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Super-Planckian radiative heat transfer between coplanar two-dimensional metals
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Using the nonequilibrium Green’s function formalism, we propose a general microscopic framework to
investigate the radiative heat transfer (RHT) between coplanar objects with a square lattice. We employ the
obtained formulas to two-dimensional (2D) metal configurations with a tight-binding model and the Drude
model. Our results reveal that the RHT between coplanar 2D metals is significantly larger than black-body
radiation in both the near and far fields, leading to a global super-Planckian RHT. As the separation distance
increases, the heat flux density exhibits a rapid decrease in the near field, followed by a slower decrease and
eventual 1/d dependence in the far field, while maintaining a much higher magnitude than black-body radiation.
Evanescent waves dominate the heat transfer in the near field while propagating waves dominate the far field.
Surprisingly, the propagating heat flux remains almost constant over a wide range of distances, resulting in
a super-Planckian behavior in the far field. The dispersion relation of the spectrum function reveals distinct
contributions from propagating and evanescent waves, with possible origins from surface plasmon resonance.
These findings provide insights into the unique characteristics of RHT between coplanar 2D metals and highlight
the potential for achieving enhanced heat transfer beyond the black-body limit. Our method is applicable to
any coplanar objects with square lattices and paves the way for expanded investigations into various lattice
geometries.
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I. INTRODUCTION

In electrodynamics, the upper limit of energy generated by
thermal motion is governed by black-body radiation, with the
characteristic frequency spectrum determined solely by the
temperature of the body, as per Planck’s law. However, recent
investigations into new tunneling channels of electromagnetic
waves have revealed that radiative heat transfer (RHT) be-
tween bodies can exceed the black-body limit, resulting in a
phenomenon known as super-Planckian RHT [1–3]. The most
extensively studied super-Planckian RHT is the well-known
near-field RHT [4–7], where the separation distance between
two bodies is less than Wien’s wavelength. Through tunneling
evanescent waves, the heat flux between bodies in the near
field can significantly surpass the black-body limit by several
orders of magnitude. Owing to its potential applications in
a wide range of innovative technologies, such as nanoscale
energy harvesting [8] and thermal management [9], super-
Planckian energy transport has generated tremendous research
interest [10–13].

Initially, super-Planckian RHT was considered present
only in the near field, where new tunneling channels such
as evanescent waves can exist. In contrast, propagating
waves dominate far-field RHT, and Kirchhoff’s law governs
the heat emission, thus bounded by the black-body limit
[14]. However, recent studies have revealed that far-field
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super-Planckian RHT can be achieved between subwave-
length objects [15–17]. When the dimensions of the bodies
are smaller than the thermal wavelength, the heat flux between
them in the far field can also exceed the black-body limit
with a defined view factor. For instance, experimental work
by Thompson et al. demonstrates that far-field RHT between
planar membranes with subwavelength dimensions can ex-
ceed the black-body limit by more than 2 orders of magnitude
[16]. Fernández-Hurtado et al. performed further theoretical
investigations to explore the limits of super-Planckian far-field
RHT using two-dimensional (2D) materials [17]. Their re-
sults show that the exchanged thermal radiation between two
coplanar graphene flakes can be more than 7 orders of mag-
nitude larger than the black-body limit, with the enhancement
of RHT in the far-field dominated by TE-polarized guiding
modes [17].

Theoretical works on RHT have generally been based on
the fluctuational electrodynamics (FE) theory of Polder and
Van Hove [18], using Rytov’s formulation of fluctuating elec-
tromagnetic fields [19]. However, previous studies have often
relied on macroscopic local response functions for copla-
nar objects, which may be insufficient to describe RHT in
the extreme near field (distances approaching atomic lattice
constants) and in materials with significant inhomogeneities
where local field effects are non-negligible [20]. This lim-
itation may hinder the application of the macroscopic local
model to subwavelength objects, which are indispensable for
achieving far-field super-Planckian RHT, and suggests the
need for a microscopic nonlocal response function [21,22].
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Alternatively, a general microscopic nonequilibrium
Green’s function (NEGF) approach for photon transport,
inclusive of RHT, has been developed [23–26]. This ap-
proach constructs the thermal transmission function from the
photon Green’s function coupled with the self-energies of
the bodies involved. One advantage of the NEGF formal-
ism is its ability to naturally incorporate the microscopic
tight-binding method, enabling the explicit calculation of
self-energies through approximations such as the random
phase approximation. This microscopic treatment allows for
a more accurate description of the electronic structure and
the inclusion of quantum effects, which are crucial for under-
standing RHT at the nanoscale. More importantly, the NEGF
framework is completely equivalent to FE theory under con-
ditions of local thermal equilibrium while maintaining the
ability to deal with entirely nonequilibrium situations where
the fluctuation-dissipation theorem is not applicable [26–29].
This equivalence ensures that the NEGF approach can re-
produce the results of FE theory in the appropriate limits
[27], providing a unified description of RHT across differ-
ent regimes. Despite the potential of the NEGF method for
RHT applications, its extensive implementation is still emerg-
ing, and a comprehensive quantum-mechanical microscopic
method for studying RHT between coplanar objects has yet to
be established.

In this work, we harness the NEGF formalism to develop a
fully quantum-mechanical microscopic theoretical framework
for examining RHT between coplanar objects, which we apply
to 2D common metals as an example. To obtain the electronic
and response properties of the media, we start from a general
tight-binding model with a square lattice and subsequently
employ the Drude model that is applicable for pure metals.
Our results show that the RHT between coplanar 2D metals
exhibits a super-Planckian behavior in both near-field and
far-field scenarios, dominated by evanescent and propagating
waves, respectively. The calculated heat flux in the near field
is found to be about 4 orders of magnitude higher than the
black-body limit and can reach a million-fold enhancement in
the far-field. This investigation not only introduces a robust
microscopic framework for probing RHT between coplanar
2D objects but also provides a versatile model that can be
extended to other metals with appropriate parameters. Fur-
thermore, it lays the groundwork for future explorations of
different materials and lattice geometries.

II. NEGF FORMALISM FOR RHT BETWEEN
COPLANAR 2D LATTICES

We consider two semi-infinite 2D square lattices placed in
the x−z plane, as shown in Fig. 1. Both lattices have the same
lattice constant a and are separated by a vacuum gap of size d .
For each lattice, we assume electrons are located at the lattice
sites labeled by l = (lx, lz ) and can only hop to the nearest-
neighbor sites within their own lattice, i.e., no electrons can
hop from one lattice to another. If the temperatures T1 and T2

of the two lattices are different, RHT occurs, and we aim to
calculate the net heat flux density between them.

In both the FE and NEGF formalisms of RHT, the en-
ergy current between two bodies is given by a Landauer-like

FIG. 1. Model of two coplanar 2D objects with a lattice constant
a separated by a vacuum gap of d . Each lattice is in its internal
thermal equilibrium state; lattice 1 is at temperature T1, and lattice
2 is at temperature T2. The x direction is periodic, and the z direction
is semi-infinite.

formula [30]:

J =
∫ ∞

0

dω

2π
h̄ω[N1(ω) − N2(ω)]T (ω), (1)

where Nα (ω) = [eh̄ω/(kBTα ) − 1]−1 is the Bose distribution
function at the temperature Tα for object α. The transmis-
sion function T (ω) characterizes the coupling between objects
mediated by fluctuating electromagnetic fields, which can be
expressed using different terminologies in the FE and NEGF
methods.

In this work, we adopt the microscopic NEGF formalism.
Under the local equilibrium approximation, Eq. (1) can be
derived from the Meir-Wingreen formula [31,32], and the
transmission coefficient T (ω) is given by the Caroli formula
[33,34]:

T (ω) = Tr
[
Dr

21�1Da
12�2

]
, (2)

where the superscripts r and a denote the retarded and ad-
vanced components, respectively. The central quantities for
calculations in Eq. (2) are the photon Green’s function D and
the spectrum function �, which is defined as � = i(�r − �a),
where the photon self-energy � describes electron-photon
interactions within each object. Given that the advanced com-
ponents are the conjugate transpose of the retarded ones, i.e.,
Da = (Dr )† and �a = (�r )†, we can calculate the heat flux
between the two objects using the preceding equations once
the retarded photon Green’s function Dr and self-energy �r

of the system are obtained.
To obtain the retarded photon Green’s function Dr and self-

energy �r , we consider a vector potential A and its interaction
with electrons within a tight-binding model framework [35].
As gauge invariance uniquely determines the form of interac-
tions between electrons and fields, by adopting the temporal
gauge (where the scalar potential φ = 0), the Hamiltonian of
the interacting system can be written as [23]

Ĥ = ε0

2

∫
dV

[(
∂A
∂t

)2

+ c2(∇ × A)2

]

+
∑
l,l ′

c†
l Hl,l ′cl ′exp

(
e

ih̄

∫ l

l ′
A · dl

)
, (3)

245427-2



SUPER-PLANCKIAN RADIATIVE HEAT TRANSFER … PHYSICAL REVIEW B 109, 245427 (2024)

where l denotes the electron sites in the 2D lattice; Hl,l ′ is
the single-electron Hamiltonian matrix element; and cl and c†

l
represent the annihilation and creation operators applied on
site l , respectively. ε0 is the vacuum permittivity, and c is the
speed of light. The integral in the exponential function is a line
integral from site l ′ to site l following a straight path.

We now invoke the NEGF machinery, in which the
contour-ordered photon Green’s function D and photon self-
energy � are defined as [29,36]

Dμν (rτ ; r′τ ′) = 1

ih̄
〈TcAμ(r, τ )Aν (r′, τ ′)〉, (4)

�lμ;l ′ν (τ ; τ ′) = 1

ih̄
〈TcIlμ(τ )Il ′ν (τ ′)〉, (5)

where τ and τ ′ are Keldysh contour times, Tc is the time-
ordering operator on the contour, μ and ν represent the x or
z directions, and the average is taken over a nonequilibrium
steady state. Here, D is defined in the entire space, whereas �

is restricted to the discrete lattice sites and the current operator
I describes the hopping of electrons between different sites.

For the 2D lattice configuration illustrated in Fig. 1, with
periodicity only in the x direction and no electron sites in the
y direction, we can perform a Fourier transform of the vector
potential Aμ or electron annihilation operator cl along the x
direction, while maintaining the real space representation in
the z direction. Due to this periodicity, the electron Hamilto-
nian becomes block diagonal after the Fourier transformation,
and the fermion operators defined on lattice sites can be rep-
resented in the mixed space as follows:

clx,lz = 1√
L

∑
qx

eiqxlxac(qx, lz ), (6)

where L is the number of discrete wavevectors in the x di-
rection and the transverse wavevector qx takes on the values
qx = 2πm/(aL) for m = 0, 1, ..., L − 1. Consequently, the
Fourier-transformed version of the photon Green’s function
in our system is expressed by

Dμν (qx, z, τ ; z′, τ ′) = 1

ih̄
〈TcAμ(qx, z, τ )Aν (−qx, z′, τ ′)〉.

(7)

The self-energies of the photons are determined by ex-
panding the exponential term in the interaction part of the
Hamiltonian in Eq. (3) to the second order in Aμ. The linear

term leads to the current-vector potential interaction, and after
applying standard diagrammatic techniques, the linear term
self-energy in contour time is found to be

�μν (qx, lz, τ ; l ′
z, τ

′) = 1

ih̄L
〈TcIμ(qx, lz, τ )Iν (−qx, l ′

z, τ
′)〉.

(8)
Here, the self-energy �μν is dependent on the transverse
wavevector qx as well as the lattice positions lz and l ′

z in the z
direction. The expectation is taken over the equilibrium state,
with the current operators Iμ and Iν describing the electron
hopping processes.

As the x direction is periodic, electrons in lx can hop to
lx ± 1. We define the “velocity” of the electron in the x direc-
tion as

v(px, p′
x ) = at

h̄
(sin(pxa) + sin(p′

xa)), (9)

where a is the lattice constant; t is the hopping parameter; and
p′

x and px are the initial and final momenta of the electron,
respectively. The current operator in the x direction is then
given by

Ix(qx, lz, τ ) = − e
∑
px,px′

v(px, p′
x )c†(px, lz, τ )

× c(p′
x, lz, τ )δ(p′

x − px − qx ), (10)

where (−e) is the electron charge, c† and c are the creation and
annihilation operators for electrons, and δ is the Kronecker
delta function since our momentum labels are discrete, ensur-
ing momentum conservation.

The situation differs in the z direction, as electrons at the
boundary site can only hop to inner sites. A central difference
operator, c(†)(p′

x, lz, τ ) = c(†)(px, lz + 1, τ ) − c(†)(px, lz −
1, τ ), is defined to handle this situation, leading to the expres-
sion for the z component of the current operators:

Iz(qx, lz, τ ) = ieat

2h̄

∑
px,px′

[c†(px, lz, τ )c(p′
x, lz, τ )

−c†(px, lz, τ )c(p′
x, lz, τ )]δ(p′

x − px − qx ).

(11)

Using the notation GAB(τ, τ ′) = ( 1
ih̄ )〈TcA(τ )B(τ ′)〉 for the

electron Green’s function G and applying the Wick theorem
[36], we can obtain the photon self-energies in the following
matrix sectors:

�(1)
xx (qx, lz, τ ; l ′

z, τ
′) = h̄e2

iL

∑
px,p′

x

v2(px, p′
x )G(px, lz, τ ; l ′

z, τ
′)G(p′

x, l ′
z, τ

′; lz, τ )δ(p′
x − px − qx ), (12)

�(1)
xz (qx, lz, τ ; l ′

z, τ
′) = e2at

2L

∑
px,p′

x

v(px, p′
x )[Gcc† (px, lz, τ ; l ′

z, τ
′)G(p′

x, l ′
z, τ

′; lz, τ )

−G(px, lz, τ ; l ′
z, τ

′)Gcc† (p′
x, l ′

z, τ
′; lz, τ )]δ(p′

x − px − qx ) (13)

�(1)
zx (qx, lz, τ ; l ′

z, τ
′) = e2at

2L

∑
px,p′

x

v(px, p′
x )[G(px, lz, τ ; l ′

z, τ
′)Gcc† (p′

x, l ′
z, τ

′; lz, τ )

−Gcc† (px, lz, τ ; l ′
z, τ

′)G(p′
x, l ′

z, τ
′; lz, τ )]δ(p′

x − px − qx ). (14)
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The most complex zz component is given by

�(1)
zz (qx, lz, τ ; l ′

z, τ
′) = i(eat )2

4h̄L

∑
px,p′

x

[Gcc† (px, lz, τ ; l ′
z, τ

′)Gcc† (p′
x, l ′

z, τ
′; lz, τ )

− G(px, lz, τ ; l ′
z, τ

′)Gcc† (p′
x, l ′

z, τ
′; lz, τ ) − Gcc† (px, lz, τ ; l ′

z, τ
′)G(p′

x, l ′
z, τ

′; lz, τ )

+ Gcc† (px, lz, τ ; l ′
z, τ

′)Gcc† (p′
x, l ′

z, τ
′; lz, τ )]δ(p′

x − px − qx ). (15)

In the preceding formulas, if the site index lz appears to be outside the lattice due to the central difference operator , the
corresponding term is understood to be zero. Equations (12)–(15) give the photon self-energy � in contour time. To apply
Eq. (2), we need to transform the contour time formulas to real time, which is achieved in the frequency domain for the retarded
component by the Langreth rule [37] as

G1(τ, τ ′)G2(τ ′, τ ) →
∫ +∞

−∞

dE

2π h̄

[
Gr

1(E )G<
2 (E − h̄ω) + G<

1 (E )Ga
2(E − h̄ω)

]
, (16)

where G< denotes the lesser Green’s function.
Next, we consider the quadratic term (A2

μ) in the expansion, which gives a plasmon or diamagnetic contribution. This term is
important to maintain gauge invariance. After tedious derivations, the results are diagonal in direction and site indices. The xx
component of the plasmon contribution to the retarded photon self-energy in energy space is given by

�r(2)
xx (qx, ω, lz, l ′

z ) = e2

imL
δlz,l ′z

∑
px

∫ +∞

−∞

dE ′

2π
cos(pxa)G<(px, E ′, lz, lz ), (17)

where the effective mass is defined by the relation t = h̄2

2ma2 . The zz component is expressed as

�r(2)
zz (qx, ω, lz, l ′

z ) = e2

4imL
δlz,l ′z

∑
px

∫ +∞

−∞

dE ′

2π
[G<(px, E ′, lz, lz + 1) + G<(px, E ′, lz + 1, lz )

+ G<(px, E ′, lz, lz − 1) + G<(px, E ′, lz − 1, lz )]. (18)

The total retarded photon self-energy is then given by the sum of the linear and quadratic contributions, �r = �r(1) + �r(2). The
preceding expressions for �r are known as random phase approximation, as higher-order electron-photon couplings are ignored.

In the scenario where the system is in local thermal equi-
librium, meaning that the temperature is well defined, we
can employ the fluctuation-dissipation theorem [38,39]. This
theorem allows us to relate the lesser Green’s function G<

to the retarded (Gr) and advanced (Ga) Green’s functions as
follows:

G< = − f (Gr − Ga), (19)

where f = [e(E−μ)/(kBT ) + 1]−1 is the Fermi-Dirac distribu-
tion function at temperature T and chemical potential μ.

To derive the retarded electron Green’s function Gr , we
can focus on the right side of the system. Denote c(qx ) as
the semi-infinite vector of annihilation operators for layers
1, 2, ..., lz, .... The Hamiltonian for the right system, which
is block diagonal with hopping parameter t and electron
dispersion ε1D = −2t cos(qxa), allows us to express the free
electron Green’s function in terms of the inverse of the Hamil-
tonian:

Gr (qx, E ) = [E + iη − H (qx )]−1, (20)

where H (qx ) is the single-particle Hamiltonian as a matrix
indexed by the position lz, and η is a small damping factor
that accounts for electron relaxation processes. An explicit
expression for the electron Green’s function is

Gr (qx, E , lz, l ′
z ) = λlz+l ′z − λ|lz−l ′z |

t
(

1
λ

− λ
) , (21)

where λ is a complex number with |λ| < 1 that satisfies the
quadratic equation:

t + (E + iη − ε1D)λ + tλ2 = 0. (22)

The subsequent objective is to compute the retarded photon
Green’s function Dr . By utilizing the standard diagrammatic
expansion in the interacting picture, the Dyson equation for
the retarded photon Green’s function Dr is [23,40]

Dr
μν (qx, ω, z, z′)

= dr
μν (qx, ω, z, z′) +

∑
lz,l ′z,α,β

[
dr

μα (qx, ω, z, alz )

×�r
αβ (qx, ω, lz, l ′

z )Dr
βν (qx, ω, al ′

z, z′)
]
, (23)

where dr represents the free photon Green’s function. We only
need the solution when z = alz or z′ = al ′

z on the electron
lattice sites. We can obtain the expression in the frequency
domain from the second quantization representation of the
vector potential, or alternatively, we can use the equation of
motion method. The free retarded photon Green’s function is
given by [23,26]

dr (q, ω) = U − qq/(ω/c)2

ε0[(ω + iη)2 − c2q2]
, (24)

with U representing the identity matrix. This is the same as
the usual dyadic Green’s function up to a constant [41,42].
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To obtain the free photon Green’s function suitable for our
geometry, we inverse Fourier transform y and z back to real
space and keep qx as it is. In our context, the free Green’s
function is a 2 × 2 matrix since the y component is never
needed. The explicit expression for the (x, z) block in atomic
units (4πε0 = 1) is

dr (qx, ω, z, z′) =
⎡
⎣

(
1 − c2q2

x
ω2

)
g iqxc2k

ω2 g1

iqxc2k
ω2 g1 g + c2k2

ω2 g2

⎤
⎦, (25)

where k = √|ω2/c2 − q2
x | is the wavevector component per-

pendicular to the x direction, and g, g1, and g2 are functions
involving modified Bessel functions J , Y , and K [43]. Specifi-
cally, if we define X = kr and r = |z − z′|, these functions are
given by the following:

(i) For propagating waves:

g = π

c2
[Y0(X ) − iJ0(X )], (26)

g1 = π

c2
[−Y1(X ) + iJ1(X )], (27)

g2 = −g − g1

X
. (28)

(ii) For evanescent waves:

g = −2K0(X )

c2
, (29)

g1 = 2K1(X )

c2
, (30)

g2 = g − g1

X
. (31)

The expressions for g(1,2) depend on whether the waves are
propagating (ω2/c2 > q2

x ) or evanescent (ω2/c2 < q2
x ). The

modified Bessel functions J0, J1, Y0, Y1, K0, and K1 are used
to describe the spatial dependence of the free photon Green’s
function in the z direction. By substituting the appropriate
expressions for g, g1, and g2 into the matrix for dr (qx, ω, z, z′),
we can handle both propagating and evanescent wave contri-
butions to the photon Green’s function within the system.

III. RHT BETWEEN COPLANAR 2D METALS

In the preceding section, we derived general formulas
to calculate the RHT between coplanar 2D objects with a
square lattice. However, the obtained tight-binding formu-
las Eqs. (12)–(18) for the retarded photon self-energy �r

are complicated and time consuming, necessitating further
approximations for efficient calculations. First, because the
thermal wavelengths of photons are much longer than those
of electrons, we can neglect the wavevector dependence
of the photon self-energy, i.e., we use the long-wavelength
approximation (qx = 0), which can significantly reduce the
computational effort. This approximation is valid and widely
adapted in studying RHT, especially for homogeneous ma-
terials [44,45]. Moreover, we assume that the two lattices
are semi-infinite in the z direction. With an increase in
the separation distance d , a larger lattice cutoff Lz value
in the z direction is needed to ensure convergence. As the
value of Lz determines the size of the self-energy matrices,
the computational complexity grows rapidly, which becomes
the major obstacle for actual calculations.

For pure metals, however, the electron behavior is well
characterized by the Drude model [46,47], which simplifies
the expression for the retarded photon self-energy �r as fol-
lows:

�r
μν (ω, lz, l ′

z ) = δμνδlz,l ′z
a2e2h̄ω

h̄ω + 2iη

∫
dq
4π2

v2
x

(
−df

dε

)
. (32)

Here, vx = 2at sin(qxa)/h̄, and ε = −2t[cos(qxa) +
cos(qza)]. It is diagonal in direction and local in sites.
By applying Eq. (32), not only can we circumvent the
complex tight-binding formulas, but we can also handle a
much larger effective lattice depth of s × aLz by introducing
a scale factor s. This is because the Drude model, lacking a
characteristic length scale, renders the actual lattice constant
a irrelevant. Consequently, the converged value of Lz can be
significantly reduced for which the detailed comparison of
these simplifications is provided in the Supplemental Material
[48].

We applied the derived formulas to investigate the RHT
between 2D metals using the following parameters and com-
putational details. The hopping parameter t is set to 0.85 eV,
and the damping parameter η is 27.2 meV, which are typical
values for simulating common metals [49]. The lattice dimen-
sions are Lz × L = 640 × 640, with a lattice constant a of 4 a0

(4 times the Bohr radius), which is also the assumed thickness
of the metal flake. For calculating photon self-energies, we
used both the tight-binding method and the Drude model,
with scale factor s optimized to ensure convergence across
various separation distances. To circumvent the divergence
of the free photon Green’s function when two electrons are
at the same location (r = 0), we impose a minimum dis-
tance cutoff rcut = 1.6 a0. The temperatures are maintained
at T1 = 1000 K and T2 = 300 K with a null chemical po-
tential. For comparison with black-body radiation, the heat
transfer rate per unit length is also calculated using the Stefan-
Boltzmann law: Jbb = aF12σ (T 4

1 − T 4
2 ), where F12 = a

2d is
the geometrical view factor and σ ≈ 5.67 × 10−8 Wm−2 K−4

is the Stefan-Boltzmann constant [15,17].
In Fig. 2, we present the calculated heat flux density be-

tween two coplanar 2D metal sheets as a function of the gap
size. Results obtained from the tight-binding method with the
long-wavelength approximation represented by a short dashed
line with symbols are only converged for separation distances
up to 0.1 µm. For larger gaps, Lz = 640 proves insufficient,
and extending it further exceeds our computational limits.
The results from the tight-binding method and the Drude
model display good agreement, with only minor deviations in
the extreme near-field regime at nearly contacting distances.
With the same parameters used, e.g., Lz × L = 640 × 640, the
agreement concurs in both near-field and far-field regimes,
which is further detailed in the Supplemental Material [48].
Therefore, subsequent discussions will focus on results from
the Drude model.

As depicted in Fig. 2, the RHT between coplanar 2D metals
decreases monotonically with increasing distance. Nonethe-
less, it is substantially larger than the black-body radiation at
all measured distances, indicating a global super-Planckian
RHT. Unlike a constant black-body radiation for face-to-
face planar geometry, the black-body heat flux in coplanar
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FIG. 2. The distance dependence of radiative heat flux density
between two coplanar metal sheets with temperatures T1 = 1000 K
and T2 = 300 K. The dashed curve with symbols corresponds to
results from the tight-binding method, whereas the colored solid
curve represents results from the Drude model. The black solid lines
depict the heat flux density of black-body radiation calculated by
the Stefan-Boltzmann law, factoring in the geometrical view factor
F12 = a

2d .

geometry has a 1/d dependence due to the geometrical view
factor F12 = a

2d [17]. In the extreme near field, around 1 nm,
the total heat flux density can reach up to 0.01 W/m, nearly 4
orders of magnitude greater than that of black-body radiation,
which is a typical characteristic of near-field RHT. Interest-
ingly, a 1/d dependence is observed at short separations due
to the long-wavelength approximation used in the calculations
[45]. Accounting for the full spatial dispersion would likely
reveal a saturation trend in the extreme near field [12,27]. The
heat flux density decreases rapidly within the near field and
then more gradually from 1 µm to 1 mm. Beyond d = 1 mm,
the heat flux begins to mirror the 1/d dependence of black-
body radiation yet remains several orders of magnitude larger,
in agreement with previous studies [17].

In Fig. 2, we also separated the contributions from evanes-
cent and propagating waves to identify the tunneling channels.
The varying decreasing trend in heat flux at different distances
is attributed to the transition from evanescent to propagat-
ing waves. For d < 1 µm, evanescent waves dominate the
heat transfer, exhibiting rapid decay with distance, which is
typical for near-field RHT. At a separation distance of approx-
imately 100 nanometers, the calculated heat flux density is
around 10−4 W/m, which is in good agreement with recent
experimental measurements of 830 W/m2/K for coplanar sil-
icon carbide membranes [50]. As the distance exceeds 1 µm,
evanescent waves diminish and propagating waves gradually
become the primary contributors. It should be noted that, in
contrast to the face-to-face planar geometry, black-body radi-
ation between coplanar objects decays as 1/d due to the view
factor. However, the heat flux between coplanar 2D metals
from propagating waves in the extreme near field is compara-
ble to that of black-body radiation. It remains nearly constant

FIG. 3. The spectrum of transmission function between two
coplanar metal sheets with the gap size of 1 µm. The horizontal
coordinate is the frequency, and the vertical coordinate is qx × a.
The temperature is fixed at T1 = 1000 K and T2 = 300 K. The red
dashed lines represent the light line q2 = ω2/c2, the boundary be-
tween evanescent and propagating modes.

up to d = 100 µm, resulting in super-Planckian behavior even
in the far field. Notably, for d > 1 mm, the propagating heat
flux again follows a 1/d dependence similar to black-body
radiation but maintains a magnitude millions of times larger,
consistent with prior observations. This suggests that the RHT
facilitated by propagating waves in coplanar configurations
exhibits characteristics similar to traditional face-to-face ge-
ometry, where propagating heat flux remains constant over
distance [51].

The dimensionless spectrum transmission function
T (qx, ω) between coplanar 2D metals was analyzed and is
presented in Fig. 3. The gap size was fixed at 1 µm, a distance
at which both evanescent and propagating waves significantly
contribute to RHT. The heatmap depicted in Fig. 3 is distinctly
divided into two regions. The central region, or the “body”
of the heatmap, corresponds to the spectrum of propagating
waves, which are confined by the relation q2 < ω2/c2. Most
notable is that the majority of contributions within this region
are from low-frequency modes (<0.1 eV) which align with
the thermal energy range defined by the temperatures of the
bodies involved (1000 K and 300 K). Moreover, we observe
contributions from evanescent waves on the “wings” of the
heatmap. These contributions are predominantly concentrated
within a narrow band with a dispersion relation close to ±ω/c.
This suggests that the evanescent waves may stem from the
coupling of surface plasmon resonance, which typically
occurs at these higher frequency multiples relative to the
light line (q2 = ω2/c2) [52]. The suspected significant role
of surface plasmons in near-field RHT highlights the unique
mechanisms of heat transfer at the nanoscale, distinguishing
it from the classical RHT observed at larger scales.
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IV. CONCLUSIONS

In summary, we have proposed a fully quantum-
mechanical microscopic theoretical framework to study RHT
between coplanar objects and systematically applied it to the
2D metal configurations. By employing both tight-binding
and Drude models within the NEGF formalism, our investi-
gations reveal that the RHT in these subwavelength systems
significantly exceeds that of black-body radiation across all
distances, establishing a regime of global super-Planckian
RHT. The distance dependence of the heat flux density is char-
acterized by a rapid attenuation in the near field, transitioning
to a more gradual reduction in the far field, and ultimately
conforming to a 1/d behavior, while maintaining a substan-
tially higher magnitude than that predicted by black-body
radiation.

The analysis of the tunneling channel and dispersion re-
lation of the spectral function has elucidated the distinct
contributions from both evanescent and propagating waves to
the RHT. Evanescent waves are identified as the primary heat
transfer mechanism at shorter separations, whereas propagat-
ing waves dominate as the separation increases. Remarkably,
the heat flux associated with propagating waves exhibits an
almost invariant behavior over an extended range of distances
up to 100 µm, indicative of the super-Planckian transport in
the far field. The dispersion relation of the spectrum function

between coplanar 2D metals reveals the distinct contributions
from propagating and evanescent waves. Most of the prop-
agating wave contributions come from low frequencies and
wavevectors while evanescent wave contributions are limited
to a narrow range close to the light cone, possibly originating
from surface plasmon resonance.

This work advances the fundamental understanding of
RHT in nanostructured systems, particularly emphasizing the
potential of coplanar 2D objects to enable heat transfer that
surpasses classical limits. The derived tight-binding formu-
las are universally applicable to coplanar 2D square lattices,
whereas the Drude model is limited to pure metals. Future re-
search could expand upon this study by investigating different
materials and geometric configurations, as well as by incor-
porating the effect of electron conduction, which becomes
dominant at extremely small distances. The findings presented
herein pave the way for enhanced thermal management and
energy efficiency in nanoscale devices.
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