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Nonlinear planar Nernst effect in magnetic topological insulator heterostructures
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A new nonlinear magnetothermal effect, namely nonlinear planar Nernst effect (NPNE), has been recently
predicted in nonmagnetic topological insulators and Weyl semimetals. Both of the asymmetric energy dispersion
and the in-plane magnetic field play significant roles in the reported materials. Here, we prove that the NPNE
can also be generated in magnetic/nomagnetic topological heterostructures in the presence of an in-plane
magnetization and in the absence of asymmetric energy dispersion. It is found that the NPNE has a quantum
origin from the asymmetric magnon scattering and exhibits a cosine dependence on the orientation of the
magnetization with respect to the direction of the temperature gradient (x direction).
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I. INTRODUCTION

The three-dimensional (3D) topological insulators (TIs)
[1,2], a new class of 3D materials with insulating bulk and
conducting surface states, have played a significant role in
many fields of condensed matter physics, such as spintron-
ics [3–6] and quantum computation [1]. The spin directions
of the surface Dirac electrons are locked perpendicularly to
their momenta, namely spin-momentum locking [7,8], mak-
ing TIs ideal spintronics materials and leading to highly
efficient spin-to-charge conversion and magnetic switching.
In addition, magnetic TIs provide an ideal platform to the
realization of a system in which spin-polarized electrons inter-
act with magnetism [9–13]. This offers a promising approach
to addressing a crucial issue in the contemporary spintronics
and spin caloritronics research [14–18]: the interaction of
angular momentum between conduction electrons and local
magnetization.

Owing to the interplay of the spin-momentum-locked
surface states and magnetism, a series of magnetotransport
phenomena are identified in magnetic TI films or bilayer
structures composed of a ferromagnetic layer and a nonmag-
netic TI layer. The identified magnetotransport phenomena
include quantum anomalous Hall effect (QAHE) [19,20],
bilinear magnetoresistance [21–23], unidirectional magne-
toresistance (UMR) [13,24–27], unidirectional Seebeck effect
(USE) [28,29], and current-nonlinear Hall effect (CNHE)
[30]. Unlike intrinsic nonlinear thermoelectric effects origi-
nating from the band geometry (Berry curvature and Berry
curvature dipole etc.,), such as nonlinear Hall effect [31–34]
and nonlinear Nernst effect [35–38], these nonlinear magneto-
transports require a magnetization or magnetic field coplanar
with the driving forces (electric field or temperature gradient)
and strongly depend on the orientation of magnetic field (or
magnetization) with respect to driving forces.
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Recently, a new nonlinear magnetothermal effect,
namely the nonlinear planar Nernst effect (NPNE) [39,40],
referring to a generation of the nonlinear Nernst current
as a second-order response to the temperature gradient
when the applied temperature gradient and the in-plane
magnetic field (or magnetization) are coplanar [Fig. 1(b)],
was first predicted in nonmagnetic TI Bi2Te3 and identified
to originate from the conversion of a nonlinear transverse
spin current to a charge current due to a combined result of
hexagonal warping effect, spin-momentum locking, and the
time-reversal symmetry breaking [39]. Being different from
the relaxation-time dependence of nonlinear Nernst effect
from band geometric properties as a response to the second
order in temperature gradient: linear dependence of nonlinear
anomalous Nernst effect (ANE) from the Berry curvature near
the Fermi surface [36,37] and the independence of nonlinear
intrinsic ANE attributed to the orbital magnetic quadrupole
moment density (related to Berry phase) on the relaxation
time [35], the NPNE in nonmagnetic TI stemming from the
hexagonal warping effect exhibits a quadratic dependence
on the relaxation time τ . Subsequently, NPNE has also been
found to stem from chiral anomaly in Wely semimetals [40]
and shows linear dependence on relaxation time. In those
studies, the asymmetric energy dispersion, which is caused
by the joint effect of in-plane magnetic field with hexagonal
warping effect or chiral anomaly, plays a significant role to
generate the nonlinear Nernst current. In this paper, we will
show that the NPNE could also appear in TI heterostructure
composed of nonmagnetic TI (Bi1−ySby)2Te3(BST) [41,42]
and magnetic TI Crx(Bi1−ySby)2−xTe3 (CBST) [43,44]
without considering the asymmetric energy dispersion. The
finite NPNE in the heterostructure of BST/CBST is ascribed
to the asymmetric magnon scattering, namely the asymmetric
scattering of a conduction electron by a magnon due to
the conservation of angular momentum [13] [Fig. 1(a)].
We find that the nonlinear Nernst current stemming from
asymmetric magnon scattering as a response up to second
order in temperature gradient could be easily distinguished
from other contributions through a scaling relation with
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FIG. 1. (a) The schematic illustration for the asymmetric magnon
scattering of Dirac electron on the spin-momentum-locked Fermi
surface. The black-dashed circle represents the Fermi surface. When
the magnetization is in x direction, owing to spin-momentum locking
effect and conservation of angular momentum during the magnon
scattering process, the asymmetric relaxation time between the emis-
sion and absorption scattering processes will eventually lead to the
imbalance of second-order electron distribution to temperature gra-
dient between the electrons with the positive and negative group
velocities in transverse direction (y direction) under temperature gra-
dient, δn2,vy>0 �= δn2,vy<0. (b) Schematic diagram of the generation of
nonlinear planar Nernst current j (2)

y ∝ (∇xT )2 driven by temperature
gradient in presence of an in-plane magnetization M owing to asym-
metric magnon scattering in (a). The direction of current is opposite
to the electron moving direction.

the linear conductivity σxx: asymmetric magnon scattering
(cubic to σxx), Berry curvature effect or chiral anomaly (linear
to σxx), Berry phase effect (independent of σxx), and the
warping effect or electron-hole asymmetry (quadratic to σxx).
The general formula of nonlinear planar Nernst coefficient
(NPNC) αP

nl, quantizing the NPNE, is given in Sec. II. The
Hamiltonian of heterostructure with coupling between surface
Dirac electron and the magnetization is given in Sec. III. The
expression of αP

nl, stemming from the asymmetric magnon
scattering, is deduced in Sec. IV. The behaviors and physics
of NPNE for the heterostructure of BST/CBST are discussed
in Sec. V. Finally, the conclusions are given in Sec. VI.

II. THE GENERAL FORMULA OF NONLINEAR PLANAR
NERNST COEFFICIENT

The nonlinear planar Nernst effect can be characterized by
the nonlinear planar Nernst coefficient (NPNC) αP

nl (where
the superscript “P” and subscript “nl” represent planar and
nonlinear, respectively), which is defined as j (2)

y = αP
nl(∂xT )2

with j (2)
y indicating nonlinear transverse current density as a

response to the second order in the longitudinal temperature
gradient ∂xT in presence of an in-plane magnetic field or mag-
netization. The formulas of αP

nl will be determined through the
semiclassical Boltzmann equation within the relaxation time
approximation as follows. The charge current density ja in a
direction is given by

ja = −e
∫

[dk]va f (r, k), (1)

where
∫

[dk] is shorthand for
∫

dk/(2π )2, va represents the
group velocity, and f (r, k) denotes the nonequilibrium distri-
bution function. Within the relaxation time approximation, the
Boltzmann equation for two-dimensional case in presence of

in-plane magnetic field and temperature gradient but without
the external electric field is

− f − f0

τ (k)
= ∂ f

∂ra
va, (2)

where ra indicates the a component of coordinate position of
electron, τ (k) is the momentum-dependent relaxation time,
and f0 = 1/[e(εk−E f )/kBT + 1] represents the local equilibrium
distribution function in which the energy correction (Zeeman
term) induced by the in-plane magnetic field or magnetiza-
tion has been considered in energy band εk. To determine
the expression of current density ja in Eq. (1) as a response
up to the second order in temperature gradient, one would
expand the nonequilibrium distribution function f as f ≈
f0 + δ f1 + δ f2 with the terms δ fn ∝ (∂aT )n (n > 2) ignored
due to small quantity (∂T/∂ra)n. After a tedious derivation
in Appendix A, the formulas of the first-order (second-order)
distribution function δ f1 (δ f2) to temperature gradient can be
determined as follows:

δ f1 = τ

T h̄
(εk − E f )

∂ f0

∂ka
∂aT,

δ f2 = τ 2

T h̄
(εk − E f )vb

∂ f0

∂ka

(
2

T
∂aT ∂bT − ∂abT

)

+ τ 2

h̄2T 2
(εk − E f )2 ∂2 f0

∂ka∂kb
∂aT ∂bT . (3)

Therefore, when considering a uniform and single-directional
temperature gradient applied along x direction, namely
∂abT = 0 and a = b = x in Eq. (3), the thermally driven trans-
verse charge current density j (2)

y [i.e., a = y in Eq. (1)] as the
second-order response to the temperature gradient ∂xT can be
determined as αP

nl(∂xT )2 with

αP
nl = − e

h̄2T 2

∫
[dk](τ (k))2vy(εk − E f )

×
[

2vx h̄
∂ f0

∂kx
+ (εk − E f )

∂2 f0

∂k2
x

]
(4)

In previous studies, the relaxation time τ has been treated
as a constant, and the nonvanishing nonlinear planar Nernst
coefficient αP

nl in presence of in-plane magnetic field strongly
depends on the asymmetric energy dispersion (εk) stemming
from the combined effect of in-plane magnetic field with
hexagonal warping effect or chiral anomaly. In this paper, we
find the nonvanishing αP

nl in the TI heterostructure BST/CBST
stems from the asymmetric magnon scattering [Fig. 1(b)]. For
example, when the magnetization is along x direction, the
localized spin of Cr is pointing in the –x direction, meaning
the angular momentum of magnon is +1. Therefore, owing to
the angular momentum conservation, the electrons with spin
parallel to magnetization (angular momentum +1/2) will be
scattered to the states with spin antiparallel to magnetization
(−1/2) by emitting a magnon. Meanwhile, because of the
spin-momentum locking of TI, the electrons moving towards
positive y axis (vyh̄ = ∂εk/∂ky > 0) are scattered to states in
which the electron flows towards negative y axis (vy < 0) in
the emission process. On the contrary, the electron scattered
from negative group velocity and negative spin angular mo-
mentum (vy < 0, −1/2) to positive velocity and spin (vy > 0,
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+1/2) must absorb a magnon owing to the conservation of
angular momentum and the spin-momentum locking. The
nonequivalence between the emission and absorption scatter-
ing processes leads to the asymmetry in relaxation time and
eventually to the imbalance of electron distribution between
the electrons with the positive and negative group veloci-
ties in transverse direction (y direction) under nonequilibrium
conditions [Fig. 1(a)] owing to the spin-momentum locking
effect of electron and the conservation of angular momentum
during the magnon scattering process, giving rise to nonzero
nonlinear planar Nernst coefficient αP

nl (see details in Sec. IV)
and nonlinear planar Nernst effect [Fig. 1(b)].

III. HAMILTONIAN FOR TI HETEROSTRUCTURE
OF BST/CBST

In this paper, the NPNE will be investigated for the TI het-
erostructures BST/CBST, in which UMR has been observed
experimentally [13] and USE was theoretically predicted [28].
Through tuning the composition y of element Sb, the Fermi
energy E f of the surface state can be modulated to locate
inside the bulk band gap [13]. Hence, the carriers from the
top and bottom surface states with a single Dirac cone will
contribute to the conduction. Besides, in the presence of the
heterostructure, only one surface involved in the MTI layer
(i.e., CBST layer) will interact effectively with the magnetism.
The effective Hamiltonian describing the surface Dirac elec-
trons in the presence of in-plane magnetization M can be
written as

H = H0 + H ′, (5)

where H0 describes the Hamiltonian of the Dirac surface
electrons when considering the coupling between the electron
spin and the localized magnetic moment and has the following
form [28]:

H0 = (M + vF h̄k × ẑ) · σ

= (m cos φ + vF h̄ky)σ̂x + (m sin φ − vF h̄kx )σ̂y,
(6)

where vF denotes the Fermi velocity, σ = (σ̂x, σ̂y, σ̂z ) are
Pauli matrices for the two basis functions of the energy
band, h̄ indicates the reduced Planck constant. In this paper,
we consider the situation in which the magnetization orients
in-plane, with M = (mx, my) = mem and em = (cos φ, sin φ),
where the azimuth angle φ is measured from the direction of
temperature gradient. It should be pointed out that, although
the magnetization M of CBST initially points along the z di-
rection, one would adjust the orientation of the magnetization
M of CBST to the in-plane direction by applying an in-plane
magnetic field B up to 0.7 T [13]. Yu et al. [39] showed
that the contribution of electron-hole asymmetry to NPNE
is insignificant and the hexagonal warping has a significant
contribution to NPNE only when the Fermi energy is far away
from the Dirac point. On the contrary, it is found that the
asymmetric-magnon-scattering contribution to the nonlinear
transports mainly appears around the Dirac point [13,28,30].
In addition, it is found that the contribution of asymmetric
magnon scattering to the NPNE can be easily distinguished
from the asymmetric energy dispersion through scaling re-
lation (see details in Sec. IV). More importantly, a linear
Dirac surface state, namely the absence of asymmetric energy

dispersion, would be achieved in the CBST when modulat-
ing the composition y of the element Sb and x of element
Cr into appropriate value [10,43]. Therefore, for simplicity,
the asymmetric energy dispersions, namely the electron-hole
asymmetry (k2 term) and hexagonal warping (k3 term) in the
surface state of BST/CBST, are reasonable to be neglected to
disclose the behaviors of NPNE that stem from the asymmet-
ric magnon scattering. The corresponding energy eigenvalues
for H0 are

εk = n
√

(vF h̄kx − m sin φ)2 + (vF h̄ky + m cos φ)2, (7)

where n(= ±1) is the band index. According to Eq. (7), one
can easily notice that the shape of the linear Dirac cone
remains unchanged, and only the Dirac point and the entire
dispersion shift towards ekm = (sin φ,− cos φ) direction in
momentum space when the magnetic field or magnetization
is located in the em direction. In addition, based on Eq. (6),
one would further confirm that the considered surface states
hold two mirror lines (namely kx = m sin φ/vF h̄, and ky =
−m cos φ/vF h̄) in the presence of magnetization, which guar-
antee there is no nonlinear Nernst current stemming from the
band geometries generated. That is because the largest sym-
metry of a 2D system allows for the nonvanishing nonlinear
ANE is a single mirror line [36] and the nonlinear intrinsic
ANE disappears due to the existence of two mirror lines in the
system [35]. The second term of the Hamiltonian, namely H ′,
means the interaction between the surface conduction elec-
trons and the localized spin composed of Cr d orbits (magnon)
and can be determined through conservation of the angular
momentum as [13]

H ′ ≈
∑

i

jex(c†
i,↑ci,↓bi + c†

i,↓ci,↑b†
i )

= 1√
N

∑
k,q

jex(c†
k+q,↑ck,↓bq + c†

k−q,↓ck,↑b†
q), (8)

where N is the number of lattice unit cells [45,46], jex rep-
resents the exchange-coupling constant, and b†(b) and c†(c)
indicate the creation (annihilation) operator of the magnon
and surface Dirac electron, respectively. The first (second)
term in the bracket of the second line in Eq. (8) describes
the magnon absorption (emission) process. In the absorption
process (c†

k+q,↑ck,↓bq), when the system absorbs a magnon
with momentum q, the Dirac electron in surface state |k,↓〉
will be scattered to the state |k + q,↑〉 with a momentum
increase q due to the conservation of the momentum and a
spin reversion from ↓ (sφ = −1/2) to ↑ (sφ = 1/2) resulting
from the conservation of angular momentum and the spin-
momentum locking of the surface Dirac state. In the emission
process (c†

k−q,↓ck,↑b†
q), on the contrary, the electron spin will

be reversed from ↑ to ↓ and the momentum is reduced from k
to k − q by emitting a magnon with q.

IV. THE ASYMMETRIC-MAGNON-SCATTERING-
INDUCED NPNE

Taking into account the magnon scattering and assuming
that the magnon scattering is independent of other types of
scattering processes such as impurities, phonons, electron-
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electron for simplicity [28], the relaxation time is

1

τ (k)
= 1

τ 0
+ 1

τmag(k)
, (9)

where τ 0 is nonmagnetic scattering relaxation time and τmag

is the relaxation time scattered by magnons. When the im-
purity scattering is dominant, which means τ 0 � τmag, the
relaxation time τ (k) can be approximated to the first order as
τ (k) ≈ τ 0 − (τ 0)2/τmag(k). Therefore, the nonlinear Nernst
coefficient αP

nl in Eq. (4) can be further expressed as

αP
nl = −e(τ 0)2

∫
[dk]vy

{[
2vx

εk − E f

h̄T 2

∂ f0

∂kx
+

+
(

εk − E f

h̄T

)2
∂2 f0

∂k2
x

]
− 2τ 0

τmag(k)

[
2vx

εk − E f

h̄T 2

∂ f0

∂kx

+
(

εk − E f

h̄T

)2
∂2 f0

∂k2
x

]}
, (10)

showing that there are two distinguishing mechanisms giving
rise to nonlinear Nernst effect, namely the asymmetric energy

dispersion (the first term) and the asymmetric magnon scat-
tering (the second term). In this paper, we only consider the
nonlinear Nernst effect induced by the asymmetric magnon
scattering, namely

αP
nl,(mag) = 2e(τ 0)3

∫
[dk]

1

τmag(k)

[
2vxvy

εk − E f

h̄T 2

∂ f0

∂kx

+vy

(
εk − E f

h̄T

)2
∂2 f0

∂k2
x

]
. (11)

Actually, through exploiting the parities (see details in Ap-
pendix D), one can easily find that the term in the first bracket
in Eq. (10) is zero for the system whose energy dispersion
has the formula as Eq. (7). Based on the Fermi’s golden rule
and the interaction between the electrons and magnons
[Eq. (8)], the magnon relaxation time τmag(k) in Eq. (11)
can be determined as (details can be found in the literatures
[13,28] and also in the Appendix C)

1

τmag(α,
k)
= 1

τm
F

∫ 2π

0
dθ cos2

(
π

4
+ α − φ

2

)
sin2

(
π

4
+ θ − φ

2

)
V +

mag(θ, α,
k) + sin2

(
π

4
+ α − φ

2

)

× cos2

(
π

4
+ θ − φ

2

)
V −

mag(θ, α,
k), (12)

with 1
τm

F
= kF j2

exAc

2πvF h̄2 , where the kF = E f /h̄vF is the Fermi momentum and in-plane unit-cell area Ac = 3
√

3a2/2 is determined by
the hexagonal lattice constant a, and

V +
mag = 1

eh̄ωβ − 1

(
1 − 1

eβ(h̄ω+h̄vF 
k) + 1

)
, (13)

V −
mag = eh̄ωβ

eh̄ωβ − 1

(
1 − 1

eβ(h̄vF 
k−h̄ω) + 1

)
, (14)

where 
k is the radius measured from kF [ Eq. (C8)], α

(θ ) are the polar angles of the initial (final) electrons, and
h̄ω corresponds to the magnon energy with 2kF sin( θ−α

2 )
wave number. V +

mag (V −
mag) is relevant to the magnon ab-

sorption (emission) process. The first factors of Eqs. (13)
and (14) represent the probability of magnon absorption and
emission, respectively, and the second ones show the proba-
bility that the final state of the electrons is unoccupied. The
magnon band dispersion in the long-wave-number situation is
given by [47]

h̄ω = 4Dsk
2
F sin2

(
θ − α

2

)
+ gμBB, (15)

where Ds denotes the spin stiffness constant and the Landé
factor g is approximately equal to 2 in CBST. Combining the
band energy εk [Eq. (7)] with magnon relaxation time τmag(k)
in Eq. (12), the formula of the nonlinear Nernst coefficient αP

nl

is found to be

αP
nl = γ E2

f

T

∫ ∫ ∫
dxdαdθVmag

(
θ, α, φ,

kBT x

h̄vF

)

× xex cos2 α sin α

(ex + 1)2

(
xex − x

ex + 1
− 2

)
, (16)

where Vmag is given in Eq. (C13), x = h̄vF 
k/kBT is a dimen-
sionless integral variable, and γ = e j2

exkB(τ 0)3Ac/(4π3h̄5vF )
is a typical scale for heterostructures BST/CBST. Obviously,
this αP

nl stemming from asymmetric magnon scattering shows
cubic dependence on the relaxation time τ 0, hinting αP

nl ∝
σ 3

xx, where σxx(∝ τ 0) denotes the longitudinal conductivity.
Therefore, one would easily distinguish the asymmetric-
magnon-scattering contribution to nonlinear Nernst current
from other mechanisms through a scaling relation: asymmet-
ric magnon scattering (cubic to σxx), Berry curvature effect or
chiral anomaly (linear to σxx), Berry phase effect (independent
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of σxx), and the warping effect or electron-hole asymmetry
(quadratic to σxx).

The microscopic mechanism of the asymmetric-magnon-
scattering-induced NPNE can, actually, be disclosed
intuitively through neglecting the magnon dispersion, which
means h̄ω ≈ gμBB. When neglecting the magnon dispersion
and using gμBB as the magnon energy, the integral involving
the angular variables in Eq. (16), then, can be integrated out,
leading to

αP
nl = −γπ2E2

f τ
m
F

8T
cos φ

∫
dx

(
1

τ+ − 1

τ−

)

× xex

(ex + 1)2

(
xex − x

ex + 1
− 2

)
, (17)

with the definitions of τ+ and τ− given as [13,28]

1

τ+ = 1

eβ h̄ω − 1

(
1 − 1

e(x+β h̄ω) + 1

)
1

τm
F

,

1

τ− =
(

1

eβ h̄ω − 1
+ 1

)(
1 − 1

e(x−β h̄ω) + 1

)
1

τm
F

,

(18)

where 1/τm
F = kF j2

exAc/(2πvF h̄2), which ensures τ+ and τ−
having the dimensions of the relaxation time. Obviously, the
scattering rate 1/τ+ for absorbing a magnon with energy h̄ω

is not equal to the scattering rate 1/τ−, which corresponds
to emitting a magnon with same energy. Therefore, Eq. (17)
hints nonzero NPNE, which originates from the asymmetric
magnon scattering of electron in the TI, namely, the scattering
rates are different in magnon absorption and emission pro-
cesses. Besides, Eq. (17) also exhibits cos φ dependence on
the magnetization orientation. It should be pointed out that the
cos φ dependence still holds even when considering magnon
dispersion as shown in Fig. 2(a) from numerical calculations.
Therefore, |αP

nl| reaches its maximum value when M is parallel
or antiparallel to the applied temperature gradient (x axis) and
vanishes when M is vertical to the temperature gradient. This
cos φ dependence might be attributed to the fact that only
mx(∝ cos φ) component of M can lead to an antisymmetric
magnon scattering while the my component induces sym-
metric magnon scattering in the transverse transport process,
namely, the carriers flowing perpendicularly to the driving
force (see details in Appendix E). Actually, the magnetiza-
tion component contributing to symmetric or antisymmetric
magnon scattering in transverse transport process are opposite
to the longitudinal process in which the mx (my) component
of magnetization contributes to symmetric (antisymmetric)
scattering, leading to a sin φ dependence (measured from x
direction) of the USE on the orientation of magnetization [28].

V. RESULTS AND DISCUSSION

To numerically analyze the behaviors of the NPNE,
which stems from asymmetric magnon scattering in TI het-
erostructures BST/CBST without neglecting the magnon
dispersion, we use the following typical values: the lattice
constant a = 4.383 Å [48,49], the Fermi velocity vF ≈ 1 ×
105 m/s [50], spin stiffness constant Ds ≈ 2.1 × 10−22 eV m2

[47], and the nonmagnetic scattering relaxation time τ 0 ≈
5 × 10−13 s estimated by τ 0 = μm/e. The mobility μ of
(Bi1−ySby)2Te3 with Cr doping on the surface can range

FIG. 2. (a) The dependence of αP
nl on in-plane magnetization ori-

entation (i.e., φ). (b) αP
nl as a function of temperature T and magnetic

field B. (c) αP
nl vs T for different B. (d) αP

nl vs B for different T . The
angle φ = 0 (namely, the direction of magnetization is aligned to the
temperature gradient) and Ef = 50 meV are fixed in (b)–(d).

from 200 to 2250 cm2 V−1 s−1 [51], μ = 1500 cm2 V−1 s−1

is taken for an estimation here. Since the exchange coupling
constant jex is not well known for BST/CBST heterostruc-
ture, here we adopt a typical value ( jex ≈ 0.1 eV) [52] for
the exchange coupling constant of surface states of Sb2Te3

and impurities. Hence, the typical scale γ is found to be
5.64 × 10−12 Am/[K (eV)2]. The maxima of αP

nl are expected
in the relatively lower temperature and weaker magnetic field
[Fig. 2(b)].

Figure 2(c) displays the temperature dependence of αP
nl for

different magnetic fields. The appearance of a peak [Fig. 2(c)]
can be understood as follows: When the temperature T tends
to be zero or say in the extremely low temperature regime
kBT � h̄ωmin (h̄ωmin = gμBB), namely, T = 1.34 K for B =
1 T , αP

nl will tend to be zero owing to the frozen magnons. On
the other hand, at relatively high temperature kBT � h̄ωmax

(the maximum energy of magnon h̄ωmax is 4Dsk2
F + gμBB),

the nonlinear Nernst coefficient αP
nl exhibits an inverse-linear

dependence on temperature (αP
nl ∝ 1/T ). As a result, a peak

will emerge at an intermediate temperature. It’s also found
that the amplitude of the peak becomes smaller and the po-
sition shifts to higher temperature when the magnetic field
increases. Furthermore, the value of αP

nl is insensitive to the
magnetic field in the high-temperature regime.

Actually, the temperature-dependent behaviors of the
NPNE in both extremely low- and high-temperature regime
could be understood qualitatively when ignoring the magnon
dispersion for a more transparent picture. At the extremely
low temperature (kBT � h̄ωmin), we have 1/τ+ ≈ e−β h̄ω/τm

F
and 1/τ− ≈ 0. Consequently, the temperature dependence
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FIG. 3. (a) The Fermi energy dependence of αP
nl for different

T and B. (b) The magnon scattering rate 1/τmag as a function of
Fermi energy for different 
k. The magnetic field and temperature
in (b) are fixed at 0.8 T and 1.0 K, respectively. Both orientations
of magnetization are along the direction of temperature gradient
(namely, φ = 0) in (a) and (b).

of αP
nl behaves as αP

nl ∝ e−β h̄ω/T . Since eβ h̄ω diverges much
faster than 1/T , αP

nl will tend to be zero. In the consid-
ered high-temperature regime, hinting β h̄ω → 0, the inverse
of the number of the magnon shows an inverse-linear de-
pendence on T (1/nB ≈ h̄ω/kBT ) and the difference 
 f2h̄ω

between 1/[exp(x + β h̄ω) + 1] and 1/[exp(x − β h̄ω) + 1]
manifests itself as inversely dependent on T [
 f2h̄ω =
−2h̄ωex(1 + ex )−2/kBT ]. Hence, the difference of 1/τ+ −
1/τ− (= −
 f2h̄ω · nB · 1

τm
F

) in Eq. (17) is independent of T ,
leading to the nonlinear Nernst coefficient inverse-linear de-
pendence on temperature, namely, αP

nl ∝ 1/T .
Figure 2(d) shows the dependence of αP

nl on magnetic field
B for different temperature. It should be pointed out that since
we only consider the small magnetic field [B � 2 T] in this
paper, the Landau level would be ignored. At low temperature,
for example T = 1.4 K [Fig. 2(d)], it is easy to observe that
αP

nl linearly decreases as the magnetic field increases. This
reducing behavior of αP

nl versus B at low temperature might
be explained as follows. With the magnetic field B increasing,
the energy of magnon [Eq. (15)] enhances. As a result, the
population of magnon decreases at the fixed temperature in
the low-temperature regime, leading to the decrease of αP

nl.
However, as the temperature continues to increase, the impact
of varying the magnetic field becomes insignificant on αP

nl
[Figs. 2(c) and 2(d)], which might be due to the fact that the
enhanced thermal motion with temperature increase would be
large enough to make almost all the magnons to be excited.

Figure 3(a) illustrates the dependence of αP
nl on the Fermi

energy at different temperature and magnetic field values
and shows the particle-hole symmetry, which is evident since
αP

nl is an even function of E f . Obviously, the values of the
asymmetric-magnon-scattering-induced αP

nl mainly appear at
low Fermi energy close to Dirac cone. Therefore, in addi-
tion to the scaling relation, the Fermi energy dependence
of NPNE can also be used to distinguish the asymmet-
ric magnon scattering from the warping-effect contribution
since the warping-effect contribution becomes significant only
when the Fermi energy is far away from Dirac point [39]. The
peak feature [Fig. 3(a)] can be interpreted as the combined
effect of the magnon population and the density of states of
the charge carriers [28]. When increasing the absolute value of

Fermi energy E f , the density of states of carriers increases and
the related magnon population, conversely, decreases owing
to the increase of energy of magnon contributing to the scat-
tering process. As a result, the magnon scattering rate 1/τmag

[Fig. 3(b)] increases rapidly first due to the enhancement of
density of states and then decreases since the magnon popu-
lation decreases, leading to the peak feature (αP

nl vs E f ). It is
also observed that the curves with different B almost overlap
at low Fermi level |E f | with a fixed temperature, meaning an
insignificant impact of the magnetic field on αP

nl. However,
when E f continues to increase and is away from the Dirac
cone, αP

nl will decrease with an increasing B.
To numerically estimate the nonlinear NPNE of the

BST/CBST heterostructures, we take α
p
nl ≈ 3.6 nA µm K−2

[Fig. 3(a)] for T = 10 K, B = 0.8 T, and E f = 0.15 eV. The
temperature gradient ∂xT can already reach 1 K µm−1 in ex-
periment [53]. Hence, the nonlinear charge current j (2)

y l =
α

p
nll (∂xT )2 can reach 0.18 µA with the length of sample l =

50 µm, which is in the same order of magnitude that stemmed
from the asymmetric energy dispersion in nonmagnetic TI
Bi2Te3 [39] and measurable [54]. Essentially, the proposed
asymmetric-magnon-scattering NPNE here could be expected
to appear in systems, which follow two requisites: (1) the spin-
momentum locking of surface states; (2) magnetic elements
with the local spin in plane, hinting in-plane magnetization.
Therefore, one would also expect to observe the asymmetric-
magnon-scattering NPNE in VBST/BST heterostructures by
replacing Cr doping with V doping.

VI. CONCLUSIONS

In summary, we have proposed that a nonlinear planar
Nernst effect (NPNE) can also emerge in the heterostruc-
tures of TI/MTI without considering the asymmetric energy
dispersion. This NPNE can be ascribed to the asymmetric
magnon scattering, namely the differing scattering rate for
absorption process and emission process. The magnitude of
nonlinear planar Nernst current in BST/CBST heterostructure
is comparable to that predicted in nonmagnetic TI Bi2Te3,
which is attributed to the asymmetric energy dispersion. The
nonlinear planar Nernst coefficient αP

nl, quantizing NPNE, has
been determined through the semiclassical Boltzmann equa-
tion within the relaxation time approximation and shows a
cos φ dependence on the orientation of the magnetization with
respect to the direction of temperature gradient. It is also
found that a stronger NPNE occurs at relatively lower temper-
ature (kBT � gμBB) and weaker magnetic field. At relatively
high temperature (kBT � 4Dsk2

F + gμBB), αP
nl shows an

inverse-linear dependence on temperature and is independent
of the magnetic field. Besides, αP

nl displays the particle-hole
symmetry, namely the sign and magnitude keep unchanging
when transferring the system from p doping to n doping.
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APPENDIX A: THE NONEQUILIBRIUM
DISTRIBUTION FUNCTION

Within the relaxation time approximation, the Boltzmann
equation for two-dimensional case in presence of in-plane
magnetic field and temperature gradient but without the ex-
ternal electric field is

f − f0 = −τ
∂ f

∂ra
va. (A1)

We treat the temperature gradient ∇T as a small quantity and
expand the local nonequilibrium distribution function f (r, k)
in terms of ∇T up to the second order as

f (r, k) ≈ f0(r, k) + δ f1(∂aT ) + δ f2(∂aT ∂bT ), (A2)

where f0 is the local equilibrium distribution function depend-
ing on r and k via indirect variables T and εk as f0(r, k) =
f0(ε(k), T (r)), where the energy dispersion εk includes the
energy-correction (Zeeman term) stemmed from the in-plane
magnetic field or magnetization, leading to the following par-
tial derivative relations:

∂ f0

∂ra
= ∂ f0

∂T

∂T

∂ra
,

∂ f0

∂ka
= ∂ f0

∂εk

∂εk

∂ka
. (A3)

By directly differentiating f0 with respect to εk and T , one can
find

∂ f0

∂T
= −εk − E f

T

∂ f0

∂εk
. (A4)

Combining Eqs. (A3) and (A4) with the definition of electron
velocity ∇kεk = h̄v, we have

∂ f0

∂ka
= −∂ f0

∂T

h̄T va

εk − E f
. (A5)

Taking the expansion of f in Eq. (A2) into Eq. (A1) and
comparing the order of temperature gradient for both sides
of the equation, we can obtain

δ f1 = −τ
∂ f0

∂T
va∂aT,

δ f2 = τ 2

(
∂2 f0

∂T 2
∂aT ∂bT + ∂ f0

∂T
∂abT

)
vbva.

(A6)

To obtain Eq. (A6), we have used the first relation in Eq. (A3)
and also introduce the shorthand notations, ∂a = ∂/∂ra, ∂ab =
∂2/∂ra∂rb. Based on Eqs. (A5) and (A6), we find

δ f1 = τ

T h̄
(εk − E f )

∂ f0

∂ka
∂aT,

δ f2 = − τ 2

T h̄
(εk − E f )vb

∂ f0

∂ka

(
∂abT − 2

T
∂aT ∂bT

)

+ τ 2

h̄2T 2
(εk − E f )2 ∂2 f0

∂ka∂kb
∂aT ∂bT . (A7)

It should be pointed out that one has ∂abT = 0 in a uniform
temperature gradient. In addition, owing to the presence of
in-plane magnetic field or magnetization, when calculating the
energy dispersion εk, one needs to take into account the energy
correction (Zeeman term) caused by the in-plane magnetic
field or magnetization.

APPENDIX B: THE THERMALLY DRIVEN NONLINEAR
CHARGE CURRENT

Based on Eq. (A7), the a component of thermally driven
charge current density ja = −e

∫
[dk]va f (r, k) as response

up to second order in temperature gradient is found to be

ja = − e

h̄T
∂bT

∫
[dk]τva(εk − E f )

∂ f0

∂kb

− e∂bT ∂cT
∫

[dk]τ 2

[
2vavc

εk − E f

h̄T 2

∂ f0

∂kb

+ va

(
εk − E f

h̄T

)2
∂2 f0

∂kb∂kc

]

+ e

h̄T
∂bcT

∫
[dk]τ 2vavb(εk − E f )

∂ f0

∂kc
. (B1)

When applying the temperature gradient along x direction
(i.e., b = c = x), the current density jy in y direction (i.e.,
a = y) is found to be

jy = − e

h̄T
∂xT

∫
[dk]τvy(εk − E f )

∂ f0

∂kx

+ e

h̄T
∂2

x T
∫

[dk]τ 2vyvx(εk − E f )
∂ f0

∂kx

− e(∂xT )2
∫

[dk]τ 2

[
2vyvx

εk − E f

h̄T 2

∂ f0

∂kx

+ vy

(
εk − E f

h̄T

)2
∂2 f0

∂k2
x

]
. (B2)

Combining with the definition of coefficient [αP
nl =

j (2)
y /(∂xT )2], the formula of the nonlinear Nernst coefficient

αP
nl can be easily determined and given in Eq. (4).

APPENDIX C: MAGNON RELAXATION TIME τmag

AND NONLINEAR PLANAR NERNST COEFFICIENT αP
nl

OF BST/CBST

In this Appendix, the magnon relaxation time τmag [13,28]
will be determined based on the Fermi’s golden rule,

1

τmag(k)
≈

∑
k′

Wmag(k′|k)(1 − f (k′)), (C1)

with

Wmag(k′|k) = Wabs(k′, σ ′; nk′−k − 1|k, σ ; nk′−k )

+ Wemit (k′, σ ′; nk−k′ + 1|k, σ ; nk−k′ ), (C2)

where 1 − f (k′) is the probability that the final state of elec-
tron is unoccupied. The scattering probabilities Wabs (Wemit) of
magnon absorption (emission) process are expressed as

Wabs = 2π

h̄
|〈k′, σ ′; nk′−k − 1|H ′|k, σ ; nk′−k〉|2

× δ(εk′ − εk − h̄ωk′−k ),

Wemit = 2π

h̄
|〈k′, σ ′; nk−k′ + 1|H ′|k, σ ; nk−k′ 〉|2

× δ(εk′ − εk + h̄ωk−k′ ), (C3)
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where k, σ and k′, σ ′ represent the wave vectors and spins
of initial and final state of electron, respectively, nk =
1/eβ h̄ωk − 1 denotes the number of magnons with wave vector
k, and h̄ω corresponds to the magnon energy. Taking the
interaction Hamiltonian H ′ given in Eq. (8) into Eq. (C3),
yields

Wabs = 2π

h̄

j2
ex

N
nk′−k | 〈σ ′ | c†

↑c↓ | σ 〉 |2 δ(εk′ −εk− h̄ωk′−k ),

Wemit = 2π

h̄

j2
ex

N
(nk−k′ + 1) | 〈σ ′ | c†

↓c↑ | σ 〉 |2

× δ(εk′ − εk + h̄ωk−k′ ). (C4)

Considering a scattering process in which the spin direction
of initial electron locates at position α and the final electron
at θ , namely | σ 〉 =| α〉 and | σ ′〉 =| θ〉, then the spin eigen-
functions of initial and final state in {| ↑〉, | ↓〉} representation
are found to be, respectively

| α〉 = sin

(
π

4
+ α − φ

2

)
|↑〉 + cos

(
π

4
+ α − φ

2

)
|↓〉,

| θ〉 = sin

(
π

4
+ θ − φ

2

)
|↑〉 + cos

(
π

4
+ θ − φ

2

)
|↓〉,

(C5)
where |↑〉 (|↓〉) denotes the state in which the spin direction is
parallel (antiparallel) to the in-plane magnetization M. Thus,
we have

| 〈θ | c†
↑c↓ | α〉 |2= cos2

(
π

4
+ α − φ

2

)

× sin2

(
π

4
+ θ − φ

2

)
,

| 〈θ | c†
↓c↑ | α〉 |2= sin2

(
π

4
+ α − φ

2

)

× cos2

(
π

4
+ θ − φ

2

)
. (C6)

For the two-dimensional case, we have the replacement∑
k′ = A/(2π )2

∫
dk′ in the continuum limit with A being the

area of the sample. To deal with the integral
∫

dk for simplic-
ity, a polar coordinate (γ , k1), in which the original point is
located at the Dirac cone point, namely k0 = (my,−mx )/vF h̄,
is introduced. Then, the vector k in the original coordinate is
related to vector k1 in the new coordinate as

k = k1 + k0 =
(

k1 cos γ + my

vF h̄
, k1 sin γ − mx

vF h̄

)
. (C7)

Thus, the band energy in Eq. (7) and the integrated form of dk
are rewritten in the introduced polar coordinate, respectively,
as

εk = εk1 = nvF h̄k1,

εk − E f = nvF h̄k1 − nvF h̄kF = nvF h̄
k,∫
dk =

∫
dk1 =

∫
dγ

∫
k1dk1 ≈ kF

∫
dγ

∫
dk1,

(C8)

with 
k measured from kF (Fermi wave number). After a
series of derivation, τmag(k) [Eq. (C1)] is found to be

1

τmag(k)
= 1

τ+
mag(k)

+ 1

τ−
mag(k)

, (C9)

with the magnon scattering time τ+
mag(k) [τ−

mag(k)] from the
absorption (emission) process expressed as

1

τ+
mag(k)

= 1

τm
F

∫ 2π

0
dθ cos2

(
π

4
+ α − φ

2

)

× sin2

(
π

4
+ θ − φ

2

)
V +

mag(θ, α,
k),

1

τ−
mag(k)

= 1

τm
F

∫ 2π

0
dθ sin2

(
π

4
+ α − φ

2

)

× cos2

(
π

4
+ θ − φ

2

)
V −

mag(θ, α,
k), (C10)

where 1
τm

F
= kF j2

exAc

2πvF h̄2 , and the formulas of V +
mag(θ, α,
k) and

V −
mag(θ, α,
k) are given in Eqs. (13) and (14), respectively.

According to Eqs. (C9) and (C10), one could easily observe
that τmag(k) is a function of α and 
k. Hence, τmag(k) is
written as τmag(α,
k) [Eq. (12)] in the main text.

In the polar coordinate k1 = (α, k1), we have εk = vF h̄|k1|
and εk − E f = h̄vF 
k, yielding

vx = 1

h̄

∂εk

∂kx
= vF cos α

vy = 1

h̄

∂εk

∂ky
= vF sin α,

∂ f0

∂kx
= − P

(P + 1)2
β h̄vF cos α,

∂2 f0

∂k2
x

≈ (β h̄vF )2 P(P − 1)

(P + 1)3
cos2 α,

(C11)

where P = eβ(εk−E f ) = eβ h̄vF 
k and we have assumed that
β h̄vF kF � 1. Substituting Eq. (C11) and τmag(k) [Eqs. (C9)
and (C10)] into Eq. (11), we get

αP
nl = γ E2

f vF h̄

kBT 2

∫
d
k

∫
dα

∫
dθVmag(θ, α, φ,
k)

× cos2 α sin αP

(P + 1)2

h̄vF 
k

kBT

(
P − 1

P + 1

h̄vF 
k

kBT
− 2

)
(C12)

with γ = e j2
exkB(τ 0)3Ac/(4π3h̄5vF ) and

Vmag(θ, α, φ,
k)

= cos2

(
π

4
+ α − φ

2

)
sin2

(
π

4
+ θ − φ

2

)
V +

mag(θ, α,
k)

+ sin2

(
π

4
+ α − φ

2

)
cos2

(
π

4
+ θ − φ

2

)

× V −
mag(θ, α,
k), (C13)

where V +
mag and V −

mag are given in Eqs. (13) and (14), re-
spectively. When changing the integral variable 
k to x by
the relation x = vF h̄
k/kBT in Eq. (C13), one can easily
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TABLE I. The parity properties about k1x and k1y for linear Dirac
dispersion. The abbreviation “E” (“O”) represent even (odd).

Transformation (−k1x, −k1y ) (−k1x, k1y ) (k1x,−k1y )
Function Parity Parity Parity

εk E E E
vx O O E
vy O E O
∂ f0
∂kx

O O E
∂2 f0
∂k2

x
E E E

recover the formula of the nonlinear Nernst coefficient shown
in Eq. (16).

APPENDIX D: PARITY PROPERTIES OF THE TERMS
[εk, va, ∂ f0/∂kx AND ∂2 f0/∂k2

x] FOR THE LINEAR DIRAC
DISPERSION IN PRESENCE OF MAGNETIZATION

In presence of magnetization M = (mx, my) = mem, the
Dirac point and the whole dispersion will be shifted (see
details in Sec. III). As discussed in Appendix C, when shifting
the original point of the coordinate into the Dirac cone, lo-
cating at k0 = (my,−mx )/vF h̄ in the original coordinate, the
vector k1 in the new coordinate is related to the momentum k
in the original coordinate as

k1x = kx − my

vF h̄
, k1y = ky + mx

vF h̄
. (D1)

Therefore, the energy band εk [Eq. (7)] is found to be

εk = εk1 = nvF h̄k1 = nvF h̄
√

k2
1x + k2

1y, hinting that εk1 is an

even function with respect to k1x (k1y), namely ε(k1x, k1y ) =
ε(−k1x, k1y) and ε(k1x, k1y ) = ε(k1x,−k1y ). Correspondingly,
the velocity va = 1

h̄
∂εk
∂ka

, ∂ f0/∂kx and ∂2 f0/∂k2
x in the new

coordinate can be expressed as

vx = 1

h̄

∂εk

∂k1x
, vy = 1

h̄

∂εk

∂k1y
,

∂ f0

∂kx
= ∂ f0

∂k1x
,

∂2 f0

∂k2
x

= ∂2 f0

∂k2
1x

.

(D2)

Based on the parities of εk in the new coordinate, the parities
of functions (va, ∂ f0/∂kx and ∂2 f0/∂k2

x ) with respect to k1a

can be determined and are listed in Table I. Through exploit-
ing the parities in Table I, one can easily find the terms in the
first bracket in Eq. (10) are zero.

APPENDIX E: SYMMETRIC/ANTISYMMETRIC MAGNON
SCATTERING TIME OF 1/τmag

In this Appendix, the origin of the cos φ dependence of
αP

nl will be disclosed based on the symmetries (or parities) of
the magnon scattering rate 1/τmag with respect to k1y in the
new coordinate introduced in Appendix C. For simplicity, we
neglect the magnon dispersion and take the magnon energy
as gμBB, then V +

mag(θ, α,
k) [Eq. (13) ] and V −
mag(θ, α,
k)

[Eq. (14)] no longer depend on θ and α and can be reex-
pressed as V +

mag(
k) and V −
mag(
k), respectively. Therefore,

the magnon scattering rate 1/τmag(α,
k) can be written as

1

τmag(α,
k)
= 1

τm
F

∫ 2π

0
dθVmag(θ, α, φ,
k)

=
∫ 2π

0

dθ

τm
F

[
cos2

(
π

4
+ α − φ

2

)
sin2

(
π

4
+ θ − φ

2

)
V +

mag(
k) + sin2

(
π

4
+ α − φ

2

)
cos2

(
π

4
+ θ − φ

2

)
V −

mag(
k)

]

= π

2τm
F

{V +
mag(
k) + V −

mag(
k) + sin(φ − α) × [V +
mag(
k) − V −

mag(
k)]}, (E1)

The symmetry of τmag with respect to k1y can be investigated through exploiting the parities of τmag(α) when transforming α into
−α in polar coordinate (α,
k), where the polar angle α is measured from the k1x and the radius 
k is measured from the Fermi
momentum kF . That is because the symmetry/antisymmetry of a function f (k1x, k1y ) mean even/odd parities with respect to k1y,
namely f (k1x, k1y ) = f (k1x,−k1y )/ f (k1x, k1y) = − f (k1x,−k1y ), which corresponds to f (α) = f (−α)/ f (α) = − f (−α) in the
polar coordinate. Therefore, the magnon scattering time 1/τmag can be divided into two parts based on the parities on α,

1

τmag
= 1

τ S
mag

+ 1

τA
mag

(E2)

with
1

τ S
mag

= π

2τm
F

[(V +
mag(
k) + V −

mag(
k)) + (V +
mag(
k) − V −

mag(
k)) sin φ cos α], (E3)

and

1

τA
mag

= − π

2τm
F

[V +
mag(
k) − V −

mag(
k)] cos φ sin α, (E4)

where superscripts “S”(“A”) refer to symmetry (antisymme-
try). Equation (E3) [Eq. (E4)] hint that τ S

mag[τA
mag] is an even

[odd] function of k1y, namely

1

τ S
mag(k1x,−k1y )

= 1

τ S
mag(k1x, k1y)

,

1

τA
mag(k1x,−k1y )

= − 1

τA
mag(k1x, k1y )

.

(E5)
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Besides, one can easily identify the terms in bracket in
αP

nl [Eq. (11)] are odd functions of k1y when transforming the
coordinate k into k1. Therefore, only the antisymmetric part

of magnon scattering time 1/τA
mag (∝ cos φ) can give rise to

nonzero Nernst coefficient αP
nl, leading to a cosine dependence

on the orientation of magnetization.
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