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Topological plasmonically induced transparency in a graphene waveguide system
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Plasmonically induced transparency (PIT) is a physical phenomenon that mimes electromagnetically induced
transparency in plasmonic systems. However, it is challenging to maintain its line shape with the presence of
disorders or defects, mainly because it is highly susceptible to structural parameters. Herein, a two-dimensional
graphene plasmonic system, which is composed of a few periods of vertically arranged graphene-nanoribbon
(GNR) pairs coupled with a graphene waveguide, is proposed. By constructing GNRs to form bright and dark
plasmon modes with topologically nontrivial phases, the optical response of the graphene waveguide system
gives rise to robust PIT effects that exhibit an immunity to a certain degree of various parametric perturbations
and imperfections. A three-level plasmonic system is demonstrated to explain the formation mechanism of the
PIT effects, and the corresponding results agree well with the numerical ones. Combining topology with PIT
helps to reduce the impact of parametric disorders and defects, which benefits the PIT devices with design
freedom and higher stability.
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I. INTRODUCTION

Surface plasmons are electromagnetic oscillations formed
by coupling incident light to free electrons, which greatly
facilitates the interaction between light and matter owing
to their ability to support optical modes in deep subwave-
length scale and overcome the classical diffraction limit [1–4].
During the past decades, surface plasmons have been in-
vestigated extensively due to their promising applications in
diverse fields, including optical modulators [5], nanolasers
[6], sensors [7], and particle manipulation [8,9]. In addition,
this optical phenomenon also provides a feasible platform
to achieve electromagnetically induced transparency (EIT) in
plasmonic systems.

A plasmon mode can be either bright (superradiant) or
dark (subradiant) depending on whether the coupling strength
between an external incident light and the plasmonic mode
is strong or weak [10–12]. The bright mode has a smaller
quality factor as it can couple strongly with light, while the
dark mode cannot directly (or can weakly) couple to the light
but can indirectly couple through the bright mode, thus ex-
hibiting a significantly larger quality factor. Therefore, there
are two excitation paths for the bright mode, and their de-
structive interferences form a narrow transparency window
inside the original wide absorption band of the bright mode,
inducing an interesting phenomenon called plasmonically
induced transparency (PIT) [13–16]. The transparency win-
dow is associated with a strong dispersion and can lead to a
dramatic reduction of group velocity, which enables propa-
gating light to slow down and further unlocks many practical
applications, such as slow-light devices [17], highly sensitive
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sensors [18], and bandpass plasmonic filters [19]. Various
plasmonic structures have been proposed to realize the PIT
effect, e.g., metallic metamaterials [20,21], graphene metasur-
faces [22,23], and plasmonic waveguide [24]. Unfortunately,
the traditional PIT phenomenon suffers from low ability to
tolerate geometrical disorders and defects since its line shape
strongly depends on the position of the bright and dark modes.

The concept of topology has recently expanded from con-
densed matter theory to classical wave systems. Among them,
topological photonics has attracted much attention because
it enables the emergence of optical phenomena and offers a
method to realize the unidirectional and robust transportation
of light waves [25–31]. So far, the concept of topology has
been successfully applied to realize topologically protected
Fano resonance in acoustic [27] and optical [32] systems.
Although several approaches have been proposed to realize
topologically protected EIT in cavity-coupled waveguide sys-
tems based on photonic crystals [25,26,28], the topologically
protected PIT effect has been elusive. Considering that the
emergence of the PIT effect as well as the line shape and
width of the transparency window strongly depend on the
coupling strength/resonant frequencies between/of the bright
and dark modes, the change of relative positions of the res-
onators strongly tunes and even destroys the transparency
window, greatly hindering tailored nanophotonic applications
and on-chip integration of PIT-based devices.

In this paper, we extend the concept of topology to a
graphene-based plasmonic system that supports the PIT ef-
fect to overcome this shortcoming. As a proof-of-principle
example, we use multilayer graphene nanoribbons (GNRs)
with nontrivial topological phases to construct topological
bright and dark plasmon modes, which further couple with a
graphene waveguide to build a three-level plasmonic system.
We will show how this system permits the existence of the

2469-9950/2024/109(24)/245420(8) 245420-1 ©2024 American Physical Society

https://orcid.org/0000-0002-3158-6257
https://ror.org/05htk5m33
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.245420&domain=pdf&date_stamp=2025-02-12
https://doi.org/10.1103/PhysRevB.109.245420


ZHANG, XIA, XU, ZHAI, AND WANG PHYSICAL REVIEW B 109, 245420 (2024)

FIG. 1. Schematic of the proposed topological plasmonically in-
duced transparency (PIT) effect. (a) The line shape of conventional
bright- and dark-mode-induced PIT effects may be seriously dam-
aged by a certain level of disorders or defects, while (b) topological
bright- and dark-mode-resulted topological PIT effect shows robust-
ness to the same disorders and defects.

topological PIT effect and how the PIT effect responds to
structural imperfections, such as disorders and defects for
various parameters. Meanwhile, the coupled mode theory is
demonstrated to explain the formation mechanism of PIT, and

the analytical results are found to be in good agreement with
the numerical simulations.

II. RESULTS AND DISCUSSIONS

A. Topological concept and model

Figure 1 schematically shows the realization of the pro-
posed concept of the topological PIT effect. The basic idea of
generating the PIT effect can be attributed to the constructive
and destructive interferences between bright- and dark-mode
resonance supported by different plasmonic resonators. The
bright mode suffers from radiation losses, resulting in a trans-
mission dip/absorption peak in the spectrum, while the dark
mode shows weak or no response in the spectrum. Unfor-
tunately, traditional PIT systems are sensitive to structural
perturbations. As a result, the PIT line shape is destroyed with
the existence of disorders or defects, as shown in Fig. 1(a). To
improve the stability of the PIT window, topological bright
and dark modes are constructed to form the topologically
protected PIT effect, as displayed in Fig. 1(b). This approach
guarantees that the transparent window remains due to the
inherent robustness provided by the topologically nontrivial
phases, even in the presence of disorders or defects, surpass-
ing what can be achieved through conventional PIT methods.

To this end, we propose using a graphene waveguide cou-
pled with two sets of topological GNRs, as shown in Fig. 2(g),

FIG. 2. (a) Schematic diagrams of the plasmonic system with only topological bright mode, (d) only topological dark mode, and (g) both
topological bright and dark modes forming the proposed topological plasmonically induced transparency (PIT) system. The orange/black-
dashed box shows the bright/dark mode resonator with four Su-Schrieffer-Heeger (SSH) units. Labels XAi/XCi refer to the positions of the
sublattice A/C in the Xth unit in the bright (i = b) and dark (i = d) mode resonators. (b) Transmission spectrum for the cases with only
topological bright mode; the full range of transmission spectrum is shown in Fig. S2 of the Supplemental Material [38]); (e) only topological
dark mode, and (h) both of them forming topological PIT, where the solid line presents theoretical results, while dots are from numerical
simulations. (c) Spatial field distributions of Ey/|E| at the positions of I, (f) II, and (i) III–V labeled in (b), (e), and (h), respectively. The fields
at I, II, and IV are all located at 33.4 THz. Note that we set β = 5

6 in all cases of this figure.
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FIG. 3. (a) Schematic diagram of the proposed bright/dark mode resonator with four Su-Schrieffer-Heeger (SSH) units. (b) and (c) The
band structures for different β in one SSH unit, with the light cone presented by the gray background area, where the upper energy band
becomes anomalous. 0 and π refer to the values of the Zak phase of corresponding bands. (d) The winding vectors in the first Brillouin zone
for different β, with the insert shows the zoomed-in case of β = 1

6 . The values of W are labeled with the same color as the lines. Note that the
winding number of the case with β = 0.5 is not defined, and the solid and dashed lines correspond to the upper and lower bands, respectively.
(e) Eigenmode spectra of four SSH units with varying β. (f) Spatial field distributions of Ey/|E| for the topological bulk state (m3) and two
degenerate topological edge states (m1 and m2) for β = 5

6 .

to realize topological PIT effects. The topological system
is analogous to the one-dimensional Su-Schrieffer-Heeger
(SSH) model, comprising stacked GNRs arranged with
alternating spacing in the y direction. We propose constructing
two topological resonators that are built by stacking four units
of the SSH model, with each unit hosting two ribbon
sublattices labeled A and C, as shown in Figs. 3(a) and 2(g),
respectively. The width of the GNRs is set as w = 200 nm,
and the distances within and between the SSH units in the
vertical direction are set as d1 and d2, which builds a structure
with a period of p = d1 + d2 = 60 nm. The distance between
the lower resonator and the graphene waveguide is set as
dwb, while the spacing between the two stacked resonators
is denoted by dbd , and they are fixed as dwb = dbd = 50 nm,
unless otherwise specified. Note that the geometrical param-
eters used here are chosen for conceptual demonstration; our
conclusions are general and do not depend on the choice of
the parameters. In addition, the proposed PIT device with
graphene multilayers and parameters shown above is exper-
imentally feasible with state-of-the-art techniques [33–37];
an alternative method to the actual physical realization is
provided in Sec. S4 in the Supplemental Material [38].

To demonstrate our concept, we numerically calculate the
optical response of the waveguide system by performing full-
wave simulations with the finite-element method (COMSOL

Multiphysics). In our simulations, we model graphene as a

two-dimensional surface current tangential to the graphene
surface as Js = σg(ω)E//, where Js is the surface current, E//

is the in-plane component of the electric field, and σg(ω) is the
optical conductivity of graphene, which is generated from the
Kubo formula and consists of both intraband and interband
contributions [39–41]. Detailed parameters and the settings of
COMSOL Multiphysics can be found in Secs. S1 and S2 in the
Supplemental Material [38].

Before going further, it is necessary to rule out the topo-
logical nature of one unit of SSH ribbon pairs. First, we plot
the band structure of one unit of the dimerized ribbons in
the first Brillouin zone in Figs. 3(b) and 3(c) for different
dimerization parameters β, which is defined as β = d2/p for
the convenience of describing the topological nature of the
structure. These figures show that two bands with distinguish-
able energy are supported, where the energy bands of the cases
with β are the same as those of 1 − β. Additionally, one may
find that the band gap between the two bands increases as β

approaches 0 and 1. Then the topology of these bands can
be physically distinguished by the winding number, which
is defined for a deformed Brillouin zone to characterize the
topological properties of the proposed SSH model [48,50,51].

To this end, we need to consider the plasmon modes
supported by the GNRs and their couplings. Previous works
have revealed that plasmonic couplings are dominated by
first-order dipole excitation, while the other high-order mode
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contributions can be safely neglected [14]. If each dipole
mode in the sublattice A or C corresponds to a bosonic
excitation with a resonance frequency ω0, the plasmonic
couplings among them lead to the formation of collective
modes throughout the ribbon layers [48]. Based on that, the
collective dipolar modes mimic the band structure of the SSH
Hamiltonian as [48]

H =
(

ω0 Cg

Cg∗ ω0

)
, (1)

where C is the coupling constant that is expressed as
C = ω0a3/p32, with a being a length scale that relates
to the strength of the dipolar mode excitations, g is
the intersublattice function that reflects the intra- and
interunit-cell couplings between the near ribbons and reads

g =
(

p

d2

)3

+
(

p

d1

)3

exp(−iky p), (2)

with ky being the y component of wave vector. Therefore, the
SSH dispersion shown in Figs. 3(b) and 3(c) can be calculated
by the Hamiltonian shown in Eq. (1):

ω± = ω0 ± C|g|, (3)

where the ± symbols refer to the upper/lower energy band.
In this sense, the winding numbers of the two-band system

can be decomposed into H = σ·d, with σ = (σx, σy) being the
Pauli vector, and

d = (dx, dy) = C|g|(cos φ,− sin φ) (4)

being the k-dependent winding vector, with φ being defined
as eiφ = g/|g| [48]. As the wave vector runs through the first
Brillouin zone (that is, ky goes from 0 to 2π ), its two com-
ponents outline a closed Wilson loop in the dx−dy plane due
to the periodicity of the bulk momentum-space Hamiltonian
[48]. The topology of this loop is then characterized by an
integer called bulk winding number W, which counts the num-
ber of times the loop winds around the origin of the dx−dy

plane. That is, if this loop encloses the origin n times, the
value of W takes n, which corresponds to a Zak phase θZ of nπ

and the presence (n �= 0) (absence, n = 0) of the topological
state [52]. For example, for the cases with β = 5

6 ( 1
6 ) in

Fig. 3(c) [Fig. 3(b)], we have W = 1 (0) [or correspondingly
the Zak phase of π (0)] since the loop encloses the origin for
one (zero) time, while for the case with β = 3

6 , the winding
number is not defined, as shown in Fig. 3(d). At this stage,
our results have demonstrated a generic principle to identify
the topological nature of the ribbon pairs through the value of
Zak phase, that is, we have θz = π (0) when β > 1

2 (< 1
2 ), cor-

responding to the topologically nontrivial (trivial) phase of the
resonator and with a topological phase transition at β = 0.5.

The proposed concept to realize topological PIT effects is
based on strong coupling between two topological resonators;
therefore, it is essential to analyze the topological nature of
the bright and dark mode resonators. Figure 3(e) depicts the
eigenmode distributions crossing a range of β with four SSH
units (eight GNRs). For the topologically trivial phase, the
field of all plasmon modes is distributed either in a few or
across the entire ribbons, which are referred to as bulk states.
Because the topological phase of the case with β > 0.5 is

nontrivial, all the plasmon modes are topologically protected
in this case. Therefore, for the topologically nontrivial phase,
two notable topological states within the midgap of the energy
band appear and degenerate as β increases. These two modes
always exist if β > 0.5 and are featured by their field highly
localized in the topmost and bottommost ribbon layers and,
thus, are called topological edge states, as shown by m1 and
m2 in Fig. 3(f). A topological bulk state donated as m3 is also
shown for comparison, with its fields highly localized within
the sublattices 2C and 3A.

B. Realization of topological PIT

Now we start to explore how to use topological modes
to achieve PIT effects, as shown in Fig. 2(g), by using a
graphene waveguide to directly and indirectly couple with
two stacked topological resonators. Before going further, it
is important to explore the optical property of the case with
only one topological resonator and how its interaction with
the waveguide modulates the output transmission. Figure 2(a)
sketches the structure with a graphene waveguide coupled
with only the topological bright-mode resonator. The corre-
sponding transmission spectrum is plotted in Fig. 2(b), which
clearly depicts a transmission dip near zero at 33.4 THz. To
uncover the reason causing this dip, we illustrate the plasmon
field distributions in Fig. 2(c). This figure clearly displays that
a topological bulk mode with fields highly concentrated in
the sublattices 2C and 3A [the mode corresponding to m3 in
Fig. 3(f)] is excited and so strongly couples with the graphene
waveguide that the transmission coefficient of the structure
then reduces to zero. In other words, when the plasmon res-
onator is close enough to the graphene waveguide, e.g., 50 nm
we used here, it can directly and strongly couple with the bus
waveguide, forming the mode we called the topological bright
mode since its topological phase is nontrivial.

As the distance between the resonator and the bus waveg-
uide increases, the transmission dip gradually increases.
When it is far from the bus waveguide, e.g., increasing to
330 nm, as shown in Fig. 2(d), no transmission dip appears
[see Fig. 2(e), like the case with only the bus waveguide], and
therefore, no plasmon mode is excited in the resonator [see
Fig. 2(f)]. In this case, we call the mode in the resonator the
topological dark mode since it cannot directly couple with the
bus waveguide. In other words, whether a plasmon resonator
acts as a bright or a dark mode is determined by whether
its distance to the bus waveguide is close enough. More dis-
cussions about how this coupling distance affects the output
of the system can be found in Sec. S5 of the Supplemental
Material [38]. Interestingly, when both the bright- and dark-
mode resonators are present [as shown in Fig. 2(g)] and
strongly coupled to each other, two new transmission dips
emerge, and a transparency window [indicated by labels III
and V in Fig. 2(h)] appears near the original dip of the case
with bright mode only, leading to the formation of the topo-
logical PIT effect. The field distributions reveal the nature of
these two dips, with their field resonant in-phase and out-of-
phase at the lower and higher frequencies, as labeled by III and
V in Fig. 2(i), respectively. Finally, we also discuss the cases
without topological features (with β = 1

6 and 1
2 ) for compari-

son, where multi-PIT effects are found to be supported by the
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FIG. 4. (a) Schematic of the structure with disorders. The dashed outlines delineate the original positions of graphene nanoribbons (GNRs)
with the definition of relative horizontal (�x) and vertical (�y) shifts displayed in 3Ab. Transmission spectra of the plasmonically induced
transparency (PIT) system with random disorders for the (b) topologically nontrivial (β = 2

3 ) and (c) trivial (β = 1
3 ) phases, where the maximum

degrees of disorders are chosen as �x = 30 nm and �y = 9 nm, respectively, and the abbreviations VE, HO, and VH refer to the cases with
disorders only in the vertical, horizontal, and an arbitrary direction for convenience, respectively.

bulk modes without the protection of the topology; details are
given in Sec. S6 of the Supplemental Material [38].

To further reveal the physical mechanism of the PIT ef-
fect, we examine the analogy between our system and the
traditional atomic EIT system [see Fig. 2(g)]. According to
the theory of the three-level system [53,54], the ground state
|0〉 and the two upper active states |1〉 and |2〉 respectively
correspond to the bus waveguide, the topological bright mode
[labeled by superscripts b in Fig. 2(g)], and the topological
dark mode [labeled by superscripts d in Fig. 2(g)]. The direct
excitation of the bright mode by the bus waveguide is anal-
ogous to the dipole-allowed transition path from |0〉 to |1〉.
Meanwhile, the indirect excitation of the topological bright
mode refers to the transition path connected to the topological
dark mode as |0〉–|1〉–|2〉–|1〉. The two possible pathways
interfere destructively, reducing losses and enhancing trans-
mittance. Accordingly, the bright mode can be expressed as
|1〉 = B(w)eiωt , which strongly couples with the ground bus
waveguide |0〉 = E0eiωt and the dark mode |2〉 = D(w)eiωt .
Considering that the eigenfrequencies ω0 of the topological
bright and dark modes are the same, it is reasonable to assume
that the damping factors γi (where i = b and d refer to the
bright and dark modes, respectively) of the two modes satisfy
the following relation γd � γb � ω0. Therefore, the field am-
plitude of both states can be described by the coupled Lorentz
oscillator model as [10,11,15](

ω − ω0 + iγb κ

κ ω − ω0 + iγd

)(
B
D

)
= −

(
gE0

0

)
. (5)

Here, κ is the coupling coefficient between the two topolog-
ical modes, and g describes the coupling strength between

the topological bright mode and the waveguide. The complex
amplitude B of the topological bright mode is directly propor-
tional to the polarizability of the PIT system, which can be
obtained by

B = −gE0(ω − ω0 + iγd )

(ω − ω0 + iγb)(ω − ω0 + iγd ) − κ2
. (6)

Thus, the transmission of the waveguide can be given as T =
1 − (B/E0)2. By fitting the simulated data with this equation,
we find good agreement between the numerical and theoreti-
cal results, as shown by the red dots and solid line in Fig. 2(h).

C. Robustness of topological PIT

One of the most prominent properties that arises due to
topology is the protection of the topological modes from
disorders and defects, which is absent in traditional systems
where the optical response is mainly linked to the resonance
in a single resonator. Herein, we first study the stability of the
PIT system in the existence of inhomogeneously distributed
disorder, which is introduced by shifting the positions of both
sublattices A and C randomly in the horizontal and vertical
directions within the ranges of [−�x, �x] and [−�y, �y],
respectively [see the schematic presentation in Fig. 4(a)].
Although it is impossible to conclude all the cases, we have
examined >10 sets of randomly generated data for each range
of disorders to validate our proposal and plotted three se-
lected results in Fig. 4(b) with β = 2

3 . The case of β =
1
3 is also shown in Fig. 4(c) with the same set of disor-
ders used in Fig. 4(b) for comparison. One may find the
salient feature of these transmission spectra: The obvious PIT
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FIG. 5. (a) Schematic of the structure with a defect in the position of 3Ab as an example. Transmission spectra of the plasmonically induced
transparency (PIT) system with a defect for the (b) topologically nontrivial (β = 2

3 ) and (c) trivial (β = 1
3 ) phases.

window is maintained for all kinds of disorders presenting in
only the vertical or horizontal direction and in both directions
simultaneously, with the maxima degrees of disorder up to
�x = 30 nm and �y = 9 nm (note that �y < 10 nm for β

= 2
3 ). For all cases of disorders considered here, the non-

trivial Zak phase is always sustained without inducing any
topological transition; the PIT effect is well prevented by
topology. However, the PIT effect in the topologically trivial
case is deeply affected by the same set of disorders for β

= 1
3 . This is because the presence of disorders induces new

localized plasmon modes that strongly destroy their original
bright and dark modes and their interactions. Consequently,
the PIT spectrum is severely disrupted as one or both transmis-
sion dips disappear or new peaks are introduced. Comparing
Figs. 4(b) and 4(c), our proposed topological PIT system is
immune to a large degree of disorders, benefitting from the
robustness to fabrication errors and disorders.

In addition to the stability against disorders, the other
feature of the topological PIT effect is its robustness against
defects. To examine this, we simulate the performance of the
topological PIT system (β = 2

3 ) under one missing GNR [see
Fig. 5(a)] and display the results in Fig. 5(b). We have calcu-
lated all 16 cases to reach a general conclusion, finding that
the PIT window is always maintained due to the protection of
topology. Specifically, we pay particular attention to the cases
with the defect located at 2Cb, 3Ab, 2Cd, and 3Ad (4Cb and
1Ad) in Fig. 5(b) since the plasmon fields of the case without
a defect strongly localize at these ribbons (they directly affect
the coupling strength between the topological bright and dark

modes). The PIT window becomes broader or narrower with
the existence of the newly introduced defect, but the PIT line
shape is preserved quite well by the topology, while for the
topologically trivial case with β = 1

3 shown in Fig. 5(c),
the absence of one GNR strongly affects the transmission
spectrum, and as a result, the PIT line shape is severely de-
stroyed or even disappears.

Finally, we also discuss the topological PIT effect against
other parametric perturbations and imperfections to examine
the generality of the robustness and compare its performance
with topological trivial and conventional PITs. Although, it
is impossible to consider all possible cases of parametric
perturbations, for the ones considered in Sec. S7 and Table
S1 in the Supplemental Material [38] (such as the ribbon
position and width, Fermi level, defect, surrounding refrac-
tive index, and their combinations under certain degrees), the
PIT spectra of the topological nontrivial cases always main-
tain a prominent PIT window, while for the other two cases
without topological features, the spectra are strongly affected
by the perturbations, resulting in the disappearance of the
PIT effect.

III. CONCLUSIONS

In summary, we have introduced, theoretically explained,
and numerically demonstrated the concept of the topological
PIT effect. We have designed an SSH model-based GNR array
with topologically nontrivial phase to form bright and dark
plasmon mode resonators, of which the direct and indirect
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couplings with a graphene waveguide lead to the topological
PIT. In contrast to topological trivial and conventional PIT
systems, the proposed topological PIT exhibits superior ro-
bustness against various perturbations and imperfections of
single and combined parameters, which provides a pivotal
advantage of the topological PIT system with an immunity
to a certain degree of structural disorders and defects and is
desirable for practical fabrication of PIT devices.
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