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Chiral-induced angular momentum radiation in single molecular junctions
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We study angular momentum radiation from electrically biased chiral single molecular junctions using the
nonequilibrium Green’s function method. Using single helical chains as examples, we make connections between
the ability of a chiral molecule to emit photons with angular momentum to the geometrical factors of the
molecule. We point out that the mechanism studied here does not involve the magnetic moment. Rather, it relies
on inelastic transitions between scattering states originated from two electrodes with different chiral properties
and chemical potentials. The required time-reversal symmetry breaking is provided by nonequilibrium electron
transport. Our work sheds light on the relationship between geometrical and optoelectrical chiral properties at

the single molecular limit.

DOLI: 10.1103/PhysRevB.109.245428

I. INTRODUCTION

Angular momentum (AM) is a fundamental property of
light [1-6], whose generation and manipulation are of vital
importance for their applications in optoelectronics, quantum
information science, and so on [6-10]. Light with AM can
be generated by physical objects with vastly different scales,
from as small as synchrotrons in particle physics [11-14] to
as large as rotating black holes in astrophysics [15]. The AM
of light can be furthermore used to study other types of chiral
excitations.

The magnetoelectric coupling, depending on both the mag-
netic and the electric dipole transition matrix elements, is a
key factor that determines the magnitude or the efficiency
of many of the abovementioned processes [16]. Unfortu-
nately, the magnetic dipole transition is much weaker than the
corresponding electric one, resulting in a small magnetoelec-
tric coupling. Employing the chiral geometric or electronic
structure in electric dipole transitions, akin to the so-called
extrinsic chirality, is a promising approach to avoid the weak
magnetic dipole transition.

Recently, it has been shown theoretically that coupling of
electron orbital motion with light in current-carrying molec-
ular junctions can lead to AM radiation (AMR) [17-21].
Electroluminescence from single molecules or localized gap
plasmons in a scanning tunneling microscope (STM) has been
studied for decades [22-28]. Different quantum statistical
properties of emitted light have been characterized using an
STM setup [29-33]. Thus, it is also an ideal experimental
candidate to study AMR at the single molecular scale.

On the other hand, molecular electronics and optoelec-
tronics using chiral molecules have been the focus of recent
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intense research [34]. In the phenomenon of chiral-induced
spin selectivity (CISS) [35-45], spin-polarized electrons can
be generated from chiral molecular structure driven by elec-
trical or optical stimuli. Spin-orbit interaction is argued to
play an important role, although the exact mechanism is still
under debate. In light-emitting diodes, large chiroptical effects
are observed from chiral molecular structures [43,46]. Their
origin is attributed to either the magnetoelectric coupling (nat-
ural optical activity) or structural chirality. Notably, a recent
work has proposed an electronic mechanism employing the
topological electronic structure for circular polarized light
emission under electrical current flow [47]. The common
trends of CISS and optical dichroism in helical structures has
also been studied very recently [45].

In this work, we study theoretically AMR from junctions
of model helical chains (Fig. 1) using the nonequilibrium
Green’s function (NEGF) method [17,48]. We analyze how
the chiral molecular geometry can directly lead to AMR. We
trace its origin as inelastic scattering between scattering states
originated from different electrodes, which does not rely on
the spin-orbit coupling. Furthermore, we study the effect of
length, radius, and other parameters of the chain on the emis-
sion spectrum. Suitable conditions for enhancing the AMR are
proposed based on the numerical calculation. This study will
be useful for the design of chiral light sources based on single
molecular junctions.

II. MODEL AND THEORY
A. Hamiltonian

We use a tight-binding model to write the Hamiltonian of
the molecule as [17,18]

A9/7”X
Hpnol = ZHmanncnel , (1)

mn

©2024 American Physical Society


https://orcid.org/0000-0002-2902-4829
https://orcid.org/0000-0001-7650-8570
https://orcid.org/0000-0002-3382-1003
https://orcid.org/0000-0001-8518-2816
https://ror.org/00p991c53
https://ror.org/01vevwk45
https://ror.org/0040axw97
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.245428&domain=pdf&date_stamp=2024-06-25
https://doi.org/10.1103/PhysRevB.109.245428

HU, ZHANG, NIAN, AND LU

PHYSICAL REVIEW B 109, 245428 (2024)

(@) (b)

FIG. 1. (a) Schematic diagram of angular momentum radiation
(AMR) from a voltage-biased chiral molecule. (b) A helical chain
structure with radius of gyration r,. The pitch of a helix & describes
the vertical distance raised in the z direction after 27 rotation in
¢, while 6 represents the angle between the line connecting two
neighboring sites and the x-y plane. Neighboring sites are separated
by a distance of /.

where ¢! /c,, is the creation/annihilation operator at site m,
and H,,, is the hopping matrix element between sites m and n.
Molecular coupling to the radiation fields is taken into account
by the Peierls substitution [49] with the phase factor 6,,, given
by an integral along the line connecting sites m and n:

Fm
Here, we have adopted the trapezoidal rule for the integral,
e is the elementary charge, 7 is the reduced Planck constant,
7,y 1s the position vector of site m, me =A (7,,) represents the
vector potential of the electromagnetic field at site m. The
Hamiltonian of the radiation field is

_ 1 1. - |,
Hopg=< | dF 80EJ_ + —B7), 3)
2 Ko

where &g and ¢ are the vacuum permittivity and permeability,
respectively. E | and B are the electric field and the magnetic
field in the transverse gauge V CA=0. They are written in
terms of A as EL = —B,fTandE =V x A.

By using smallness of the lattice spacing 7, — 7,, we can
expand the exponential form of the Peierls substitution to the
first order in A and divide the molecule Hamiltonian into two
terms:

Hmol = H() + Him-

The first term Hj is the noninteracting part,

HO = ZHmncjncna (4)
m,n

and the second term H,; represents coupling of electrons with
electromagnetic field represented by the vector potential,

Hip ~ Z Z Z M,knchanu(Fk)’

mn k Q@=x,yz

with
kp i_e
mn — 2h
being the electron-photon coupling matrix element.

Since the main purpose of this work is to explore the
physical mechanism of AMR, for the sake of simplicity, we
make the following two simplifications. First, we ignore the
complicated spatial dependence of the vector potential due to
presence of the molecular junction and use the distribution
in vacuum. By doing this, we have ignored the local en-
hancement of the electromagnetic field due to plasmon modes.
Second, we ignore spin degrees of freedom and spin-orbit
coupling to highlight that the physical origin of AMR is the or-
bital motion of electrons and does not rely on the spin degree
of freedom of electrons. Mutual coupling between electron
spin, orbital motion, and light polarization may lead to new
physical effect, but it is out of the scope of present study.
Third, we take the electronic subsystem as a source of the
electromagnetic radiation and ignore the back-action of the
electromagnetic field on electrons. In this way, we work on
the lowest-order level in dealing with the photon self-energy
due to coupling to electrons.

Hmn(7m - ;:I‘l)lL (akm + (Skn)

B. Electron and photon Green’s functions

In this subsection, we give the definition of the electron and
photon Green’s functions (GF), which will be used in next
subsection to calculate the energy and the angular momen-
tum current. Details of the nonequilibrium Green’s function
method can be found in several textbooks and review articles
[48,50,51].

The electron and photon contour time-ordered Green’s
functions are defined as

1 .
Gun(z,7) = E(Trcm(f)cg(f')), &)

1
Dy (P, T3 7, T) = (T AL P, DA 7). (6)

l
The indices in the electron Green’s function G,,, are located
in the molecule. Meanwhile, the coordinates in the photon
Green’s functions can be in any point in real space 7, with
wu and v taking x, y, or z. Going from the contour time (z, t’)
to real time (¢, ¢’), different types of Green’s function can be
generated. The retarded Green’s functions are defined as

1
G, 1) = 60 - ) [em (), ch(t)]4), @)
D (P 13 Py, 1) = %@(r — YW [AFos 1), AL (Fry £)]2),

®)

with [A,,AT]+ = A,AT £ ATA, and ©(¢) being the Heaviside
step function. In the nonequilibrium case, we also need the
lesser Green’s functions:

1

Gt 1) = —ﬁcﬁ(ﬂ)cm(t», ©)

- - / 1 T / -

Dy (Fn, 137, 1) = E(M(rn,t APy 1)) (10)
At the steady state considered in this work, the Green’s
functions only depend on the time difference r — ¢’ and they
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can be transformed to frequency/energy space via Fourier
transform, i.e.,

G (E)= / dt G', (t —1")eEt="/h,

n (1D
The effect of the coupling to the electrodes can be taken
into account via self-energies. The electron lesser and greater
Green’s functions are then obtained as

G~/>(E) = G"(E)X~/>(E)G“(E), (12)

with embedding the electron self-energy ¥ = ¥; + Xg. De-
fine the electrode broadening functions as follows (o =L
and R):

To(E) = i[25(E) — Z(E)], (13)
P(E) =TL(E) + Tr(E), (14)
Aq(E) = G'(E)To(E)GU(E), 15)
A(E) = AL(E) + Ag(E), (16)
they can be further written as
G~ (E)=—)_ fu(E)G'(E) — G“(E)]
=i ) fu(E)Au(E), (17)
G (E) = Z[l — fa(EDNIG"(E) — G*(E)]
=—i ) [l = fu(E)AG(E). (18)
Here f,(E) is the Fermi-Dirac distribution function:
Ju(E) = 1/{exp[(E — pa)/kpT]1+ 1}. 19)

To consider electrically driven energy and angular momen-
tum radiation, we take into account electron-photon coupling
in the lowest order. The retarded GF of photons is given by
the Dyson equation

D'(0) = d"(®) + d" ()T (0)D' (w), (20)

where d"(w) is the free space photon GF, and IT"(w) is the
photon retarded self-energy due to coupling to electrons in
the random-phase approximation. The lesser GF is calculated
from the equation

D™ (w) = D" ()T~ (0)D*(w), 2y

with D¢ = (D")'. To the lowest order in electron-photon cou-
pling, we consider only the photon self-energy shown in
Fig. 2, written as

I [ dE _
15 (7, 7oy ) = —l/ 2_Tr[MmMG<(E)anG>(E .
_ g

7Y
oo
(22)

Here, Tr[...] is trace over all electronic degrees of freedom,
and E~ = E — hw. Although the photon Green’s function
is defined in the whole space, the above self-energy is de-
fined only on the discrete sites of the molecule. In principle,

FIG. 2. Feynmann diagram of photon self-energy, where the
solid lines with arrows represent electrons.

the electron and photon Green’s functions and self-energies
should be calculated self-consistently. Here, we avoid this
complication and calculate the photon self-energy in the low-
est order, using the noninteracting version of G=/>. In doing
so, as we have mentioned, we cannot take into account the
collective excitation of electrons, i.e., plasmons. In reality, lo-
calized plasmon modes may play important roles in enhancing
the light emission yields in single molecular junctions.

C. Electronic transport

In the noninteracting limit, the electrical current can be
obtained from the Landauer formula

=3 / dET(E)fi(E) — fe(E)], (23)
with the electron transmission function
T(E) = Tr[G"(E)I'L(E)G*(E)Tr(E)]. 24

D. Light and angular momentum radiation

We focus on the electromagnetic radiation at the far field
and closely follow the method presented in Ref. [S1], to which
we refer for the details. The total energy U and the angular
momentum L of an electromagnetic radiation field (light) are

defined as
1 o | R
U = 3 goE”+ —B° |d°7,

Mo
o 1 e 2.3
L=—2 7 x Sd°F,
c

(25)

(26)

with ¢ = (o) ~"/? being the speed of light in vacuum, and
the Poynting vector
5 1 - o
S = —El X B.
Ho

@7

From the conservation laws of energy and the angular mo-
mentum, the energy or the angular momentum current can be
obtained as

(28)

(29)
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with the surface vector Q the AM flux
M=FxT, (30)
<>
where T is the Maxwell stress tensor with
T;w = %‘Suu (SOEi + ,U«(;IBZ) - SOELMELV - MSIB;LBv-
(3D

These quantities can be quantized and expressed in terms of
the photon GFs as follows:

SH(F) 2 f o, (32a)
F) = €,,, €56 — —hw a
uvy Vﬁéuo o o
d
xRe[— — D5 (7,7 7’ a))i| ,  (32b)

2i °°dw ) - o o
(:Ei Ei, ) =Re N | E(ha)) xDlw(r, F,w) ]|,

) *® dw
(: BB, :) = Re| 2ih | 5 Cure€ore

20 e 7o)
X — —— (7,7, o
dx, dx), <

(32¢)

=T

Here, (: AB :) denotes the normal order of operators A and B
when taking the ensemble average. The purpose is to remove
the zero-point motion contribution [51]. The Greek subscript
letters w, v, and y are indices for the Cartesian coordinates,
and €,,, is the Levi-Civita symbol with €,,, = 1, antisym-
metric with each permutation of any two indices, and zero if
any two of the indices are the same.

Approximations need to be made to get simplified results.
First, a lowest-order approximation is taken via replacing the
photon’s retarded and advanced GFs by the free space photon
GFs with D" ~ d" and D= ~ d"I1=d“. This means we take
the electromagnetic field as unperturbed and ignore the local
modification near the single molecule due to presence of the
molecular junction. The effect of localized plasmons is thus
ignored. It can, in principle, be included by using the full
equations [Egs. (20) and (21)], but is beyond the scope of cur-
rent work. Second, a monopole approximation [51] is taken
when calculating the surface integral in the far-field limit 7 —
00, by using d, (¥, Fn, 0) = d; ,(F — Ty, ) ~ d],(F, w) for
the free space GF, which reads

d'(F,w) = —

ol hid A A
é'<"(U—RR
4n8002r{ ( )

a

°r i%r
. _

21](8 - 31?1?)}, (33)

<>
where U is the identity dyadic, and R = 7/r is the radial di-
rection unit vector. Thus, the atomic structure of the molecule
is also ignored. With these approximations, we can calculate
the radiated power P, the angular momentum current in the y
direction, J,,, and the photon number current Jy in the far field.
This is realized by introducing “bath at infinity.” The details
of this treatment can be found in Ref. [51]. The basic idea is
to include a self-energy that represents a bath at infinity. This
is bath located far away from the source and can absorb all

the radiated photon. The emitted power, angular momentum
and photon number can then be calculated using the standard
NEGF method as that injected into this bath. The following
results are then obtained [17,51]:

do _ho’ ot, <
Z/ 27 3n80c3 [HLL ()], 34)
do how

——— €0 Re [T = (w)], (35)

Z/ 2 3mepcd
- e @l o

Here, the superscript “tot” means summation over all the sites
in the system H;j’t‘(w) = Zm o 1L (P Py ).

E. Physical mechanism of angular momentum radiation

In the above subsection we have given a numerical recipe
to calculate the photon and AMR using the NEGF method.
We see that the key quantity is the photon self-energy due to
coupling to the electronic system I"I;f“f, which contains all
the material properties and its coupling to the electromagnetic
field. In this subsection, we reveal the physical mechanism of
AMR.

To make further analysis, we use Egs. (17) and (18) to
rewrite the self-energy as

N, (P, P, @)

__,Z/

x np(fiw — Apap) THIM™ Ay (EYM™ Ag(E7)]. (37)

57 HaE) = fp(ET)]

We have introduced the Bose-Einstein distribution function
ng(w) = 1/[exp(hw/kgT) — 1], (38)

and Apep = [be — Mg. Since the photon energy is much
larger than kgT', we take the zero-temperature limit. The pho-
ton lesser self-energy is simplified to
< .2
) ~(w) = —ie

/Mu dE
a,f=L.R np+ho 2

x O(Apap — h)XIP(EET).  (39)

Here, the Heaviside step function ®(E) gives the energy range
where the inelastic transitions can take place. We have defined

XP(E,E7) = Tr[v*A*(E W AP (E7)]
=@n)" ) 8(E ~ En)S(E™ ~ Ey)

m,n

X (wa,m(Em)|vv|Wﬂ,n(En))

X (Wﬂ,n(En)|vﬂ|wa$m(Em)>a (40)
where v* is electron velocity matrix
v = (ie)” Y MY, (41)
k
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and the corresponding matrix element is

o _ gl i n
v, =h Hmn(rm - )

(42)

In the second line of Eq. (40), we have written it in terms of
velocity matrix elements between scattering states originated
from electrodes o and S. This form highlights the nature of
the bubble diagram representing inelastic transitions from the
scattering state of one electrode o at higher energy | n(E))
to that of an electrode § at lower energy |Yg ,(E ™)), with m
and n being the state indexes. Photon emission is accompanied
by these transitions.

We focus on angular momentum in the direction along the
chain (z), which is the largest component,

1295

(@) = (@) = OV — w) = / dEjA(E, E"),
32 Jup

(43)

with the voltage bias eV = p;, — ug > 0, u}y = pug + how, the
fine-structure constant o = e>/(4mephic) ~ 1/137, and

JA(E.E7) =2RrIm X R(E E). (44)

The AMR can be analyzed through the energy dependence of
Jja(E, E7). From Eq. (43) we see that the emission spectrum
of the system at given energy 7w can be obtained by integrat-
ing along a line cut E over an effective bias window [ug +
hw, ] where the inelastic optical transition can take place.
This bias window is determined by the relative positions be-
tween the two electrode chemical potentials, controlled by
the Heaviside step function in Eq. (43). Thus, js(E,E™)
can be used to characterize the ability of the system to emit
radiation with angular momentum. This is especially useful in
molecular junctions where the rotational symmetry is broken
and orbital angular momentum is no longer a good quantum
number to characterize the symmetry property of molecular
orbitals, as in simple molecules [17]. The total AMR is then
obtained by integrating the spectrum

Ty = / oodha)JA(a)). (45)
0

Similarly, define

wo 1222
Iy(w) = OeV — ha))—/ dEjy(E,E7).  (46)
3m2c? i

with

Jn = Re{X" +X5F + X2} 7
the power and number current are

oo

P = / dhoholy(w), (48)
0
[e.¢]

Jy = f dhwJy(w). (49)

0

We note the difference between angular momentum current
and energy/number current. They are determined by imagi-
nary and real parts of X l’;f , respectively. Moreover, for photon
number or energy current we need to sum over three diagonal

elements, while for the angular momentum current in the z

direction we only need the cross term ImXxLyR . According to
Eq. (40), we have

IWEED)~ 3 [ E) raEDNE (50)
U=X,Y,Z
JA(EE™) ~ Im{(Yrr m(E) o [ a(E 7))
X WraED WYrmE)). (51

Their form suggests that the energy and the number current
are directly determined by the inelastic dipole transition rates,
while the angular momentum current is related to the interfer-
ence between dipole matrix elements in the x and y directions.
This can be seen by writing the optical matrix element for the
circular polarized light as

INt(EET) ~ [(YrmE)v' £ i’ [Yyra(EN (52)
and noticing that
JAE,E7) ~ jN4(E,E7) — jn—(E,E7). (53)

This indicates the mechanism of angular momentum radiation
discussed here originates from the orbital effect. Geometrical
chiral properties of the molecule are encoded in the velocity
matrix v*. It does not involve the magnetic property, distinct
from the normal chiroptical response [16]. Moreover, spin
and spin-orbit interaction are not prerequisite, although their
inclusion may lead to new effects.

To further understand the orbital nature of the AMR,
we notice that Eq. (43) is proportional to the fine-structure
constant « divided by ¢2. When considering the nonrelativis-
tic limit of an electron undergoing equivalent spiral motion
within the helical chain, the corresponding classical angular
momentum radiation can be described by the equation [13]
Ji = 2ar§ha)8 /3c?. This bears resemblance to Eq. (43), sug-
gesting that the AMR Jy4 is linked to the spiral motion of
electrons in both quantum and classical regimes. We can
estimate the magnetic field required that would support an
equivalent spiral motion of electrons within the chain, B ~
5 x 10* T. Such high magnetic field is impossible to realize in
the laboratory, while using the chiral molecule can avoid such
a huge external field. This illustrates the advantage of using
chiral molecules for angular momentum generation.

Since the angular momentum changes sign upon time re-
versal, in systems with time-reversal symmetry (TRS) AMR is
identically zero. Nonzero AMR needs breaking of TRS. In op-
tical rotation and circular dichroism, the molecular eigenstates
are time-reversal symmetric. Breaking of TRS is realized
by the external magnetic field. Meanwhile, the biased chi-
ral molecular junction studied here is an open system. The
electronic states participating in the inelastic transition are
scattering states. The involved scattering states are deter-
mined by current direction. The scattering states propagating
in opposite directions are linked to molecular structures with
opposite chirality. Thus, TRS breaking is realized by external
bias and resulting electrical current. Magnetic field is not nec-
essary. This is the central feature of the present mechanism.
It enables electrical generation of optical angular momen-
tum utilizing the chiral geometric properties of the molecule
without introducing magnetic field. It also differs from other
approaches where optical angular momentum is generated by
the chiral wave guide from initially linear polarized light.
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FIG. 3. Numerical results for a single helical chain with the total number of sites N, = 3. In the upper row, only the nearest-neighbor (NN)
hopping is included. In the lower row, in addition to #yN, next-nearest-neighbor (NNN) hopping tnan = 0.4 eV is included. (a, e) Electron
transmission spectra obtained from Eq. (24). (b, f) ja as a function of energy E and E~. The velocity is vy = I,znn /5. (¢, g) Line cuts of the
plot in panels (b) and (f). The corresponding energy is denoted in the insets. (d, h) Schematic diagram of inelastic electronic transitions between
different molecular eigenstates that may lead to light emission. The red (blue) arrow represents transition with positive (negative) AMR, while

the dashed arrow corresponds to zero AMR.

Finally, we note that the form of Eq. (40) is similar to
the expressions for nonconservative current-induced forces
in molecular junctions [52-54]. There, the flow electrical
current exerts forces on atomic degrees of freedom. The
nonconservative nature of the force enables angular momen-
tum transfer to the atomic motion from electrons. Breaking
of time-reversal symmetry in the electronic system by the
presence of electrical current is crucial. Here, the angular
momentum is transferred to photons instead of atomic motion.
Thus, we envisage that the insights gained there can also be
used to understand the physics of AMR studied here.

III. NUMERICAL RESULTS

We now present numerical results for model helical chain
structures. We consider the zero-temperature case 7' = 0. The
default geometric parameters are radius of gyration r, = 7 A,
arc length I, = 5.6 A, helix angle 6 ~ 0.66, and phase an-
gle A¢ = /5. The electronic structure is modeled by using
tight-binding parameters, with on-site energy set to zero, the
nearest-neighbor (NN) hopping snny = 1 eV, different values
of the next-nearest-neighbor (NNN) hopping tnnn are used.
An energy step of 0.1 meV is used to do the numerical inte-
gration, and the energy range is set to [—5, 5] eV. To consider
coupling of the chain to electrodes, we use the wide-band limit
here with an energy-independent retarded self-energy for each
electrode:

2% = Fil/r/2. (54)
The broadening matrix I';/z is diagonal. The mth diagonal
matrix element I'; /g ., takes the same constant nonzero value
y = 0.1 eV if the site i couples to the electrode and zero
otherwise.

A. Angular momentum radiation spectrum

Note that to analyze the full radiation spectrum we consider
the large-bias limit in this subsection, unless specified. This
means that the chemical potential is set to p; > max{E,} >
min{E,,} > g so that all possible inelastic transitions can
be activated. Here {E,,} are the set of energies of molecular
eigenstates given by diagonalizing Hy, and coupling to elec-
trodes leads to broadening of the states.

We start from the simplest structure of a single helical
chain with length N, = 3. Figure 3 summarizes the main
results without [panels (a)—(d)] and with [panels (e)—(h)] NNN
hopping, respectively. The central molecule with N, = 3 has
three energy eigenstates. The three states are symmetric with
respect to zero in the NN case. When the equilibrium chem-
ical potential is zero, the system has electron-hole symmetry.
The optical transitions E3 — E, and E; — E| emit photons
with the same energy but opposite angular momentum. Thus,
they cancel with each other. This symmetry is broken after
including NNN hopping. This is reflected in the electron
transmission spectra shown in Figs. 3(a) and 3(e) and the
schematic diagrams in Figs. 3(d) and 3(h). The cancellation
among different transitions is not perfect anymore, leading
to larger AMR. Figures 3(b) and 3(f) show the correspond-
ing AMR spectra j4(E, E™). The corresponding line cuts for
given photon energy fw are shown in Figs. 3(c) and 3(g).
The sharp peaks that dominate the AMR contribution in the
parameter space (E, E~) correspond to inelastic transition
between different molecular eigenstates. The positive and
negative values of j4 correspond to opposite AMR, which
is schematically shown in Figs. 3(d) and 3(h) with different
colors. The situation is similar when the bias is reversed, but
the AMR also changes sign, i.e., the positive and negative
values are switched.
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FIG. 4. Similar results as Fig. 3, for single helical chain with
N, = 10. The other parameters are the same as those for N. = 3.

Results for a more realistic chain with N, = 10 are shown
in Fig. 4. The AMR distribution represented by js(E, E™)
spreads to much larger regions. The electron-hole symme-
try breaking due to NNN hopping is more obvious than the
shorter chain. The hole contribution (negative E) decreases
and the whole distribution is dominated by the electron contri-
butions (positive E). This is also reflected in the asymmetric
distribution of the electron transmission in the positive- and
negative-energy range. We have shown in Fig. 5 the depen-
dence of J4 on the NNN hopping in the large bias limit. We
observe increase of both magnitude and efficiency of AMR
with the relative magnitude of NNN hopping A = ftnnN /NN,
and the efficiency J4 /Jy saturates at around 0.37.

B. Geometrical dependence

To show the geometrical origin of the AMR in chiral
molecules, dependence of AMR in the high-bias limit on
phase angle A¢ is shown in Fig. 6. It can be seen that AMR
increases with the absolute value of phase angle. It is exactly
zero for achiral straight chain and changes sign when A¢ goes
from positive to negative. Further analysis of j4(E, E~) shows
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> =025

&
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FIG. 5. AMR (J4) (a) and AMR per photon (J4 /Jy) (b) for single
helical chain with N, = 10 as a function of A = fynn/fnn in the large-
bias limit p; > max{E,} > min{E,,} > ug, with {E,,} being the set
of eigenenergies of the molecular orbitals. (c) AMR spectrum J4 (w)
from A = 0 (bottom) to 0.4 (top).

that the whole distribution in energy space reverses sign when
A¢ changes sign. This positive correlation between AMR and
chirality of the chain is the first evidence of geometrical origin
of AMR studied here. It can be understood from the velocity
matrix element [Eq. (42)]. When the phase angle changes,
the relative position of neighboring atoms also changes. The
chiral information is encoded in the relative positions. In the
case of straight chain, j4 can be shown to be exactly zero, and
it changes sign when the phase angle passes zero.

We depict the length (N,) and the radius (r,) dependence of
the AMR in Fig. 7. We have integrated all the positive [termed
right-handed (RH), jar] and negative [termed left-handed
(LH), jaL] regions of the j4 spectra in the energy space of
(E, E7) to characterize the system’s ability to radiate angu-
lar momentum. The AMR grows linearly with chain length
and quadratically with radius. This can be explained by the
velocity matrix v*, which distributes along the whole chain.
As the chain length increases, the velocity matrix element
between the scattering states also increases. This leads to a
linear dependence on the chain length. As for the radius, v*
is proportional to 7, and there are two v¥ factors in Eq. (40).
This is the second evidence of the geometrical nature of AMR.

C. Bias dependence of angular momentum radiation

Up to now, we have been focused on the large-bias limit
where all the inelastic transitions contribute to AMR. We
now consider more realistic cases at different biases for two
types of voltage drop with and without NNN hopping. The
results are depicted in Fig. 8. For symmetric drop (u; =
—ug = |eV]/2) with NN hopping, the AMR is zero due to

L5
0.4 3
— L0 -5
% 05 g 0.2 7
T 0.0 0.0 20
= =-1
379 ~02 N
-1.0 3
) -0.4 -
-02 0 02 -02 0 02 -02 0 02
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JalInlh]

FIG. 6. Dependence of total AMR J, (a), AMR per photon J, /Jy
(b), and AMR per electron J4 /I (c) as a function of phase angle A¢
for parameters N, = 12, . = 0.2, and pu; = —ug = 2 eV. Insets of
panel (a) show single helical chains with phase angle A¢ = —m /4,
0, and 7 /4, respectively. Comparing panels (b) and (c) shows that,
although the photon emission efficiency is low, the average angular
momentum carried by each photon can be quite high.
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FIG. 7. AMR as a function of chain length N, (a), (b) and radius
of gyration r, (c), (d) with different X in the large bias limit. Default
values are used for other parameters. Jag: RH radiation correspond-
ing to j4 > 0. Ja: LH radiation corresponding to j, < 0. Note the
different scales of Jagr and Jay.

electron-hole symmetry of the system. Thus, it is not shown
here. Inclusion of NNN hopping breaks this symmetry and
nonzero AMR is observed [Figs. 8(a), 8(d), and 8(g)]. The
spectra width grows with the applied bias and the high energy
cutoff is given by |eV]| [Fig. 8(a)]. When an asymmetric
bias is applied, with wu; = |eV], ug =0, AMR can be
obtained both without [Figs. 8(b), 8(e), and 8(h)] and with
[Figs. 8(c), 8(f), and 8(i)] NNN hopping. The magnitude
of AMR becomes larger than the corresponding symmetric
bias cases, especially at V = 2.0 V. This is understandable
from the two-dimensional plot of j4 in Figs. 4(b) and 4(e).
The range of the energy integral wg + how < E < g in
the asymmetric case only covers the upper panel, which is
positive. Meanwhile, in the case of symmetric voltage drop,
the integral includes both positive and negative contributions
and they cancel with each other. Introducing the NNN
hopping further makes the positive contribution larger and
leads to larger AMR. We have also studied the length [Figs.
8(d), 8(e), and 8(f)] and radius [Figs. 8(g), 8(h), and 8(i)]
dependence of AMR at different biases. The results are
consistent with those presented in Fig. 7, i.e., AMR grows
with chain length and radius of the helical chain.

IV. CONCLUSION

In summary, we have studied electrically driven angu-
lar momentum radiation (AMR) from helical chains using
the nonequilibrium Green’s function method. The ability of

| (@) — v=05v _(b) | (©

1oV

1.5V
— 2.0V

Ja(@)[107¥]

Jy(@)[1078]

—_

M(8)— r,=34
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— 154
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S = N W b O
T

hwleV]

hwleV]

hwleV]

FIG. 8. (a)—(c) AMR spectra at different applied biases for chain
N, = 10. (d)-(i) AMR spectra for different chain lengths N, =5,
10, 15, and 20 (d)—(f) and radii of gyration r, = 3, 7, 11, and 15 A
(g)—(1) at V = 2 V. The three columns from left to right correspond
to results under symmetric bias (u, = —ug = [eV|/2) with NNN
hopping, asymmetric bias (u; = [eV|, ug = 0) without and with
NNN hopping (A = 0.2), respectively.

AMR is characterized by the imaginary part of a joint optical
transition matrix element between scattering states originated
from the two electrodes [Eq. (40)]. We have made direct
connection between the geometrical factors and the radiation
properties. The most important property of this chiral-induced
AMR is that it does not rely on the magnetic field. Rather, it
relies on the electrical dipole transitions at two different di-
rections, from filled to empty scattering states originated from
two different electrodes. We have also shown the dependence
of AMR on the tight-binding parameters and the coupling
to electrodes. These parameters allow electrical engineering
of the molecule’s AMR property. This fully electrical way
of generating AMR employing chiral molecules may find its
usefulness in the development of chiral single molecule light
sources.
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