)
LR γ Q2r (2)

L β1t (1)
RL , (C29)

r(1+2)
R = r (2)

R + t (2)
RL β1Q1r (1)

R γ t (2)
LR , (C30)

t(1+2)
LR = t (1)

LR γ Q2t (2)
LR , (C31)

t(1+2)
RL = t (2)

RL β1Q1t (1)
RL , (C32)

Q(1+2)
1 = (

1 − r (1)
R γ r (2)

L β1
)−1

, (C33)

Q(1+2)
2 = (

1 − r (2)
L β1r (1)

R γ
)−1

. (C34)

The next S matrix is the same as the first one. To combine this
third S matrix with the already calculated one we can write

r(1+2+3)
L = r(1+2)

L + t(1+2)
LR γ Q(1+2+3)

2 r (1)
L β2t(1+2)

RL , (C35)

r(1+2+3)
R = r (1)

R + t (1)
RL β2Q(1+2+3)

1 r(1+2)
R γ t (1)

LR , (C36)

t(1+2+3)
LR = t (1)

LR γ Q(1+2+3)
2 t(1+2)

LR , (C37)

t(1+2+3)
RL = t(1+2)

RL β2Q(1+2+3)
1 t (1)

RL , (C38)

Q(1+2+3)
1 = (

1 − r(1+2)
R γ r (1)

L β2
)−1

, (C39)

Q(1+2+3)
2 = (

1 − r (1)
L β2r(1+2)

R γ
)−1

. (C40)

By replacing

r (1)
L → r(1+2+3)

L , t (1)
RL → t(1+2+3)

RL , (C41)

r (1)
R → r(1+2+3)

R , t (1)
LR → t(1+2+3)

LR (C42)

in Eqs. (C29)–(C34) we can loop this procedure to calculate
the S matrix of the network.

With the S matrix of the network we can then calculate the
conductance. The transmission function per unit cell can be
calculated from the S matrix for one valley by means of

T K
RL(E ) = (

√
3l/4π )

∫ 4π/
√

3l

0
dk Tr[t†

RLtRL], (C43)

where tRL are the transmission matrix elements of the S matrix
from the left side to the ride side of the strip. Note that
the transmission function per unit cell of one valley is not
necessarily the same for the other valley in the presence of
a magnetic field. One can show that for finite flux 
 the
transmission function Tnm of the valley K and K ′ are related
by

T K
nm(
) = T K ′

mn (−
), (C44)

with m, n = L, R. Also in the presence of spin-orbit coupling,
the angle θ changes to θ + π in the other valley because the
modes traverse in the other direction. The total transmission
function is

Tnm(E ) = T K
nm + T K ′

nm . (C45)
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