
PHYSICAL REVIEW B 109, 245426 (2024)

Density functional perturbation theory for one-dimensional systems: Implementation and relevance
for phonons and electron-phonon interactions
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The electronic and vibrational properties and electron-phonon couplings of one-dimensional materials will
be key to many prospective applications in nanotechnology. Dimensionality strongly affects these properties and
has to be correctly accounted for in first-principles calculations. Here we develop and implement a formulation of
density functional and density functional perturbation theory that is tailored for one-dimensional systems. A key
ingredient is the inclusion of a Coulomb cutoff, a reciprocal-space technique designed to correct for the spurious
interactions between periodic images in periodic-boundary conditions. This restores the proper one-dimensional
open-boundary conditions, letting the true response of the isolated one-dimensional system emerge. In addition
to total energies, forces and stress tensors, phonons and electron-phonon interactions are also properly accounted
for. We demonstrate the relevance of the present method on a portfolio of realistic systems: BN atomic chains,
BN armchair nanotubes, and GaAs nanowires. Notably, we highlight the critical role of the Coulomb cutoff by
studying previously inaccessible polar-optical phonons and Fröhlich electron-phonon couplings. We also develop
and apply analytical models to support the physical insights derived from the calculations and we discuss their
consequences on electronic lifetimes. The present study unlocks the possibility to accurately simulate the linear-
response properties of one-dimensional systems, sheds light on the transition between dimensionalities, and
paves the way for further studies in several fields, including charge transport, optical coupling, and polaritronics.
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I. INTRODUCTION

Over the past three decades, nanostructures have captivated
increasing interest, embodying novel physical paradigms and
delivering cutting edge technological applications. Dimen-
sionality plays the role of an additional degree of freedom,
relevant also beyond fundamental science. As regards one-
dimensional (1D) systems, our theoretical understanding and
the associated first-principles computational tools are yet less
developed with respect to the higher-dimensional cases, that is
two-dimensional (2D) layers and three-dimensional (3D) bulk
materials. While carbon nanotubes attracted significant atten-
tion and success [1–6], most first-principles studies have been
confined to nanotubes and a limited selection of nanoribbons,
thus leaving the important subtleties of the long-range physics
associated with these systems and their dimensionality
unexplored.

Density functional perturbation theory (DFPT) is a pow-
erful first-principles tool accurately predicting vibrational
properties [7–11]. In particular, the combination of DFPT
along with analytical models has been exploited in the past to
reach a comprehensive understanding of phonons, including
phenomena such as the well-known LO-TO splitting in 3D
systems and its breakdown at the zone center in 2D [11–14],
and the coupling of these phonons with electrons in both
3D and 2D materials [14]. However, most of the available

first-principles codes rely on periodic-boundary conditions
in the three spatial dimensions (3D PBCs) and this poses
some challenges when dealing with reduced dimensionality.
Indeed, 3D PBCs necessarily imply the simulation of an ar-
ray of periodically repeated instances of the low-dimensional
system, and those periodic images will interact with each
other; an effect that is compounded by the lack of screening
across vacuum, or even within the low-dimensional systems.
While increasing the amount of vacuum within the simulation
cell may suppress the effects of those spurious interactions
for some physical properties, many other properties will al-
ways be affected to some extent [13–20]. This is the case
for polar (i.e., with spontaneous net macroscopic polariza-
tion [21]) or charged and doped systems. More generally,
this is relevant when long-wavelength perturbations of the
charge density are considered. In all these scenarios, the
physical phenomena are indeed driven by long-range (LR)
electrostatics, which is ultimately ruled by materials dimen-
sionality. For instance, in linear response, when the electronic
charge density of a low-dimensional material is perturbed at
momentum q (in the periodic direction), the potential gen-
erated scales as λ = 2π/q in the nonperiodic direction(s).
Thus, for long-wavelength perturbations (i.e., q → 0) the
spurious interactions persist even for very large distances
[13–17,19,22]. In this light, the strategy of increasing the vac-
uum not only increases the computational cost significantly
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(linearly/quadratic with the distance in 2D/1D), but also
never fully eliminates the issue. For momenta smaller than
the inverse of the distance between periodic images there will
always be the response of a 3D periodic system, instead of the
physical 1D one. Note that small momenta are exactly those
relevant for spectroscopic characterization, charge transport,
and many other prospective applications.

Proper suppression of these stray interactions across pe-
riodic images has been achieved by smoothly truncating the
Coulomb interactions between them [15,17]. This led to the
capability of accounting for materials dimensionality when
dealing with excited and neutral properties in 2D systems
[11,17,23–28], while only partly in 1D [15,29–39]. How-
ever, computing linear-response properties of 1D materials
via DFPT is still an open challenge. In the following, we
address this challenge by developing a DFPT framework tai-
lored for 1D systems. To this aim, we implement the 1D
version of the Coulomb cutoff technique [11,15,40] developed
for 2D systems [11] within the Quantum ESPRESSO (QE)
distribution [41,42] and we compute consistently potentials,
total energy, forces, stresses, phonons, and electron-phonon
interactions (EPIs). We also implement the nonanalytic con-
tribution to the dynamical matrix to ensure smooth Fourier
interpolations and phonon dispersions. Thanks to those devel-
opments, we can highlight the essential role of open-boundary
conditions in predicting the correct linear response of 1D
systems. Namely, we focus the discussion on polar-optical
phonons (infrared-active, recently investigated in Ref. [43])
and Fröhlich couplings, showing for the first time in 1D, to the
best of our knowledge, their critical dimensionality signatures.
Our study is applied to a portfolio of relevant 1D systems
including chains, wires, and tubes, and the understanding we
offer is supported and complemented by analytical models.

The paper is structured as follows. First, in Sec. II we
discuss the challenge posed by PBCs and we illustrate how
to rigorously curate this issue by introducing the Coulomb
cutoff technique. In Sec. III, the implementation of the 1D
framework within QE is detailed. In Sec. IV, we use our
developments to study polar-optical phonons (A) and their
coupling to electrons (B). We thus discuss the physical under-
standing provided by our study and, eventually, we comment
on the importance of all this for transport applications (C).
The conclusions follow in Sec. V.

II. INADEQUACY OF 3D PBCs

First-principles calculations based on plane-wave basis sets
rely on PBCs across all three dimensions. When using these
PBCs while simulating a system with reduced dimensionality,
periodic images will be present in the nonperiodic directions;
e.g., nanotubes, nanowires, polymeric and atomic chains. Our
goal consists in isolating the 1D system in such a way that it
does not interact with its images, which otherwise would in-
troduce an additional response in our calculations, eventually
hindering the true 1D physics. This is of crucial importance
in a variety of cases: systems perturbed at long wavelengths
(even if neutral and nonpolar), polar systems, and when dop-
ing or charging is included. In short, suppressing the stray
interactions is essential whenever long-range electrostatics are
relevant.

FIG. 1. Sketch of the supercell construction for 1D systems and
the effect of introducing the Coulomb cutoff; after truncation, a given
charge in the 1D system interacts only with charges (electrons and
nuclei) within a cylinder of radius lc built around it.

Let us start by framing the main concepts and the nomen-
clature. A 1D system is described as a crystal with periodicity
only along one direction—ẑ in this case—termed “in-chain”,
while having a limited extension (in the range 1–100 nm) in
the two other “out-of-chain” directions, x̂ and ŷ. Henceforth,
the term “chain” might be used to denote a generic 1D system.
The cells in the crystal are identified by Rz = mb where m is
an integer and b is the in-chain primitive lattice vector; the
out-of chain components are instead constants. The position
of each atom a within a cell is then given by da, which may
contain out-of-chain components depending on the structure
(e.g., linear or zig-zag chains, tubes, wires). Switching to the
reciprocal space, the crystal is described by the reciprocal
vector Gz generated by the in-chain primitive reciprocal lattice
vector b∗

3. Within DFT, the ground-state properties of our
system are fully determined by the charge density

ρ(r⊥, z) = 2e
∑
k,s

f (εk,s)|ψk,s(r⊥, z)|2, (1)

where we sum over the spin-degenerate electronic states,
labeled by the in-chain momentum kz and the band index
s, f (εk,s) is the Fermi occupation and ψk,s are the Bloch
wavefunctions. The Kohn-Sham (KS) potential VKS for a
neutral/undoped 1D system consists in the external potential
created by the ions, i.e., Vext ≡ Vion in this context, plus two
electronic contributions: the Hartree VH and the exchange-
correlation Vxc potentials. The total potential reads

V 1D
KS (r⊥, z) = V 1D

ext (r⊥, z) + V 1D
H (r⊥, z) + V 1D

xc (r⊥, z). (2)

Each of these potentials has the periodicity of the crystal, i.e.,
V (r⊥, z + Rz ) = V (r⊥, z); the same holds for the electronic
density in Eq. (1). It is important to recall here that materials
properties can be derived starting from space integrals of the
electronic charge density times these potentials. When using
3D PBCs, rather than simulating the isolated 1D system, one
deals with an array of copies obtained by periodically repeat-
ing the system in the three dimensions of space with a given
amount of vacuum to separate them; this is shown in Fig. 1.
Thus, the total potentials from each system, given in Eq. (2),
combine as

V 3D
KS (r⊥, z) =

∑
R⊥

V 1D
KS (r⊥ − R⊥, z), (3)
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where |R⊥| describes a square periodic lattice of parameter
d in the out-of-chain direction (Fig. 1; we are assuming here
a tetragonal cell as the primitive unit of repetition). The re-
sulting potential V 3D

KS �= V 1D
KS satisfies the 3D PBCS. Then, if

the 1D system is perturbed at small momenta qz (i.e., long
wavelengths) its electronic charge density, periodic only along
the z direction, will respond by generating a potential that is
a decaying function of qz|r⊥| in the out-of-chain directions,
long range in real space for qz approaching 0. This decay
function is intricately connected to modified Bessel functions,
as explored in more detail in literature such as [43,44]. As
soon as the range of these interactions is comparable with
the distance d between the periodic repetitions (qzd � 1),
spurious contributions alter the response of the isolated sys-
tem. In essence, PBCs constrain us to simulate a 3D crystal,
consisting of weakly bounded 1D substructures, rather than
the desired isolated 1D system, and its true physical response
will be overlaid with those of all periodic copies. Similar
considerations are valid, besides linear response, in charged,
doped, or polar materials where even the energetic and forces
may be influenced by the presence of the periodic copies.

This issue can be addressed via the Coulomb cutoff
technique, as successfully demonstrated in several studies
[11,15,17,40]. In fact, the conventional approach of sim-
ply increasing the vacuum between images only reduces
the affected portion of the Brillouin zone (BZ) (the region
where qzd � 1), while the computational cost significantly
increases. For a more systematic and physical solution, we
instead enforce a 1D Coulomb cutoff based on the one pro-
posed in Ref. [15], and implement it in the relevant packages
(PWScf and PHONONS) of the QE distribution [8,41,42].
This implementation leads to the correct 1D open-boundary
conditions (OBCs) for the computation of potentials, total
energies, forces and stress tensors, phonons, and EPIs.

III. 1D OPEN-BOUNDARY
CONDITIONS IMPLEMENTATION

The Coulomb cutoff technique consists in explicitly trun-
cating the spurious interactions between periodic images. This
is done by modifying the Coulomb kernel, rather than directly
the potentials. The kernel vc is thus redefined as v̄c,

vc(r) = 1

r
→ v̄c(r) = θ (lc − |r⊥|)

|r| , (4)

and all the long-range (LR) contributions to the potentials
(i.e., the ones affected by the stray fields, associated to the
spurious interactions between periodic images, Vion,VH) are
then obtained by convolution of this truncated kernel with the
electronic charge density in Eq. (1),

V̄ (r) = e
∫

ρ(r′)v̄c(|r − r′|) dr′, (5)

in such a way that a given charge in the 1D system interacts
only with charges within a cylinder of radius lc built around
it (see sketch in Fig. 1). Note that although the kernel is
discontinuous, the final potentials are smooth thanks to the
convolution with the charge density. Eventually, the material
is effectively isolated, meaning that there is no physical 3D pe-
riodic system anymore; there is instead a 1D periodic system,

repeated in the two additional dimensions of space in order to
build potentials that mathematically still fulfill 3D PBCs but
physically lead to the true 1D response.

A. 1D Coulomb cutoff

In practice, within the code the potentials (or at least their
LR part) are generated in reciprocal space. Thus, the truncated
kernel from Eq. (4) becomes

v̄c(G) = 4π

G⊥2 + Gz
2

[1 + G⊥lcJ1(G⊥lc)K0(Gzlc)

− GzlcJ0(G⊥lc)K1(Gzlc)], (6)

where Jn(x) and Kn(x) are, respectively, the nth order ordi-
nary and modified cylindrical Bessel functions and lc is the
cutoff length. Note that for the Gz = 0 plane the expression
in Eq. (6) is ill defined since K1(x) diverges logarithmically
for x → 0. However, we are interested in the total potential
given as the sum of the Hartree and ionic terms, both modified
consistently via this kernel and each defined up to an arbitrary
additive constant. Thus, we follow the original development
[15] where this singularity is separated from the truncated
kernel and included in these constants. This is done by consid-
ering a cylinder with finite height h instead of the infinite one
of Eq. (6); that is, one first restricts the integration domain
along the 1D axis, and then recovers the infinite system by
taking the limit for h → ∞. For the purposes of this paper, we
adopt the same strategy with a crucial variation, which will be
highlighted in the following.

We start by defining h/2 = Nl0 as half the new length of
the finite cylinder, where l0 is a unit length such that h is
always assumed much larger than the cell size in the periodic
direction. We get the following expression for the Fourier
transform of the truncated kernel in Eq. (4):

v̄c(G⊥, Gz ) =
∫ lc

0

∫ 2π

0

∫ +h/2

−h/2

e−i(G⊥r⊥ cos θ+Gzz)√
r2
⊥ + z2

r⊥ dr⊥dθdz.

(7)

Focusing on the Gz = 0 plane, we are now left with

v̄c(G⊥, Gz = 0) =
∫ lc

0
4πJ0(G⊥r⊥)r⊥ log

×

⎛
⎜⎝ h

2 +
√

h2

4 + r2
⊥

r⊥

⎞
⎟⎠ dr⊥, (8)

where we can substitute h/2 = Nl0 and then split the expres-
sion in two integrals, I1 and I2, of which only the first one
depends on the height of the cylinder. The truncated kernel
now reads

v̄c(G⊥, Gz = 0)

= −4π

∫ lc

0
J0(G⊥r⊥)r⊥ log(r⊥/l0) dr⊥

+ 4π

∫ lc

0
J0(G⊥r⊥)r⊥ log(N +

√
N2 + (r⊥/l0)2) dr⊥.

(9)
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The first integral, not dependent on h, has the following well-
defined solution:

I1 = 4π
1 − J0(G⊥lc) − G⊥lcJ1(G⊥lc) log(lc/l0)

G2
⊥

, (10)

while the second integral I2 depends on h and gives

I2 = 4π lc log(2N )
J1(G⊥lc)

G⊥
. (11)

This latter term contains the singularity (i.e., limN→∞ I2 =
∞), which can be dropped by invoking charge neutrality as
long as we apply the same cutoff correction to both the Hartree
and the ionic potentials. At this point, we are interested in
fixing the G = 0 term of the potential, that is V̄ (G = 0) = 0,
adopting a gauge consistent with the existing 3D code and
2D implementation [11]. Thus, we consider the limit of I1 for
G⊥ → 0 and we get the following behavior:

v̄c(G⊥ → 0, Gz = 0) = lim
G⊥→0

I1 ∼ −π l2
c [2 log(lc/l0) − 1].

(12)

The difference in the present approach with respect to
Ref. [15] is the presence of the parameter l0, which comes
from the finite height of the auxiliary cylinder. This parameter
has two practical purposes: (1) it enables the use of a dimen-
sionless argument for the logarithm log(lc/l0), and (2) it can
be chosen to set the average potential over the unit cell to zero,
i.e., V̄ (G = 0) = v̄c(G = 0) = 0, leading to

I1 ∼ −π l2
c [2 log(lc/l0) − 1] = 0 → l0 = lc

exp(0.5)
.

This corresponds to the conventional choice in QE for both
3D and 2D materials.

Eventually, after some manipulations, the final expression
for the 1D truncated kernel becomes

v̄c(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

4π

G⊥2+Gz
2 [1 + G⊥lcJ1(G⊥lc)K0(|Gz|lc)+

−|Gz|lcJ0(G⊥lc)K1(|Gz|lc)], G⊥, Gz �= 0

4π

G⊥2 [1 − G⊥lcJ1(G⊥lc) log( lc
l0

)+
−J0(G⊥lc)], G⊥ �= 0, Gz = 0

0 G = 0

.

(13)

Since the K (x) functions damp the oscillations of the J (x)
functions very quickly, as pointed out in Ref. [15], the cutoff is
expected to act only on the smallest values of G, while the bulk
behavior (4π/G2) is soon recovered for larger values. Note
that the cutoff lc needs to be at least as large as the maximum
distance between electrons belonging to the system; i.e., the
effective thickness of the material 2t , otherwise some physical
interactions of the 1D system with itself will be erroneously
cut. In turn, the size of the simulation cell in the nonperiodic
directions d should be such that electrons belonging to dif-
ferent periodic images are separated by at least lc. In practice,
the cutoff is chosen to be lc = d/2, and the supercell built such
that d > 4t .

In the following, we detail the implementation of the
relevant physical ground-state properties (potentials, energies,

forces, stresses) and linear-response ones [phonons and
electron-phonon coupling (EPC)]. For the sake of simplicity,
we follow the same steps involved in the implementation for
2D systems [11], limiting the present discussion to what is
different in 1D with respect to the previous case.

1. Potentials

The KS potential is the sum of the external (in this case,
ionic), Hartree, and exchange-correlation contributions,

VKS(r⊥, z) = Vext (r⊥, z) + VH(r⊥, z) + VXC(r⊥, z). (14)

Here, we are interested in modifying only the LR part
of these potentials and thus we can neglect the exchange-
correlation term, which is short ranged (SR). Note that this
implementation holds for all types of pseudopotentials (i.e.,
norm-conserving, ultrasoft, and projector-augmented wave).
Following the conceptual steps of Ref. [11], we proceed by
modifying in the QE 3D code the Fourier transform of the
local ionic potential and the Hartree potential by substituting
the reciprocal expression of the truncated Coulomb kernel.
This step is straightforward once the kernel has been modified
as detailed in the previous section. So, we define the local
ionic potential as

V loc
ion (G) =

∑
a

e−iG·da
(
vSR

a (G) + vLR
a (G)

) →

V̄ loc
ion (G) =

∑
a

e−iG·da
(
vSR

a (G) + v̄LR
a (G)

)
, (15)

and the LR part transforms as

vLR
a (G) = −Za

�
vc(G)e−|G|2/4η →

v̄LR
a (G) = −Za

�
v̄c(G)e−|G|2/4η, (16)

where � is the volume of the unit cell of our 1D system (that
is length of the cell times the cross-sectional area in the radial
directions). For the Hartree term we have

VH (G) = vc(G)n(G) → V̄H (G) = v̄c(G)n(G). (17)

As a first validation of the method, we focus on a sys-
tem with negligible periodic images interactions concerning
ground-state properties. This approach allows us to check the
modifications introduced so far. We expect the KS potential
to be minimally affected by our changes, ensuring the re-
production of the correct physics within the physical region
defined by the cutoff length lc. Additionally, we comment on
some peculiarities and side effects arising as a consequence
of our implementation outside such a region. With this goal in
mind, we focus on the simplest system in our portfolio: the BN
atomic chain (first panel of Fig. 2). We plot in Fig. 3 the total
KS potential, as well as its components, without the Coulomb
cutoff (3D PBCs), and after its inclusion (1D OBCs). This is
shown in three different panels. The first panel offers a three-
dimensional representation of the total KS potential averaged
along the in-chain direction, ẑ, and plotted as a function of the
two out-of-chain directions, x̂ and ŷ (which in this case are
equivalent by symmetry). This representation serves several
purposes: (a) it provides insights into the rate of decay of the
potential in real space, (b) aids in detecting any anomalous
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FIG. 2. Crystal structure of (a) a BN atomic chain, (b) an arm-
chair BN nanotube (4,4), and (c) a GaAs nanowire.

behavior due to our implementation, and (c) emphasizes the
equivalence of the two radial directions. This latter equiva-
lency is crucial for interpreting the subsequent plot. In fact,
in the second panel of Fig. 3 we focus on the cross section of
the total potential along one of the two equivalent out-of-chain
directions. Together with the KS potential in this case we plot
the electronic charge density allowing for a spatial extension
comparison. We highlight the limits of the physical region
defined by the 1D cutoff by shading the rest of the plot, i.e.,
for x > + d

2 − t or x < − d
2 + t with t being the radius of the

1D system (see Sec. III B). This spatial domain corresponds to
the real-space distance over which both the ionic and Hartree
potentials exhibit 1D characteristics. Each of these two sub-
systems, associated with distinct densities, indeed gives rise
to an effective cylinder described by the defined cutoff. The
intersection between these two cylinders is the one termed
the “physical region” in this context. Within this physical
region, and for this system where neutrality and the absence of
out-of-chain dipoles make periodic image interactions weak,
VKS with and without the cutoff is expected, and found, to
be the same up to a constant. This constant comes from the
fact that both KS potentials average to zero, but the one with
the cutoff exhibits artifacts, i.e., “bumps”, outside the physical
region, as already discussed for the 2D implementation [11];
this is an inevitable consequence of satisfying 3D PBCs. Fi-
nally, in the third panel we zoom on the physical region and
we add to the picture also the ionic and Hartree potentials,
with and without the 1D cutoff. Within 3D PBCs, the choice
of setting the G = 0 value of the ionic or Hartree potential
to zero is equivalent to the inclusion of a compensating jel-
lium background. At variance with the 2D case, in 1D the
potential generated by a linear infinite distribution of charge
in the surrounding is logarithmic instead of linear, while in
3D PBC the jellium bath adds a quadratic contribution to the
potential between periodic images. The correct 1D behavior
is restored once the cutoff is applied; however, the effects
observed on the cutoff are more subtle with respect to what
observed in 2D systems when applying the cutoff [11], at
least in the case of neutral nonpolar materials considered
in this paper. The results depicted in Fig. 3 align with our
expectations regarding the impact of the cutoff on both the
total potentials and their individual contributions. These find-
ings serve as an initial validation, suggesting that the code is
operating as intended. Further validation, as mentioned, would
necessitate expanding our investigation to more complex elec-
trostatic systems, such as those with charges or out-of-chain
dipoles.

2. Energies, forces, and stresses

The total energy per unit cell is computed as

Etot = Ekin + Eext + EH + EXC + Ei−i, (18)

i.e., as the sum of the electronic kinetic energy, the energy
of the electrons in the external potential created by the ions,
the Hartree energy, the exchange-correlation energy, and the
ion-ion interaction energy. Each of these terms involves a con-
volution of the charge density with the kernel; thus, we simply
need to modify the LR contributions (i.e., Eext, EH, and Ei−i)
by consistently truncating the Coulomb kernel throughout the
code substituting vc(r) with v̄c(r).

Once the 1D potentials and energies are obtained, the
forces acting on each ion a are obtained as derivatives of the
total energy with respect to the displacement ua,i along a given
Cartesian direction i,

Fa,i = −∂Etot

∂ua,i
= −

∫
�

n(r)
∂V̄ion

∂ua,i
dr − ∂Ei−i

∂ua,i
, (19)

where all the terms, which do not involve explicitly interac-
tions with the ions have been dropped, and we always imply
derivatives at zero displacement ua,i = 0. Thus, we are left
with only two terms: the force on an ion coming from the
electrons and the contribution given by the interaction with
the other ions. Both terms can be obtained as a straightforward
consequence of modifying energies and potentials.

Finally, stresses are computed as derivatives of the total
energy with respect to the strain tensor

σi j = − 1

�

∂Etot

∂εi j
, (20)

where Etot is proportional to the truncated kernel via the
Hartree term (see Ref. [11]). Here, the LR terms affected by
the stray fields are the Hartree term σ H

i, j and the contribution

coming from the LR part of the local ionic potential σ loc,LR
i, j .

In this case the modifications needed are more extensive and
differ with respect to both the 3D case and the 2D truncation.
In fact, modifying the kernel and potentials is not enough; one
also needs the expression for the derivative of the truncated
Coulomb kernel with respect to the strain tensor. By applying
the chain rule for the derivative and exploiting the fact that
∂Gl/∂εi j = −δliG j , we have

∂vc(G)

∂εi j
=
∑

l

∂vc(G)

∂Gl

∂Gl

∂εi j
= −∂vc(G)

∂Gi
Gj . (21)

In the 1D case we have, based on Eq. (13),
∂ v̄c(G)

∂Gz
= − v̄c(G)

G2
⊥ + G2

z

2Gz[1 − βz(G⊥, Gz )], (22)

∂ v̄c(G)

∂|G⊥| = − v̄c(G)

G2
⊥ + G2

z

2G⊥[1 − β⊥(G⊥, Gz )], (23)

with βz and β⊥ defined as follows:

βz = 4π

2Gzv̄c

[
− G⊥l2

c J1(G⊥lc)K1(Gzlc)

− lcJ0(G⊥lc)K1(Gzlc)

+ Gzl2
c

2
J0(G⊥lc)(K0(Gzlc) + K2(Gzlc))

]
, (24)
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FIG. 3. Effect of the 1D Coulomb cutoff on the KS potential. In the first panel, we show the KS potential averaged along the chain, with
(green) and without (red) the cutoff. In the second panel, we focus on the x axis cross section of the KS potential in green (dotted/solid for
3D/1D PBCs) and we highlight the physical region; the electronic charge density is reported for reference in orange. In the last panel, we
zoom on the physical region and we plot besides the KS potential also the ionic (blue) and Hartree (red) contributions, always comparing each
potential with and without the 1D cutoff (solid and dotted line, respectively). Refer to the main text for details.

β⊥ = 4π

2G⊥v̄c

[
G⊥l2

c

2
K0(Gzlc)[J0(G⊥lc) − J2(G⊥lc)]

+ lcJ1(G⊥lc)K0(Gzlc)

+ Gzl
2
c J1(G⊥lc)K1(Gzlc)

]
. (25)

3. Phonons and EPC

The key ingredient to compute phonon dispersions and
EPIs is the response of the electronic density to a phonon
perturbation. This is obtained in DFPT by solving self-
consistently a system of equations in which the unknown
is the lattice periodic part (in italics) of the perturbed KS
potential ∂V̄KS(r⊥,z)

∂ua,i (qz ) . In practice, what is needed to compute
linear-response properties are the derivatives of the pre-
viously defined potentials and energies, already modified,
consistently, via the Coulomb cutoff. Once again we are in-
terested only in the LR terms, i.e., the local ionic V̄ loc

ion(q +
G) and Hartree V̄H(q + G) contributions. The truncated re-
sponse is thus obtained by propagating the truncation of these
potentials consistently. Once this is done, the implementa-
tion of the dynamical matrix, from which one obtains the
phonon dispersion relations and the EPC matrix elements, is
straightforward. The crucial consequence of the cutoff imple-
mentation on phonons and EPIs will be at the center of the
discussion in the following section. For more details about
the implementation of all this in QE, the reader can refer to
Ref. [11] since the modifications are the same as for the 2D
cutoff, just substituting the 1D truncated kernel and potentials.

B. Phonon interpolation and nonanalytical corrections

Besides the implementation of the 1D Coulomb
cutoff, another relevant modification concerns the Fourier
interpolation of phonon dispersion relations. Fourier
interpolation enables to efficiently compute the full phonon
dispersion on a dense momentum grid, first computing the
dynamical matrix on a coarse grid, then Fourier transforming
it into finite-ranged interatomic force constants (IFCs), and
finally Fourier transforming the IFCs back in reciprocal space

on a finer momentum grid. However, in most semiconductors
and insulators, nonvanishing Born effective charges (BECs)
drive long-ranged dipole-dipole interactions. These are
dimensionality dependent and lead to the IFCs slowly
decaying in real space [12,13,16,43,45,46]. The Fourier
interpolation scheme is then not able to fully capture these
nonanalytic terms since it is based, instead, on the real-space
localization of the IFCs [7–9,13,47,48]. This prevents from
getting accurate phonon interpolations when dealing with
polar-optical phonons in a generic n-dimensional material.
The standard solution is to build a reciprocal space model for
these dipolar interactions and separate the dynamical matrix
into a SR and LR component,

Dai,b j (q) = DSR
ai,b j (q) + DLR

ai,b j (q) (26)

such that the correct long-ranged contribution to the
dynamical matrix can be excluded and then readded in
the interpolation procedure [7,13,43]. This contribution,
DLR

ai,b j (q), in 1D has been recently presented in Ref. [43]
and is discussed in Appendix B. It is worth mentioning
that the dipole-dipole terms considered here are the leading
contribution to the LR IFCs, but higher orders may be present
as well with, in general, much smaller consequences on the
phonon dispersion relations [49–51]. Note that in any case
direct phonon calculations (i.e., without interpolation) with
the 1D cutoff include all order of multipoles.

The implementation of DLR
ai,b j (q) requires several physical

quantities. Masses, eigenvectors, eigenvalues, and BECs are
directly obtained from the underlying DFT and DFPT calcula-
tions. What need to be parameterized are instead the effective
radius t of the 1D system and its macroscopic dielectric
tensor ε1D, which in this model is replaced by the dielectric
component εz (i.e., isotropic assumption). As discussed in the
literature [14,18,26,52–58], the dielectric tensor concept is
ill defined in nanostructures. More advanced strategies have
been proposed to model the response of two-dimensional ma-
terials [26,56–58] based instead on the polarizability and a
particularly fundamental and robust theory has recently been
proposed in 2D [16]. In our study [43], however, modeling
the material as a dielectric cylinder implies the presence of a
1D dielectric tensor in the analytical model. This differs from
the one computed in PBCs such as in QE εQE, which depends
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FIG. 4. Phonon dispersion of a BN atomic chain, a (4,4) nanotube, and a wurtzite GaAs nanowire with a primitive cell of 24 atoms
(including the saturating hydrogens). For each material, the left panel compares the interpolated phonons from DFPT calculations with 3D-PBC
(red) and with 1D-OBC (green). The respective right panels show the agreement of explicit (symbols) and interpolated (line) 1D DFPT
calculations with the analytical model from Ref. [43] for the LO branch in the long-wavelength limit. For the BN chain, we report also the
1D-OBC interpolated phonons for increasing vacuum in the simulation cell.

on the size of the simulation cell. Following the prescriptions
from Ref. [43], we define

ε1D = c2

πt2
(εQE

z − 1), (27)

where c is the out-of-chain length characterizing the supercell
geometry (assumed to be the same in the x̂ and ŷ directions).
In practice, in implementing the correction to the dynamical
matrix, we automatize the choice of the effective radius as
t = d/4, where in the most general case d is the size of the
cell in the nonperiodic direction. This choice is reasonable
assuming that d has been chosen as the minimum size to
satisfy the cutoff requirements as explained in Sec. III A.

IV. APPLICATION TO 1D SYSTEMS

In most practical cases, atoms in semiconductors and
insulators carry nonvanishing BECs corresponding to a po-
larization charge inside the material. This is the origin
of nonanalytic LR contributions affecting phonons (such
as polar-optical phonons) and EPIs (e.g., Fröhlich and
piezoelectric). Due to the long-range nature of the phe-
nomenon, dimensionality has profound consequences on
linear-response properties. The 1D cutoff is thus crucial for
their first-principles description. In this section, we apply our
developments to the following systems: a BN atomic chain,
a BN armchair nanotube, and a GaAs nanowire (see Fig. 2).
Namely, we show the impact of the present implementation
on polar-optical phonons (A) and their coupling to electrons
(B), envisioning the related consequences in terms of charge
transport (C).

A. Polar-optical phonons

Polar-optical infrared-active phonons—namely the longi-
tudinal optical ones (LO)—can generate a LR electric field,
macroscopic in the long-wavelength limit [46,59,60]. This
field is felt by the atoms as an addition to the energy cost
associated to their displacement and leads to a blue shift of
the phonon frequencies. While the strength of this effect is

modulated by the dielectric properties of the material (BECs
and the high-frequency limit of the dielectric tensor ε∞), its
dependency on phonon momenta and size (thickness in 2D,
and radius in 1D) is constrained by dimensionality. This phe-
nomenon has undergone extensive investigation in both 3D
[12,46] and 2D materials [13]; its investigation in 1D systems
is a recent development [43]. In our previous paper [43], we
focused on the physics of polar-optical phonons in 1D systems
and presented an analytical model (parameterized from first
principles) to support our understanding. Here, we shift the
focus to our methodological developments, specifically on
accurately simulating these phonons and their properties from
first principles. The importance of boundary conditions and
a suitable phonon interpolation scheme are revealed to be
crucial.

The first panels of Fig. 4 display the interpolated phonon
dispersion for each of the materials under consideration. Simi-
larly to our approach with the potentials, we present the results
from the standard QE code, using 3D PBCs and phonon inter-
polation, and compare them with the outcomes obtained after
implementing the 1D Coulomb cutoff technique and phonon
interpolation. We show that the main difference is found in the
long-wavelength limit of the LO branch, highlighted in colors.
The LO branch from the standard QE code (red) exhibits
features, which are similar to those commonly found in 3D
bulk materials, here related to the presence of the periodic
images. On the contrary, within the current 1D implementa-
tion (green), the dielectric shift experienced by LO phonons
is shown to vanish in the proximity of � with an asymptotic
trend in agreement with the expected 1D signature, i.e., a
quadratic-logarithmic relationship as q2 log(q), as discussed
in Ref. [43].

In the panels on the right, we zoom in on the long-
wavelength behavior of the LO mode for each material
to further discuss technical aspects and validate our devel-
opments. These panels show that the interpolation scheme
proposed here is successful: interpolated phonons (lines) fall
on top of the explicit DFPT calculation (dots). The same is
true for the analytical model from Ref. [43], restating that
1D OBCs are key to reproduce the physical softening of the
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branch, discussed in Ref. [43]. Note that, in nanostructures,
phonon calculations at � do not pose any issue, contrary
to the 3D case. Direct phonon calculations give the correct
results with or without spurious effects because of the van-
ishing nonanalytic contribution to the zone-center dynamical
matrix [13,43]. Similarly, the short-wavelength limit (i.e.,
qz → ∞) is not dependent on dimensionality. This explains
why the correction introduced by the Coulomb cutoff only
impacts long-wavelength phonons. This highlights the reason
for choosing perturbative methods (like the one suggested
here) over finite-difference approaches. The latter would need
extremely large supercells to accommodate these phonons,
leading to a high computational coast.

In addition, we stress that the discrepancy between the 3D
and 1D-boundary conditions depends on the vacuum present
within the simulation cell, specifically the distance between
periodic images in 3D PBCs. The momentum range where
the two approaches differ is directly related to this distance.
A larger vacuum leads to a smaller region affected near � and
consequently a softer behavior of the LO branch, asymptoti-
cally approaching the 1D limit. This behavior is illustrated in
the right panel of Fig. 4 for the BN atomic chain, where the
LO characteristics at small momenta are shown for various
distances between periodic images. Note that increasing the
vacuum is computationally costly, and the 1D asymptotic
behavior is only fully recovered when a cutoff is applied. In-
deed, regardless of the vacuum size and for sufficiently small
momenta, the presence of spurious interactions consistently
induces a response resembling that of a 3D periodic system.
Nevertheless, the fact that while increasing the vacuum, the
3D curves collapse towards the 1D results is a solid validation
of the developments presented in this paper, as it shows that
our 1D implementation corresponds to the 3D one in the limit
of infinite distance between periodic images.

B. Fröhlich electron-phonon interactions

Similar to phonons, electron-phonon interactions can un-
dergo significant modifications due to dimensionality. One
prominent example is the Fröhlich coupling between the elec-
trons and the polar-optical phonons discussed in the preceding
section. The long-range nature of this interaction gives rise
to distinct signatures in 3D, 2D, and 1D systems. In 3D,
the Fröhlich interaction is known to diverge as q → 0 [61],
while in 2D, it converges to a finite value [14]. The behavior
of the Fröhlich interaction in 1D systems remains unclear,
and our implementation can provide valuable insights in
this regard.

Here, we focus on the simplest yet instructive system
in our portfolio, the BN chain. The dispersion relations for
small-momentum LO phonons are shown in the second panel
of Fig. 4. We investigate how this mode couples with the
electrons in the system by considering phonon scattering of
an electron from an initial state |ki〉 to a final state |ki + q〉
within a given band n (i.e., intraband scattering only). Namely,
we restrict our analysis to the conduction and valence bands
with initial states being at the edge of the BZ, i.e., Z point,
that is the conduction (valence) band minimum (maximum)
[62]. The EPC matrix elements are defined in DFPT as pro-
portional to the potential perturbation induced by a phonon
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FIG. 5. Effect of the 1D Coulomb cutoff on EPC matrix elements
obtained from DFPT for LO phonons. The analysis is restricted to
intraband scattering within the valence or conduction band near Z
(although accounting for the degeneracy of the bands as explained).
In the top and central panels, we report in red the results from the
standard QE code, 3D PBCs, and in green the ones from 1D-DFPT.
In the bottom panel, we overlay the analytical model, summarized in
Appendix B, onto the 1D-DFPT results for various radii (t) used in
its parametrization.

displacement of atom a in direction i [8],

gDFPT
ν (qz ) =

∑
a,i

ea,i
ν (qz )√

2Maων (qz )
〈ki + q|�a,i

qz
VKS(r)|ki〉,

(28)

where h̄ is set to 1 in natural units, VKS is the lattice periodic
part of the Kohn-Sham potential, eν and ων are the phonon
eigenvectors and eigenvalues for the ν mode, and Ma is the
mass of the atom.

First-principles results are presented in Fig. 5, and the
3D PBCs are compared with 1D OBCs (top panel), as was
done for phonons. Very different trends are observed for the
small momenta limit of |gLO(q)|2. In fact, in 3D PBCs, the
Fröhlich interaction diverges as q → 0, as expected in 3D
bulk materials. This occurs no matter the amount of vacuum in
the simulation cell (as shown in the inset of the top panel), due
to spurious interactions between the periodic images. Consis-
tent with prior observations, the larger the vacuum, the closer
one asymptotically gets to the isolated case. The response
from the isolated 1D system is, however, recovered with the
Coulomb cutoff. In this case the coupling with LO phonons
exhibits a nonmonotonic behavior with respect to both 3D and
2D materials. In particular, |gLO(qz )|2 goes to 0 at �, reaches
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a maximum at small momenta and then converges to the 3D
1/q behavior for larger momenta.

This trend is found to be in agreement with our analytical
model (Appendix B), as shown in the center panel of Fig. 5.
Note that the analytical |gLO(qz )|2 from the model actually
represents the average potential generated by the LO phonons
and experienced by the electrons inside the material, where
both the electronic and the polarization charge densities are
defined via a Heaviside step function with radius t . It does
not include the full wavefunction overlap present in DFPT
calculations, see Eq. (28). As a result, it loses the informa-
tion about the dependence on the initial and final electronic
states. Despite this limitation, the comparison between first-
principles calculations and the analytical results confirms the
qualitative trend of the coupling and the position of the peak
at finite but small qz. Note that, as shown in the bottom panel
of Fig. 5, this only weakly depends on the choice of the radius
t . Thus, slightly different parametrizations of t (i.e. different
procedures to extract it from the charge density) will lead to
a similar result. In any case, understanding this behavior and
being able to predict the peak positions is crucial for several
technological applications, including transport.

C. Charge transport

The developments discussed thus far hold significant rel-
evance for charge transport, which is ubiquitous in various
technological applications. Specifically, the scattering of elec-
trons with small-momenta phonons is important for doped
semiconductors when the Fermi surfaces are small. The the-
oretical and computational findings presented here suggest
notable modifications in this momentum range. It seems par-
ticularly important to be able to predict the peak position
for the Fröhlich coupling |gLO(q)|2 and its implications on
electronic lifetimes τ−1(εk ). In the following we provide an
approximate estimation of the inverse lifetimes for electrons
scattered by LO phonons, evaluated as

τ−1
ν (εk ) = 2π

∑
q

|gν (q)|2δ(εk+q − εk ∓ h̄ων,q)

{
N−

ν (q, T )

N+
ν (q, T )

}
,

(29)

where the delta function enforces the energy conservation,
while N (q) is the Bose-Einstein distribution with index –
(+) to indicate phonon absorption(emission). We investigate
the consequences of the peaked behavior exhibited by the
Fröhlich coupling. In fact, the 1D peaked signature of the
coupling is echoed in terms of τ−1. The peak in this case is
shaped—shifted and varied in width—by the Bose-Einstein
distribution that accounts for the temperature-dependent
phonon population. The overall structure is ultimately de-
termined by the relevant phonon momenta (associated with
phonon absorption/emission transitions) fulfilling the energy
conservation enforced by the Fermi golden rule.

Focusing once more on the BN chain, we consider an
initial state at the bottom of the conduction band, around the
Z point. For a given initial state, there are two relevant q
values associated with phonon absorption processes, and the
corresponding coupling strength |g(q)|2 enters the electronic
lifetimes. Building upon the earlier findings, we anticipate the

FIG. 6. 1D dimensionality effects on inverse electronic lifetimes
due to LO mode scattering in the BN chain. (Top panel) Room
temperature inverse lifetimes for initial states ki near the bottom of
the conduction band, calculated using first-principles phonon and
electronic band structures along with the analytical model (black)
or 1D-DFPT (green) for the Fröhlich coupling. (Center panel) The
q points associated to the electronic transitions within the initial
k-point range depicted in the top panel. (Bottom) Inverse electronic
lifetimes, similar to the top panel, but with the substitution of phys-
ical LO frequencies by constant artificial values ω to tune the range
of phonon momenta involved in the transitions.

analytical model for the coupling to yield accurate results pri-
marily in the long-wavelength limit, as previously discussed.
This implies that the model is applicable mainly to scattering
events involving electronic states near each other in k space,
contingent upon the effective masses of the relevant bands.
Consequently, for flatter bands, transitions with larger q val-
ues become predominant, resulting in diminished predictive
power for the model. According to Eq. (29), the position of the
peak is primarily determined by two factors: the LO phonon
frequencies and the curvature of the band near the selected
ki. These two factors govern the phonon momenta relevant
for the scattering of electrons. The relevant momenta can be
possibly close to the peak of g, maximizing the scattering
probability, or they can be more or less distant. This will shape
the overall trend of the electronic lifetimes across the bottom
of the conduction band.

We present our findings in the three panels of Fig. 6. In the
top panel, we show the lifetimes obtained through Eq. (29) for
a range of electronic states near the bottom of the conduction
band of the BN chain. Here, we use first-principles electron
and phonon band structures, along with the coupling strength
derived analytically and discussed in Appendix B (black) and
the one obtained via explicit 1D-DFPT (green); the two are
in agreement. In the following we use the analytical results
to further comment on the qualitative trends for the lifetimes,
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clarifying the 1D peculiarities. Moving to the center panel,
we plot the corresponding phonon momenta relevant to each
ki considered earlier; that is the q points corresponding to
the electronic transition fulfilling the Fermi golden rule in
Eq. (29). Notably, the maximum in the inverse lifetimes, that
is the strongest scattering, precisely corresponds to the initial
electronic states positioned at the bottom of the conduction
band (approximately at the Z point). This alignment of rel-
evant q values with the peak position of |g(q)|2 × N (q) is
specific to the conduction band curvature and LO frequency
of the BN chain. A different curvature of the conduction band
would change the momenta that satisfy energy conservation.
Alternatively, one could consider different phonon energies.
In the bottom panel, we demonstrate how manipulating the
available phonon energy for electronic transitions allows for
tuning the relevant q values for each initial k state, conse-
quently shifting the position of the peak. Smaller phonon
energies lead to lower associated phonon momenta for the
transitions, progressively shifting the peak further away from
the bottom of the conduction band. Note that the curves have
been normalized to emphasize the influence of tuning the
available phonon energies on the peak position. Otherwise,
large differences in magnitude of τ−1 are observed due to
the varying phonon populations, which notably increases for
low-energy phonons. This plot is a conceptual representation
and does not depict a physical scenario.

To further support our analysis, we use the analytical devel-
opments outlined in Appendix B to qualitatively illustrate the
results for the BN nanotube. These are shown in Fig. 7. In this
case, compared to the chain, the conduction band near its min-
imum � is flatter while phonon energies are comparable, and
the peak predicted by the model for the coupling happens at
relatively larger, but still small, phonon momenta (top panel).
As a result, assuming that the model captures well enough
the peak position for the coupling, the peak (center panel)
in inverse lifetimes will happen far from the band extrema,
specifically for initial states at ≈12% of the BZ.

V. CONCLUSIONS

In summary, we introduce a novel DFT and DFPT
framework to comprehensively simulate ground-state and,
most importantly, linear-response properties of 1D systems
from first principles. This achievement is made possible by
implementing the 1D Coulomb cutoff in the QE distribution
[41,42]; a reciprocal-space technique designed to rectify
spurious interactions stemming from periodic images within
periodic-boundary conditions. This restores the proper 1D
open-boundary conditions, allowing the intrinsic response
of the isolated 1D system to unfold. This implementation
involves modifying the relevant potentials, enabling the
computation of energies, forces, stresses, and, most notably,
phonons and electron-phonon properties. We then apply our
developments to a portfolio of realistic materials that are
electrically neutral with no net spontaneous polarization.
Among the physical properties affected, we focus extensively
on the major example of polar-optical phonons, their disper-
sion relations and their coupling to electrons, revealing their
strong sensitivity to the dimensionality of the materials. To
complement our DFPT results, we also present an analytical
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FIG. 7. 1D dimensionality effects on Fröhlich coupling and as-
sociated inverse electronic lifetimes in the (4,4) BN nanotube. (Top
panel) Electron-phonon coupling as a function of phonon momenta
obtained from the analytical model. (Central panel) Room tempera-
ture results for the inverse lifetimes in the proximity of the bottom of
the conduction bands; these are based on first-principles phonon and
electronic band structures and the analytic model for the Fröhlich
coupling. (Bottom panel) Relevant q points (two values satisfying
energy conservation for each initial electronic state) across the region
k points spanned in panel (central panel).

model capable of accurately describing long-wavelength
polar-optical phonons—those precisely probed by IR and
Raman spectroscopies—as well as semi-quantitatively cap-
turing the Fröhlich coupling in 1D materials. We discuss the
characteristic softening of the long-wavelength limit of the LO
phonon dispersion curves, as previously observed in a recent
paper [43]. Moreover, we unveil an exotic and nonmonotonic
behavior, occurring in the same q limit, regarding the coupling
of these phonons to electrons. Remarkably, we highlight how
this peaked behavior observed in the coupling plays a
crucial role in transport applications, resulting in strong
scattering for specific initial electronic states. These exciting
results emphasize how dimensionality provides unparalleled
opportunities to tailor material properties. Specifically,
we propose that engineering transport properties becomes
achievable by strategically tuning the phonon frequencies
of the LO modes and/or the curvature of electronic bands.
These results hold profound implications for various practical
applications, impacting not only lifetimes and mobilities
but also bandgap renormalization and superconducting gaps.
Importantly, all these results can only be achieved by applying
the 1D cutoff, restoring the true physical response and
associated signatures. On top of these physical insights, the
analytical model also provides us with the fitting contribution
to the dynamical matrix coming from the polarity-induced
LR interactions. This finally allows to smoothly interpolate
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polar phonons in one-dimensional systems. In conclusion, our
paper unlocks the accurate computation of linear response in
1D systems, deepens our understanding of the dimensional
transitions, and sets the stage for similar advancements in the
fields of charge transport, optical coupling, and polaritronics.
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APPENDIX A: COMPUTATIONAL DETAILS

First-principles calculations of structural and vibrational
properties are performed by combining DFT and DFPT as
implemented within the Quantum ESPRESSO distribution
[8,41,42] (3D PBCs) and in our modified version with newly
implemented 1D periodic-boundary conditions (1D OBCs).
This includes the 1D Coulomb cutoff and a modified phonon
Fourier interpolation based on the analytical model from
Ref. [43]. The modification of the standard code to include
1D open-boundary conditions will be available at GitHub
[63]. Its release in Quantum ESPRESSO is anticipated, pend-
ing the successful integration into the official branch. We
use the Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional [64] for all materials and pseudopotentials from
the Standard Solid-State Pseudopotentials (SSSP) precision
library (version 1.1) [65], and the kinetic energy and charge
density energy cutoffs have been selected accordingly: 110
and 440 Ry for the chain, 80 and 440 Ry for the nanotube,
and 90 and 720 Ry for the GaAs nanowire. We treated all
the materials under study as nonmagnetic insulators (i.e., fixed

occupations), and a fine electron-momenta distance of approx-
imately 0.2 Å−1 has been used to sample the Brillouin zone.
The convergence of all the relevant parameters has been per-
formed aiming for an accuracy in the final phonon frequencies
of a few cm−1. The long-wavelength acoustic phonons have
been corrected by imposing the acoustic sum rule described
in Ref. [66] on the interatomic force constants.

The data used to produce the results of this study are
available at the Materials Cloud Archive [67].

APPENDIX B: ANALYTICAL MODELS

In Ref. [43], we addressed an electrostatic problem that led
to the development of a comprehensive analytical expression
for the electric field generated by polar-optical phonons. This
achievement allowed us to derive an analytical formula for the
frequencies of these phonons as a function of their momenta
and the radius of the material. In that study, we described
the 1D system as a charge distribution periodic along the
z axis and homogeneous in the radial direction within an
effective radius t , with vacuum outside. Within the dipolar
approximation, the atomic displacement pattern ua

ν associated
with a phonon ν of momentum q = qzẑ induces a polarization

density P(qz ) = e2

L

∑
a Za · ua

ν (qz ), where e represents the unit
charge, L is the unit-cell length, and Za is the BECs tensor for
each atom a within the unit cell. We then solved the Poisson
equation associated with this induced polarization

∇ · [ε∇VFr (r)] = −4π∇ · P(r), (B1)

by exploiting the periodicity and symmetry of the 1D system,
while applying the appropriate electrostatic boundary condi-
tions. This derivation resulted in a crucial analytical outcome,
that is the average interaction potential between these phonons
and the electrons. This is what we call here Fröhlich potential
and in 1D has the following form:

VFr(qz ) = 4πe2

ε1D�qz

∑
a

Za · ea
LO(qz )√

2MaωqzLO

⎡
⎢⎢⎢⎣1 − 2I1(|qz|t )K1(|qz|t )

(
1 − 2ε1D

√
πqztI1(|qz|t )K0(|qz|t ) − G22

24(|qz|2t2)

2
√

πqzt (ε1DI1(|qz|t )K0(|qz|t ) + I0(|qz|t )K1(|qz|t ))

)
︸ ︷︷ ︸

�1D(qz,t )

⎤
⎥⎥⎥⎦,

(B2)

where � = πt2L is the 1D volume and In(x), Kn(x) are the nth
order modified cylindrical Bessel functions, Gmn

pq (a1, ..., ap

b1, ..., bq
|x)

is the Meijer G function, and we assumed a diagonal and
isotropic dielectric tensor ε∞, i.e., εm → ε1DI) (see Ref. [43]
for more details). The term �1D carries a clear dimension-
ality signature. Specifically, for (qzt → ∞), �1D approaches
zero, leading to the well-known bulk 3D limit. In this limit,
the potential converges to the established prefactor described
by the Voigl model [61]. Conversely, in the opposite limit,
as qzt tends to zero, �1D displays a unique 1D asymptotic
behavior. In addition, from this potential, we derived the long-
wavelength dispersion relation for polar-optical phonons.

Their dispersion relations can be recast in the form

ωLO =

√√√√ω2
0 + 4πe2

ε1D�

(∑
a

Za · ea
LO√

Ma

)2

[1 − �1D(q, t )],

(B3)

where ω0 is the reference value for the LO branch in the
absence of any additional contribution from polarity (which
can be or not equal to the TO depending on dimensionality
and symmetry considerations).
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The analytical results displayed in this study rely on first-
principles parameters obtained independently through DFT
and DFPT calculations under 1D open-boundary conditions.
In particular, Eqs. (B2) and (B3) involve various physical
quantities directly derived from such calculations, with the
exception of the effective radius t and the in-chain component
of the 1D dielectric tensor, i.e., ε1D. For more details on

how these two parameters are obtained, see Sec. III B of this
paper and the Supplementary Information of Ref. [43]. Here,
for the sake of completeness, we report the radius (in bohr)
estimated for each materials presented: 1.70 for the BN atomic
chain, 10.15 for the (4,4) BN nanotubes, add 10.41 for the
small GaAs nanowire (24 atoms per unit cell including the
hydrogens to saturate the dangling bonds).
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