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Time-dependent driving and topological protection in the fractional Josephson effect
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The control of any type of quantum hardware invariably necessitates time-dependent driving. If the basis
depends on the control parameter, the presence of a time-dependent control field yields an extra term in the
Schrödinger equation that is often neglected. Here, we examine the effect of this term in a flux-controlled
Majorana junction. We show that a time-varying flux gives rise to an electromotive force, which is highly
nonlinear when truncating to the junction’s low-energy degrees of freedom. As a result, it compromises the
robustness of the ground-state degeneracy present in the absence of the drive. The resulting flattening of the
energy spectrum can be measured by a strong suppression of the dc supercurrent.
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I. INTRODUCTION

Topological insulators and other noninteracting systems
can be classified according to their symmetries, using the
tenfold way [1–4]. In realistic systems, the topologically
protected ground-state degeneracy can be compromised by
several processes. But such processes are commonly expected
to be exponentially suppressed, such as the overlap of Majo-
rana edge modes [5,6], or similarly the overlap of edge modes
in topological insulators [7–9]. The topological protection
becomes algebraic in one-dimensional (1D) superconductors
[10,11] or when coupled to a dissipative environment [12–14],
which, among others, motivates extending the concept of
topological phases to non-Hermitian Hamiltonians of open
systems [15–27].

An even more basic problem is the interplay between
topological protection and classical time-dependent driving.
Given a Hamiltonian system that depends on a tunable
control parameter x, it is common to include driving
parametrically—that is, H (x) → H[x(t )]—which implies that
the time-dependent system inherits the symmetries and topo-
logical protection from its stationary counterpart. But if the
basis of H depends on x, the Schrödinger equation ac-
quires the additional term1 −iẋU †∂xU where the unitary U (x)
encodes the basis [28]. In the adiabatic limit, this term cor-
responds to the Berry connection. Importantly, this term is
often neglected and hence the fate of the topological protec-
tion in the presence of time-dependent driving is still largely
unexplored.

In order to address this fundamental question, we study
superconducting circuits. Here, the influence and microscopic
origin of the term −iẋU †∂xU have recently been examined
for generic superconducting circuits driven by time-dependent
flux [29–31], in which case this term represents an elec-
tromotive force (emf). To include the aspect of topological
protection, we choose to study the basic example of Majorana

1Here and in the following, we set h̄ = 1.

fermions in p-wave superconductors, which may be realized
in various condensed-matter systems [32–40], for example,
proximitized semiconducting nanowires [41,42]. The study of
the resulting fractional Josephson effect [33,43] has seen a
revival on theory side [44–50], specifically the interplay of
time-dependent driving and dissipation, along with the role
of the overlap between edge modes in transport across the
junction. Nonetheless, full understanding of the experimen-
tally observed suppression of the first Shapiro step and of
the Landau-Zener probability in the qubit formed by coupling
two Majoranas across the weak link [51–59] is still a topic of
active research.

In this work, we study the effect of the emf on topo-
logical protection in Majorana junctions, where the control
parameter is the phase bias φ across the junction. Building
on previous results valid at weak driving [60], here, we ac-
count for the effect of the emf to all (relevant) orders. By
eliminating high-energy quasiparticle states, we demonstrate
that while the emf term for the full system Hamiltonian is by
construction linear in the voltage V = φ̇/(2e), its effect on
the low-energy description is amplified, resulting in a highly
nonlinear renormalization of the effective Majorana overlap
for the driven junction. Moreover, we show that this effect
strongly suppresses the supercurrent, as evidenced by the IV
characteristics of the driven junction. This result entails mod-
ifications of various predictions regarding time-dependent
driving of Majorana junctions (e.g., Refs. [51–59]). In gen-
eral, we show that an accurate theoretical description of driven
(topological) quantum systems needs the careful treatment of
the dependence of the basis on the external control parameter.

II. MODEL

We consider a flux-controlled Majorana junction, which
consists of two tunnel-coupled topological superconductors.
We model the superconductors as one-dimensional Kitaev
chains with nearest-neighbor hopping and pairing [5,61]. The
two contacts have a phase difference φ ≡ φR − φL that is
generally time dependent (Fig. 1). The central question of
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FIG. 1. Two tunnel-coupled topological superconducting wires,
represented by the four Majoranas {γ1, γ2, γ3, γ4}. The wires are
placed on top of two superconductors (gray), which interconnect at
the far ends to form a loop threaded by a time-dependent magnetic
field. The applied field leads to a phase difference φ = φR − φL. The
phase drop is included entirely in the right wire. The induced emf
(owing to the time-dependent phase) strongly modifies the coupling
between Majoranas γ3 and γ4, which can be regarded as a strong
renormalization of the overlap between the exponential tails of the
Majoranas.

this work is how to incorporate the time-dependent phase
difference due to the bias voltage in the Hamiltonian descrip-
tion of the system. The most common choice is to attach
φ to the tunneling across the weak link, which leads to the
Hamiltonian

H = HL + HT(φ) + HR. (1)

The individual Kitaev chains (of J sites) are described by

Hα = −μ

J∑
j

d†
j,αd j,α − t

J−1∑
j

(d†
j+1,αd j,α + H.c.)

+ �

J−1∑
j

(d j+1,αd j,α + H.c.), (2)

where the chain index α ∈ {L, R}, t is the hopping ampli-
tude, the chemical potential is within the topological limit
|μ| � 2t , and the pairing potential � is real. The operator
d j,α annihilates an electron at site j of chain α. The tunneling
Hamiltonian reads

HT(φ) = −δt (e−iφ/2d†
1,RdJ,L + eiφ/2d†

J,Ld1,R), (3)

which couples the two chains with an amplitude δt � t .
The phase difference φ could, however, be attached else-

where in Hamiltonian or, in the most general case, be
distributed along a given spatial profile within H . This profile
can be encoded in the basis choice of the Hamiltonian via a
unitary transformation U (φ) [29,30,60]. If φ is constant in
time, these choices are all gauge choices, that is, as long as
Cooper pairs acquire the total phase φ when traveling from
one contact to the other, it does not matter where they acquire
it along the way. But the situation is radically different for
φ → φ(t ). Here, Hamiltonians with different basis choices
provide different dynamics [29,30], as different phase profiles
correspond to different choices of the vector potential whose
time derivative contributes to the (gauge-invariant) electric
field [30]. In particular, the choice in Eq. (1) would only be
correct if the induced electric field was completely screened
by the Kitaev chains. But most materials expected to host

Majorana fermions have a low carrier density with poor
screening properties. This statement is in accordance with
experimental and theoretical data for both semiconducting
nanowires [62,63] and 3D topological insulators [64].

Let us now focus on the asymmetric choice for which the
phase φ is attached to the right Kitaev chain. This choice is
described by H = HL + HT + HR(φ) such that

H = UHU † = eiφGR H e−iφGR , (4)

where GR = −∑J
j d†

j,Rd j,R/2. With this unitary transforma-
tion, the phase attaches to the pairing term in the right chain
such that � → �e±iφ for HR. The phase distribution in H
corresponds to the case where the voltage drop V ≡ φ̇/(2e)
occurs between the right chain and the right superconducting
bulk. Importantly, we note that for realistic device geometries,
the voltage profile as a function of space is much more so-
phisticated. This fact has been comprehensively studied in our
previous work [60] (see also Appendix A, which summarizes
these aspects). Note in particular that the main reason why
the voltage drop occurs within the nanowires and not at the
weak link is that the weak link is typically much smaller than
the separation of the superconducting bulks. Ultimately, these
details can, however, be disregarded, and we can replace the
detailed voltage profile with a constant voltage. If the device
geometry is asymmetric, or the external fields are applied
asymmetrically, then the simplified picture deployed above is
justified. Moreover, we note that a significant part of the here
presented phenomenology survives even in a symmetric setup
(as long as the voltage drop occurs within the nanowires and
not at the weak link). We will comment on the symmetric case
again further below.

Low-energy Hamiltonian

We now derive a low-energy description for H . First, it is
useful to transform back into the basis choice that attaches the
phase to the weak link (as in H) to ensure that the low-energy
basis is φ independent. This transformation is accomplished
by U as defined in Eq. (4). Due to ∂tU �= 0, the Schrödinger
equation is now governed by H + φ̇GR, where the second
term represents a voltage-induced change of the chemical
potential of the right chain.2

The second-quantized operators can be written in the form
Aα = 1

2ψ†
αAαψα , where the chain index α ∈ {L, R}, the oper-

ator Aα ∈ {HL, HR, GR}, and the matrix Aα ∈ {HL,HR,GR}.
The matrices Hα and GR are constructed such that their prod-
uct with the field operators ψα = (d1,α, d†

1,α, . . . , dJ,α, d†
J,α )T

returns the many-body operators. Likewise, we can write the
tunneling Hamiltonian as HT(φ) = ψ

†
LHT(φ)ψR.

For the uncoupled chain Hamiltonians Hα =
	vα

εvα
|vα〉 〈vα|, particle-hole symmetry implies that each

eigenstate |vα〉 at energy εvα
has a pair |ṽα〉 at energy −εvα

,
with the two related by |vα〉 = τx |ṽα〉 where the Pauli matrix
τx acts on the Nambu space. The two Majoranas of each chain

2The unitary transformation (4) leads to a 4π -periodic Hamilto-
nian, compared to the 2π -periodic one in Eq. (1). The change of
periodicity does not, however, alter the size of the Hilbert space nor
the fermion parity.
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are related to the states |0α〉 and |0̃α〉. If the left and right
Majorana modes do not overlap, these states are degenerate at
zero energy, which is why we refer to them as the zero-energy
states.

For a low-energy description of the full Hamiltonian, we
eliminate all but the subspace comprising the zero-energy
states |0α〉 and |0̃α〉 of each chain, following a standard
Schrieffer-Wolff transformation that includes higher-order
corrections [65]. This subspace is described by the projection
operators Pα = |0α〉 〈0α| + |0̃α〉 〈0̃α|, whereas Qα = 1 − Pα

projects onto the high-energy quasiparticle states.
The emf term for the full system φ̇GR is manifestly linear in

φ̇. A central conclusion of our work is that after the projection,
this extra term leads to a low-energy description with param-
eters depending on φ̇ in a highly nonlinear fashion. Namely,
we obtain the Hamiltonian

Hlow = i
ε0

2
γ2γ1 + i

ε0 + gR

2
γ4γ3 + iEM cos

(
φ

2

)
γ2γ3, (5)

where, in leading order, the weak link only couples γ2 and γ3

(Fig. 1), with the operators γ denoting the second-quantized
operators of the Majorana modes of each chain, which sat-
isfy {γμ, γν} = 2iδμν . The energy ε0 represents the previously
mentioned ordinary overlap between left and right Majorana
modes of each chain and equals 〈0α|Hα |0α〉 (where we drop
the chain index because we here assume the two chains to have
identical parameters for simplicity). The low-energy projec-
tion of the extra term φ̇GR appears in the Hamiltonian Hlow in
two places: it modifies the Josephson energy EM(φ̇) and yields
a new overlap term gR(φ̇).

The former originates from the tunneling matrix HT(φ)
and couples the two Majoranas γ2 and γ3 across the junction.
As for its φ̇ renormalization, it is sufficient to account for
emf-induced corrections to the Josephson energy EM pertur-
batively in the form [60]

EM(φ̇) = 〈0L|HT(0) |0R〉 − 〈0L|HT(0)
QR

HR
φ̇GR |0R〉 , (6)

where the first term is the standard fractional Josephson effect.
The (first-order in φ̇) correction term is the subject of our
previous work [60], where it was shown to be measurable
either in the linear current response, or (in an open circuit
geometry) as an additional contribution to charge fluctuations.

The new overlap term gR—similar to ε0—couples the left
and right Majorana modes of the right chain, but the impact
of the emf can be much larger in magnitude. To understand
this, we pick up on the above observation, that the emf shifts
the chemical potential of the right chain as μ → μ + φ̇/2.
For φ̇ constant, and neglecting tunneling for now (HT = 0),
the problem becomes completely static, such that it suffices
to consider the μ dependence of the overlap term. Assuming
t > δμ > � (δμ = 2t + μ), the static overlap can be given as
ε0 ≈ �F e−J�F /̃vF sin(Jδμ/̃vF), see Appendix A, where, �F ≈
2�

√
δμ/t is the effective local pairing, and ṽF ≈ 2

√
tδμ is

the Fermi velocity (here in units of energy, since the discrete
chain has no length scale).

Note that the only part of the overlap that does not depend
on δμ is the coherence length ξ0 = ṽF/�F. The overlap oscil-
lates strongly as a function of δμ, where both the oscillation
amplitude (∼�F) and frequency (∼1/̃vF) themselves depend

weakly on δμ. The oscillations are due to the chain form-
ing a quantum dot, where the oscillations represent the level
spacing. Replacing δμ → δμ + φ̇/2, we thus find a strong
voltage-dependent renormalization of the overlap energy of
Majoranas in the same chain. Note that the φ̇-renormalization
can complete many oscillations before the applied voltage sur-
passes 2�F (where driving-induced quasiparticle generation
leads to a breakdown of the low-energy picture). Conse-
quently, unlike EM, the renormalization of the overlap cannot
be obtained perturbatively. It is interesting to note that this
phenomenon can be effectively regarded as strong renormal-
ization of the coherence length, |ε0| ∼ e−J/ξ (φ̇) with

1/ξ (φ̇) = 1/ξ0 − ln | sin(Jφ̇/̃vF )|/J, (7)

where ξ can largely exceed ξ0. We therefore interpret the
phenomenon as a voltage-induced renormalization of the Ma-
jorana wave function overlap, as indicated in Fig. 1.

Importantly, the nonperturbative nature of the above ef-
fect remains true even if we include the possibility of partial
screening within the nanowires, or if the detailed geometry of
the device was such that the voltage drop is highly localized.
Both of these cases can be easily accounted for by adding
a numerical prefactor <1 in front of φ̇. Crucially, such a
reduction would, however, only affect the number of oscilla-
tions within a given voltage window, but not the amplitude
of the oscillations. We further note that for general device
geometries, and more complicated fields, there may be dy-
namical negative capacitance effects (see Ref. [30]), which
can increase the numerical prefactor, even to the extent of
rendering it >1.

While the above argument holds only for constant φ̇, we
now present a generalization to arbitrary driving by means of
a partial resummation of higher-order terms in the Schrieffer-
Wolff approximation, (ignoring those that are exponentially
suppressed in comparison3) to obtain (see Appendix B)

gR(φ̇) = 〈0R|
(
1 + φ̇GR

QR

HR − ε0

)−1

φ̇GR |0R〉 . (8)

The above formula agrees well with the previously discussed
analytic overlap term for constant φ̇. Let us at this point
interject that the nonlinear renormalization of the overlap does
not require spatial asymmetry: it is present even if the voltage
drop across the entire junction occurred symmetrically, e.g.,
where both the pairing on the left and the right chain each ac-
quired φ/2. In this case, φ̇ → φ̇/2 in Eq. (8), and there would
occur a similar renormalization for the overlap of Majoranas
on the left.

3Within the same order of φ̇, we can compare two terms such as
PRGRPRGRQRGRPR and PRGRQRGRQRGRPR. The former depends
on the overlap PRGRPR between the exponentially decaying tails of
the left and right Majoranas of the right chain, while the latter avoids
this suppression and couples solely via the excited states described
by the projector QR. The former is therefore much smaller and can
be dropped. We follow this pattern to obtain the resummation (8).
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FIG. 2. Impact of the emf on the energy spectrum of Hamiltonian
(9) with p = 1 as a function of the voltage V = φ̇/(2e) and the
unrenormalized Josephson energy E 0

M = EM(φ̇ = 0). We character-
ize the spectrum by the ratio |E |(E2 + E 2

M)−1/2 where E = gR/2.
The uncoupled Kitaev chains have ground-state degeneracy at zero
energy for V = 0 and p = 1. The overlap energy gR oscillates as a
function of V . Parameters: J = 200, � = 0.04t , and μ = −1.95t .

III. RESULTS

To understand the impact of the emf-induced renormal-
ization, we analyze the qubit formed by the coupling of the
Majoranas of the left and right chains. We decompose Hlow

into two uncoupled two-level systems for odd and even elec-
tron parities. The Hamiltonians of these two subspaces read

Hp = −Eσx + EM cos

(
φ

2

)
σz, (9)

where E ≡ δp,0 ε0 + gR/2 with p = 0, 1 for the even and odd
parities, respectively. Let us focus on applying a constant
voltage (V = 2eφ̇ = const.). The driving then provides a con-
stant voltage-dependent renormalization of the energy scales
E and EM. The phase φ inside the cosine remains the only
time-dependent parameter, and a large gR can be regarded
as strong gapping of the instantaneous energy spectrum of
Hamiltonian Hp. Let us focus on the odd parity (p = 1) for
which the spectrum is gapless in the absence of the drive (φ̇ =
0). Importantly, the emf-induced gap oscillates as a function
of the voltage V . The smaller the Josephson energy E0

M in the
absence of the drive (i.e., the worse the quality of the tunnel
junction), the more pronounced the oscillations because the
spectrum flattens, that is, the overlap energy gR dominates the
Josephson energy EM. A strong gapping furthermore implies
a nearly flat instantaneous eigenspectrum as a function of φ,
leading to a strongly suppressed supercurrent. To quantify
the flatness, we plot the ratio E/

√
E2 + E2

M in Fig. 2 as a
function of voltage V = φ̇/2e, where both gR and EM are
computed according to Eqs. (6) and (8). Note that the number
of oscillations with respect to the voltage can be controlled by
the size of the Kitaev chain (see also Appendix A, where we
show the overlap oscillations for a larger number of sites per
Kitaev chain).

For a realistic description of the time evolution, we include
a generic dissipative process. We consider a circuit where the
shunt capacitance is very large, such that the phase difference
remains to a good approximation classically well defined. If
we further assume a very small shunt resistance, applying
a current bias exceeding the critical current of the junction
effectively translates to a voltage drop applied directly across
the junction, such that the above renormalization effect comes
into play. In this regime, the dominant dissipation comes from
transitions within the internal (Majorana) degrees of freedom.
Such processes are captured by the Lindblad master equation

ρ̇ = −i[Hp, ρ] + � D[L]ρ, (10)

where the superoperator D[L]ρ ≡ LρL† − (1/2){L†L, ρ} rep-
resents the relaxation processes and, for simplicity, we only
consider parity-conserving processes.4 It is convenient to
work in the instantaneous eigenbasis of Hamiltonian (9), de-
fined by the unitary transformation

R = 1√
2

(
β− β+

sgn(E ) β+ −sgn(E ) β−

)
, (11)

where β± = [1 ± λ−1EM cos(φ/2)]1/2 and the absolute value
of the eigenvalue of Hp is λ = [E2 + E2

M cos2(φ/2)]1/2. In
this eigenbasis, the time evolution becomes governed by the
Hamiltonian R†HpR − iR†Ṙ = −λ σz + Y σy with

Y ≡ −φ̇
|E |EM

4λ2
sin

(
φ

2

)
. (12)

For the dissipative term, we consider a single jump
operator that relaxes the two-level system to its instan-
taneous ground state with a rate � (i.e., L = σ−). This
process is consistent with the assumption that the bath is at
zero temperature, and its correlation time is much shorter
than (1/E ) and (1/EM). Defining the column vector |ρ̃〉〉 =
(ρ̃00, ρ̃01, ρ̃10, ρ̃11)T, with ρ̃ being the density matrix in the
instantaneous eigenbasis, leads to the time-evolution equation
| ˙̃ρ〉〉 = L |ρ̃〉〉 with the Liouvillian

L(t ) =

⎛⎜⎜⎜⎝
0 −Y −Y �

Y 2iλ − �
2 0 −Y

Y 0 −2iλ − �
2 −Y

0 Y Y −�

⎞⎟⎟⎟⎠. (13)

Here, we are interested in how the emf-induced renormal-
ization of the parameters modifies the IV characteristics of the
driven junction. The expected value of the current is defined
as Tr(ρ̃ Ĩ ), where the current operator Ĩ in the instantaneous
eigenbasis equals R†IR with

I = eEM sin

(
φ

2

)
σz. (14)

4At least for topologically trivial junctions, experimental evidence
suggests that parity flips can be made rare [66]. The parity-
conserving relaxation process we introduce here could for instance
arise from flux noise, and is sufficient for qualitatively realistic pre-
dictions since the Hamiltonian Hp depends weakly on p.
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FIG. 3. Steady-state dc current across the junction. (a) The dc
current Idc as a function of the applied voltage V = φ̇/(2e). We
choose to normalize it with respect to I0

dc, the current without φ̇

renormalization. The ratio Idc/I0
dc is strongly suppressed, especially

at weaker tunneling between the two Kitaev chains. The oscillations
with respect to the voltage reflect the behavior of the energy spectrum
in Fig. 2. (b) The dc current I0

dc is normalized by the critical current
e|E 0

M|. The chain parameters are the same as Fig. 2. The relaxation
rate � = �/(40π ) so that, in the range of voltages considered, the
dynamics are not dominated by relaxation.

In a transient state (when the system did not have time to
relax) the current does not need to have any particular period-
icity in time. In the steady state, however, the current defaults
to 2π periodicity because the system is given sufficient time
to mix between the two available states. Here, we focus on the
dc current Idc, compared to the current I0

dc without renormal-
ization [i.e., substituting with E0

M ≡ EM(φ̇ = 0) and gR(φ̇ =
0) = 0 in Hp]. The unrenormalized parameters correspond to
assigning the entire time-dependent phase difference to the
weak link as in Eq. (1)—the default assumption previous to
our work.

Let us again discuss the odd parity p = 1. Without renor-
malizing the parameters, the spectrum of the driven junction
is still gapless. In this case, the steady-state dc current has the
analytical solution (see Appendix C)

I0
dc = − 1

π

4�φ̇

4�2 + φ̇2
, (15)

which is in units of the critical current e|E0
M|. The dependence

of the current I0
dc on the voltage V = φ̇/(2e) is depicted in

Fig. 3(b).

Using the renormalized parameters, on the other hand, re-
veals that the time-dependent phase φ̇ results in a much richer
physics for the driven system, as captured by Fig. 3(a). The
dc current in the steady state exhibits the same structure as
the spectrum in Fig. 2, reflecting the fact that the flattening
of the instantaneous spectrum indeed suppresses the current
across the junction. Moreover, the smaller the Josephson en-
ergy E0

M (i.e., the worse the quality of the tunnel junction),
the stronger the effect of renormalizing the parameters. This
behavior demonstrates one of our main results: the initially
linear emf correction term −iφ̇U †∂φU can yield a strongly
nonlinear effect on the system dynamics when projected to
the low-energy subspace.

IV. CONCLUSION

We study the interplay between topological protection and
a classical time-dependent driving through the representative
example of Majorana junctions. By deriving a low-energy
theory, we show that the induced electromotive force (emf)
modifies the Josephson energy and enhances the effective
overlap between the left and right Majorana modes of the
nanowires. The renormalization of these two energy scales
manifests as a strong suppression in the steady-state dc current
across the junction. Future works include analyzing the cur-
rent noise, as well as the impact of ac voltage driving, where
the strong φ̇ oscillations of the overlap are expected to amplify
transitions between low-energy states for long Kitaev chains.
Our work illustrates the importance of a proper microscopic
description of the coupling between a given quantum system
and the control parameter. Finally, we note that the central
ingredients for the physics discussed in this paper (time-
dependent control in the presence of a time-dependent basis
and the exponential suppression of topological edge-state
overlap) transcend the narrow context of Majorana systems.
It remains therefore an interesting topic for future research to
extend the analysis presented in this paper to the protection of
other topological systems.
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APPENDIX A: MAJORANA BOUND STATES
AND PHASE DROP

In this section, we first provide an analytic treatment of the
Majorana overlap term as a function of the chemical potential,
as discussed in the main text. We then argue with the example
of coplanar capacitor geometry, why it is justified to effec-
tively treat the voltage drop due to the drive (∼φ̇) as a shift in
the chemical of the Kitaev chains (see also Ref. [60]).
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1. Energy gap of Majoranas within the same chain
for constant voltage

Consider the Kitaev chain Hamiltonian of the form of
Eq. (2) in the main text. For our purpose here, it is conve-
nient to translate the discrete model in the main text to a
continuous model, where the dimensionless wave vector q
from the discrete model (e.g., without pairing, electrons move
in plain waves ∼ei jq) is translated to the wave vector k =
q/�x, with �x being a length scale separating the discrete
sites (where plain waves are ∼eikx with x/�x = j).

In addition, assuming t > δμ > � (μ = −2t + δμ), we
consider a regime where the bare electron and hole dispersion
relation can be linearized, such that it is justified to separate
the k space into left and right movers, where k ≈ ±kF + δk,
and kF�x ≈ √

δμ/t . In this regime, the originally nonlocal
pairing � gets rescaled to a local pairing �F = 2� sin(qF) ≈
2�

√
δμ/t . Note that due to the Fermi wave vector appearing

in �F, the local pairing aquires a sign depending on whether
it couples left or right movers. The resulting Schrödinger
equation can be written as

1
2 h|ψ (x)〉 = E |ψ (x)〉 (A1)

with the Bogoliubov-de Gennes Hamiltonian

h = −(ivF ∂xσz + δμ)τz − �Fσzτy, (A2)

where the Pauli matrix σz represents the left- and right-mover
basis, and τz,y refer to the Nambu space. The Fermi velocity
is simply given as vF/�x = 2

√
tδμ. The prefactor 1/2 on the

left-hand side is due to fermion doubling (in accordance with
the definition Aα = 1

2ψ†
αAαψα in the main text).

Hamiltonian (A2) conserves left and right movers
([σz, h] = 0). Therefore, at least in the bulk, it can be diago-
nalized separately for left and right movers, such that we may
take the full four-component wave function |ψ (x)〉 and select
out either left movers (σz = −1) or right movers (σz = +1)

[|ψ (x)〉]± =
(

u±
x

v±
x

)
. (A3)

The remaining two-component vector represents the Nambu
space. The hard walls at the edges (x = 0, L) on the other hand
couple left and right movers, with the hard-wall boundary
condition (

u+
0,L

v+
0,L

)
= −

(
u−

0,L

v−
0,L

)
. (A4)

The minus sign will turn out to be irrelevant for the com-
putation of eigenenergies, but provides the correct sin-wave
behavior for the particle in a box solutions, simply due to
eikx − e−ikx ∼ sin(kx). Now, when propagating the wave func-
tion from x = 0 to x = L, we find that the boundary conditions
give rise to the eigenvalue problem(

u+
0

v+
0

)
= e2i L

vF
δμQ(E )

(
u+

0

v+
0

)
, (A5)

where we defined the matrix

Q(E ) = ei L
vF

(τz2E−�Fτzτy )ei L
vF

(τz2E+�Fτzτy ). (A6)

The first phase prefactor e2ikFL comes from including the fast
oscillating phase in the propagation due to kF. As can be seen,
all it does is provide a meaningful reference point for δμ. For
the Majorana bound states, we need to find the value of 2E <

�F, such that e2i L
vF

δμQ(E ) has eigenvalue 1.
Defining ε = 2LE/vF, δ = L�F/vF, and ξ = √

δ2 − ε2 we
find for the matrix Q

Q(E ) = δ2 − ε2 cosh (2ξ )

ξ 2
+ i

ε sinh (2ξ )

ξ
τz

− εδ[cosh (2ξ ) − 1]

ξ 2
τy. (A7)

Its eigenvalues are therefore

δ2 − ε2 cosh (2ξ )

ξ 2
±

√(
δ2 − ε2 cosh (2ξ )

ξ 2

)2

− 1. (A8)

Note that for the eigenvalues of Q(E ) to cancel the phase

e2i L
vF

δμ, they need to be complex numbers with absolute
value 1. For |ε| < δ, this can only be the case if

δ2 − ε2 cosh(2
√

δ2 − ε2)

δ2 − ε2
< 1, (A9)

such that the above square root term is imaginary. In fact, as-
suming δ > 1 (weak overlap between Majorana bound states),
this can only occur for |ε| � δ, such that we can expand the
above expression for up to first order in ε2. We thus obtain the
condition

cos

(
2

L

vF
δμ

)
= 1 − 1

2

ε2

δ2
e2δ, (A10)

which is solved as

ε = ±2δe−δ sin

(
L

vF
δμ

)
. (A11)

Inserting back in the definitions for ε and δ, this results in

E = ±�Fe− L
vF

�F sin

(
L

vF
δμ

)
. (A12)

Finally, we can return to the discrete model, where we simply
replace L/�x = J and define ṽF = vF/�x which has the units
of energy. In the main text, this energy solution is defined
as ε0.

As also stated in the main text, the above formula can be
extended to the time-dependent problem by δμ → δμ + φ̇/2.
In Fig. 4, we compare the above analytic result with the exact
numeric calculation of the discrete chain model, Eq. (2) in the
main text, and the resulting overlap from the renormalization
calculation presented in the following Appendix B, as a func-
tion of φ̇. All three results agree well.

Finally, as can be seen in Eq. (A12), the oscillations of the
overlap energy as a function of voltage scale with the size of
the Kitaev chain. This fact is demonstrated in Fig. 5, where
we double the number of lattice points in the Kitaev chain
with respect to Fig. 2 in the main text.
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FIG. 4. Ground-state energy of a Kitaev chain in the presence
of an induced voltage V = φ̇/(2e). As derived in Eq. (B32), the
low-energy Hamiltonian for the right chain is (ε0 + gR)/2 σz where
σz is the Pauli matrix. Here, we compare three methods to calculate
the ground-state energy, the resummation (blue) of the overlap term
given in Eq. (8) in the main text, the numerical (red) diagonalization
of the matrix (HR + GR), and the analytical (orange) solution in
Eq. (A12). The vertical dotted line corresponds to point at which the
local pairing �F equals the voltage 2 eV .

2. Why the phase must be attached to the
nanowire-superconductor interface

In the Hamiltonian of the main text, Eq. (4), we con-
sider attaching the time-dependent phase at the nanowire-
superconducting interface, equivalent to having a dominant
(constant) voltage within the wires (see also Appendix A 1
above). As worked out in detail in our previous work,
Ref. [60], this coupling provides the qualitatively correct
description of the flux drive for realistic geometries for the
Majorana device. We here reiterate the reasoning of Ref. [60]

FIG. 5. The ratio |E |(E2 + E 2
M)−1/2 where E = gR/2 plotted as a

function of the applied voltage V = φ̇/(2e). All parameters are the
same as in Fig. 2 in the main text, except for the number of lattice
sites, which is here J = 400 instead of J = 200. As a consequence,
this doubles the frequency of oscillations as a function of V .

for completeness. The argumentation follows four main steps,
as also depicted in Fig. 6.

First, we notice that for typical nanowire heterostructure,
not all of the wire is proximitized. That is, at the weak link
part of the wire is typically exposed, see Fig. 6(a). Next, as
already justified in the main text, we assume that electric fields
are only expelled from the superconducting bulk, whereas
the nanowires are poor screeners. Consequently, the electric
field (and thus, the vector potential in the irrotational gauge
[29,30]) simply follows the standard solution of a coplanar
capacitor, see again Fig. 6(a).

As a result, the voltage drop occurs mostly in between the
two superconducting plates (where the field lines are most
concentrated). Crucially, since the separation of the super-
conducting bulks is typically much larger than the actual size
of the weak link (where tunneling occurs), the voltage drops
in large majority in the nonproximitized region of the bulk
nanowire—and not at the weak link itself, see Figs. 6(b) and
6(c). We further note that due to the finite nanowire thickness,
the phase profile in the coplanar geometry enters as an alge-
braically decaying tail into the proximitized part of the wires,
whose integral is not necessarily vanishing very quickly.

Importantly, in the Hamiltonian in Eq. (4), both left and
right Kitaev chains are fully proximitized (all sites have a
finite p-wave pairing), such that it may seem as if Eq. (4)
cannot incorporate the finite voltage profile in the unproximi-
tized part. Here we show that even this part can be effectively
included as an overlap integral within a fully proximitized
version of the wire [see Fig. 6(d)]. This fact was already used
in Ref. [60], but was not explicitly demonstrated. Deploying
again the low-energy left- and right-mover Hamiltonian for a
single wire in Eq. (A2), we can account for the phase profile
in that wire by adding the corresponding voltage φ̇α (x). We
can perform this step for the left or the right chain α = L,R
separately. As pointed out already in the main text, if, e.g., the
device geometry is asymmetric, the voltage mostly couples
only to one chain only, see Fig. 6(c). For both chains, we
obtain a Hamiltonian of the form

h = −(ivF ∂xσz + δμ + φ̇(x)/2)τz − �F(x)σzτy. (A13)

Note that here, we include explicitly the spatial dependence
of the pairing �F to distinguish between the proximitized
(�F �= 0) and the nonproximitized (�F = 0) part of the wire.
For concreteness, let us explicitly work through the example
of the right wire (α = R). We here choose the coordinate x of
a single wire such that the unproximitized part runs from 0 <

x < l , whereas the proximitized part runs from l < x < L.
For l < x < L, the corresponding part of the phase profile
is obviously accounted for by an overlap integral with the
Majorana wave functions. The computation of the resulting
energy levels works similarly to the solution presented in
Eqs. (A5) and (A6), except that now for the calculation of
the propagator Q(E ), we have in general to do path ordering
along x space since the Hamiltonian h at different positions
does no longer commute.

In order to include the part from x = 0 to x = l ,
we can exploit the fact that with �F = 0, the Hamil-
tonian again commutes for different x. Consequently,
this final piece is conveniently included by substituting
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FIG. 6. Step by step derivation of the model with dominant phase drop in the nanowires, as shown in Fig. 1 (see also Ref. [60]). (a) We
assume that the electric field is weakly screened within the nanowires, such that the induced electric field (and thus, the vector potential
in the irrotational gauge [29,30]) penetrates them. Due to the suspended bridge geometry (and the weak link being much smaller than the
distance between bulk superconductors), the phase drop occurs mostly within the nanowires, with the phase profile being (b) symmetric or
(c) asymmetric, depending on the device geometry. (d) It can be demonstrated that the phase drop can be effectively included as an overlap
integral with the Majorana wave functions, in spite of the overlap not being exact.

δμ → δμ + ∫ l
0 dxφ̇(x)/2 in Eq. (A5). If the Majorana bound

state wave functions are localized on a length larger than
l , the full problem is very accurately described by replac-
ing the complicated problem including the exposed part
of the wire with an analog system with fully proximitized
wires (right up to the weak link) and shifting the voltage
profile of the original problem into the proximitized part, as
shown schematically in Fig. 6(d). Finally, we can replace the
complicated realistic voltage profile simply with a constant
voltage contribution within the wire. For a localized voltage
this is exact up to a numerical prefactor, which accounts for
the details of the overlap between voltage profile and Ma-
jorana wave functions. For very strongly localized voltage
profile, this prefactor may be small. We stress though that
realistically, the voltage profile has an algebraic tail, which
does not vanish quickly. Second, for more general geometries
and applied fields, which touch the superconductor, there may
be dynamical negative capacitance effects (first described in
Ref. [30]), which can massively increase the numerical pref-
actor and easily compensate for a strong localization of the
voltage profile.

APPENDIX B: LOW-ENERGY DESCRIPTION
FOR THE DRIVEN JUNCTION

In the basis that attaches the entire phase difference (be-
tween the two superconductors in Fig. 1) to the weak link,
the time-dependent Schrödinger equation is governed by

H + φ̇GR, where H is given in Eqs. (1)–(3), whereas GR is
defined below Eq. (4) in the main text.

In the Bogoliubov-de Gennes (BdG) form, the Hamiltonian
can be written as

H = 1

2
ψ†Hψ

= 1

2
(ψ†

L ψ
†
R)

(
HL HT(φ)

H†
T(φ) HR

)(
ψL

ψR

)
, (B1)

where ψα = (d1,α, d†
1,α, . . . , dJ,α, d†

J,α )T. In terms of its
eigenstates, the uncoupled chain Hamiltonians can be
decomposed as

Hα =
∑
vα

εv |vα〉 〈vα| − εv |ṽα〉 〈ṽα| . (B2)

Each eigenstate |vα〉 at energy εvα
has a pair |ṽα〉 at energy

−εvα
, with the two related by |vα〉 = τx |ṽα〉 where the Pauli

matrix τx acts on the particle and hole blocks. The two Ma-
joranas of each chain are related to the states |0α〉 and |0̃α〉,
which are degenerate at zero energy if the left and right
Majorana modes do not overlap. The tunneling matrix can be
written as

H j, j′
T (φ) = δ j,J δ j′,1

(
−δt e−iφ/2 0

0 δt eiφ/2

)
. (B3)
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Finally, the operator GR reads

GR = 1

2
ψ†

(
0 0
0 GR

)
ψ, (B4)

where GR = −τz/2.
Our goal is to obtain a Hamiltonian that describes the low-

energy subspace defined by the projector

P =
(PL 0

0 PR

)
=

∑
v=0,0̃

(|vL〉 〈vL| 0

0 |vR〉 〈vR|
)

. (B5)

We derive the low-energy Hamiltonian by decoupling the sub-
space comprising the four states {|0L〉 , |0̃L〉 , |0R〉 , |0̃R〉} from
the high-energy states defined by Q = 1 − P via a perturba-
tive expansion in the tunneling amplitude δt and φ̇. We focus
on processes that are first order in δt but account for higher
orders in φ̇. The general form of the low-energy Hamiltonian
can be written as

Hlow = H (0)
low + H (1)

low + H (2)
low + . . . , (B6)

where the order of Hn
low denotes the sum of the orders of both

δt and φ̇. The form of the Schrieffer-Wolff transformation can
be found in Ref. [65]. For the zeroth order in δt and φ̇, we have

H (0)
low = 1

2

∑
α

ψ†
α (PαHαPα )ψα

= 1

2

∑
α

ψ†
α

⎛⎝∑
xα,yα

hα
xy |xα〉 〈yα|

⎞⎠ψα, (B7)

where {x, y} ∈ {0, 0̃} and hα
xy = 〈xα|Hα |yα〉. The matrix ele-

ment reads

〈0α|Hα |0α〉 = − 〈0̃α|Hα |0̃α〉 = ε0, (B8)

where the subscript α is dropped for the energy ε0 because
we assume that the two chains have the same parameters—
namely, t, μ, and �. The zeroth-order term then simplifies to

H (0)
low = ε0

2

∑
α

ψ†
α (|0α〉 〈0α| − |0̃α〉 〈0̃α|)ψα

= ε0

2

∑
α

(c†
αcα − cαc†

α )

= ε0

2

∑
α

(2c†
αcα − 1) (B9)

= i
ε0

2
γ4γ3 + i

ε0

2
γ2γ1,

where the Majorana operators are defined via

cL = γ2 + iγ1

2
, (B10)

and

cR = γ4 + iγ3

2
. (B11)

Next, we focus on terms that are zeroth order in δt but
nonzero in φ̇. In analogy to Eq. (B9), for the right chain, we

obtain the overlap energies

i

2

(
g(1)

R + g(2)
R + g(3)

R + . . .
)
γ4γ3, (B12)

where the first-order term reads

g(1)
R = 〈0R| ḠR |0R〉 , (B13)

with ḠR ≡ φ̇GR. Similarly, the higher-order contributions read

g(2)
R = −〈0R|ḠR

QR

HR − ε0
ḠR|0R〉, (B14)

and

g(3)
R = 〈0R| ḠR

QR

HR − ε0
ḠR

QR

HR − ε0
ḠR |0R〉

− 〈0R| ḠR |0R〉 〈0R| ḠR
QR

HR − ε0

QR

HR − ε0
ḠR |0R〉 .

(B15)

Importantly, the second term in g(3)
R is exponentially sup-

pressed compared to the first because it depends on the overlap
between the exponentially decaying tails of the left and right
Majorana modes through the matrix element 〈0R| ḠR |0R〉.
Conversely, the first term avoids this suppression by coupling
exclusively via the excited states, denoted by the projector QR.
The third-order term then reduces to

g(3)
R ≈ 〈0R| ḠR

QR

HR − ε0
ḠR

QR

HR − ε0
ḠR |0R〉 . (B16)

This logic can be extended to arbitrary orders in φ̇. We can
therefore obtain a good approximation by partially resum-
ming, that is, summing only terms of the first type (without
exponential suppression) for each order in φ̇. We find

gR(φ̇) = g(1)
R + g(2)

R + g(3)
R + . . .

= 〈0R|
[
ḠR + ḠR

(
− QR

HR − ε0
ḠR

)

+ ḠR

(
− QR

HR − ε0
ḠR

)(
− QR

HR − ε0
ḠR

)
+ . . .

]
|0R〉

= 〈0R|
(
1 + ḠR

QR

HR − ε0

)−1

ḠR |0R〉 . (B17)

Accordingly, the φ̇-dependent corrections to the overlap en-
ergy in the right chain take the form

i
gR

2
γ4γ3, (B18)

with gR as given in Eq. (8) in the main text.
Finally, we focus on terms that are proportional to the

tunneling amplitude δt , starting with those that are zeroth
order in φ̇, namely

1
2 [ψ†

L(PLHT(φ)PR)ψR + ψ
†
R(PRH†

T(φ)PL)ψL]. (B19)

The first term can be simplified to

PLHTPR =
∑

x,y=0,0̃

q(1)
xy |xL〉 〈yR| , (B20)
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with

q(1)
xy (φ) = 〈xL|HT(φ) |yR〉 . (B21)

Substituting with PLHTPR into Eq. (B19) leads to
1
2

(
q(1)

00 c†
LcR + q(1)

0̃0
cLcR + q(1)

00̃
c†

Lc†
R + q(1)

0̃0̃
cLc†

R + H.c.
)

= q(1)
00 c†

LcR − q(1)
0̃0̃

c†
RcL + q(1)

0̃0
cLcR − q(1)

00̃
c†

Rc†
L, (B22)

where cL and cR are defined in Eqs. (B10) and (B11), respec-
tively. Alternatively, we can express the result in terms of the
Majorana operators. In this case, Eq. (B22) takes the form

i 
{

q(1)
00 − q(1)

00̃

2

}
γ2γ3 = i

(
q(1)

00 (0) − q(1)
00̃

(0)

2

)
cos

(
φ

2

)
γ2γ3,

(B23)

where, in leading order, the weak link only couples Majoranas
γ2 and γ3.

As for the corrections of the electromotive force (emf)
to tunneling across the junction, it suffices to only include
corrections that are first order in φ̇, leading to

i 
{

q(2)
00 − q(2)

00̃

2

}
γ2γ3, (B24)

where

q(2)
xy (φ) = −1

2
〈xL|HT(φ)

QR

HR − εx
ḠR

+ HT(φ)
QR

HR − εy
ḠR |yR〉 . (B25)

The tunneling terms therefore become

i

(
q00(0) − q00̃(0)

2

)
cos

(
φ

2

)
γ2γ3, (B26)

with

qxy(φ) = q(1)
xy (φ) + q(2)

xy (φ). (B27)

In limit where only coupling between γ2 and γ3 across the
weak link survives, we can simplify the coefficients to

q(1)
00 (0) ≈ −q(1)

00̃
(0) ≈ 〈0R|HT(0) |0R〉 , (B28)

and

q(2)
00 (0) ≈ −q(2)

00̃
(0) ≈ −〈0L|HT(0)

QR

HR
ḠR |0R〉 . (B29)

We can therefore rewrite Eq. (B26) as

iEM cos

(
φ

2

)
γ2γ3, (B30)

with

EM(φ̇) = 〈0R|HT(0) |0R〉 − 〈0L|HT(0)
QR

HR
ḠR |0R〉 . (B31)

Adding Eqs. (B9), (B18), and (B31) leads to the low-energy
Hamiltonian

Hlow = i
ε0

2
γ2γ1 + i

(
ε0 + gR

2

)
γ4γ3 + iEM cos

(
φ

2

)
γ2γ3.

(B32)

FIG. 7. Energy spectrum of Hamiltonian Hp in Eq. (9) in the
main text with E = 0. The zero gap occurs either due to the oscil-
latory behavior of gR as a function of the voltage V (Fig. 2 in the
main text), or simply when using the unrenormalized parameters that
assumes the entire phase drop between the two superconductors can
be included across the weak link.

Using Eq. (B10), we can decompose the low-energy Hamil-
tonian into two decoupled two-level systems for odd and
even electron parities. The odd parity consists of the states
|01〉 and |10〉, while the even parity of |00〉 and |11〉 [with
c†

Lc†
R |00〉 = |11〉, and Eqs. (B10) and (B11) define cL and cR,

respectively]. The Hamiltonians of these two subspaces read

Hp = −Eσx + EM cos

(
φ

2

)
σz, (B33)

where E ≡ δp,0 ε0 + gR/2 with the integer p = 0, 1 for the
even and odd parities, respectively.

APPENDIX C: STEADY-STATE DC CURRENT
FOR THE UNGAPPED HAMILTONIAN

For a vanishingly small gap, the basis defined by the uni-
tary transformation (11) in the main text is not suitable since
the off-diagonal term (12) in the main text tends to a δ func-
tion. Instead, a suitable basis for the gapless system consists of
the two uncoupled branches of EM cos(φ/2) σz (Fig. 7). In this
basis, we can obtain an analytical solution for the steady-state
occupation probabilities and, subsequently, the dc current. For
a gapless system, the two eigenstates are not coupled and
the only process that changes the occupation probabilities is
relaxation. Assuming a constant voltage V , it follows that
φ(t ) = 2eV t such that there is a one-to-one correspondence
between time t , and φ at a given time. We therefore use the
notation that when φ appears as an argument for the time
evolution of the state, it should be interpreted as the time at
which the phase assumes the value of φ (this avoids confusion
with the tunneling parameter t in the Kitaev chain).

Starting from an initial value at φ = 0 (Fig. 7), the proba-
bility at φ = π can be written as

p1(π ) = p1(0) + (1 − W ) p2(0)

= p1(0) + (1 − W ) [1 − p1(0)], (C1)

where W ≡ exp(−π�/φ̇). Here, p1 and p2 represent the
occupation probabilities of the two states of the Hamilto-
nian EM cos(φ/2) σz as defined in Fig. 7 (i.e., at φ = 0, p1
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corresponds to the ground state and p2 to the excited state).
Similarly, we can write the probability p1 at φ = 3π as

p1(3π ) = W 2 p1(π ), (C2)

and, finally, at φ = 4π as

p1(4π ) = p1(3π ) + (1 − W ) [1 − p1(3π )]. (C3)

In the steady state, we can impose the 4π -periodicity
condition

p1(4π ) = p1(0). (C4)

Solving the four Eqs. (C1)–(C4) yields the steady-state prob-
abilities

p1(0) = 1 − W

1 + W 2
, (C5)

and

p2(0) = W

1 + W 2
. (C6)

The values φ = 0 can be readily used to obtain the probabili-
ties as a function of φ. As for the current, its expected value is
defined as Tr(ρI ), where the occupation probabilities are the

diagonal elements of the density matrix ρ and with the current
operator

I = eEM sin

(
φ

2

)
σz. (C7)

The expected value of the current then reads

Igapless = e|EM|[1 − 2p1(φ)] sin

(
φ

2

)
, (C8)

with the superscript denoting that this expression is valid for
the gapless system. Averaging over the period [0, 4π ] yields
the steady-state dc current

Igapless
dc = e|EM|

4π

∫ 4π

0
Igapless dφ

= −e|EM|
π

4�φ̇

4�2 + φ̇2
. (C9)

The analytical solution (C9) is valid at points where the new
overlap energy gR is zero (or vanishingly small) as a function
of the voltage V [see Figs. 2 and 3(a) in the main text]. It
is also used to obtain the dc current in Fig. 3(b) for the driven
system without renormalizing the parameters [i.e., gR = 0 and
EM → E0

M = EM(φ̇ = 0)].
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