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Dynamical Casimir cooling in circuit QED systems
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A transmission line coupled to an externally driven superconducting quantum interference device (SQUID)
can exhibit the dynamical Casimir effect. Employing this setup, we quantize the SQUID degrees of freedom and
show that it gives rise to a three-body interaction Hamiltonian with the cavity modes. By considering only two
interacting modes from the cavities we show that the device can function as an autonomous cooler where the
SQUID can be used as a work source to cool down the cavity modes. Moreover, this setup allows for coupling to
all modes existing inside the cavities, and we show that by adding two other extra modes to the interaction with
the SQUID the cooling effect can be enhanced.
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I. INTRODUCTION

Among the different platforms that allow for an experimen-
tal study of quantum phenomena, one that has attracted much
interest over the past years is quantum electrical circuits [1–5].
These systems, which consist of quantized lumped elements
such as inductors and capacitors, exhibit a wide range of
applications, ranging from performing quantum information
and computation tasks [6,7] to the field of quantum thermo-
dynamics [8–10].

Within the framework of thermodynamics, it is of partic-
ular interest to explore desirable ways to transform energy.
Quantum engines have been broadly studied [11–17], and it
was found that in those settings work can either be extracted
from thermal baths, or used to transfer heat from a cold source
to a warmer one, thus working as a small-scale refrigerator.
However, quantum engines in general require measurements
and external control over the parameters and interactions.
This makes them more energetically costly than their classi-
cal counterparts when realizing them in practice. Therefore,
autonomous quantum engines [18–22], which avoid the ne-
cessity of external control and are thus less demanding in
terms of energy resources, are desirable. In that respect, circuit
quantum electrodynamics (QED) has emerged as a promising
platform for their study, since they allow a precise control
over several parameters. For instance, Hofer et al. propose
to use a Josephson junction to create an interaction among
three harmonic oscillators [23] such that a three-body inter-
action Hamiltonian can be built, which creates an absorption
refrigerator [24,25].

Another important success of circuit QED was the first
experimental realization of the dynamical Casimir effect
(DCE) [26–29]. The DCE is a phenomenon in which real
photons are created out of the vacuum by the presence of
time-dependent boundary conditions of the electromagnetic
(EM) field [30]. Given the difficulty of reaching the required
frequencies using mechanical setups (e.g., in the conventional
configuration consisting of one perfectly conducting cavity

with one moving wall), the experimental circuit QED setup
consisted of a cavity interrupted by a superconducting
quantum interference device (SQUID) [31]. SQUIDs are
superconducting loops consisting of two Josephson junctions
and are used to obtain precise measurements of magnetic
fields. By providing an external driving field to the SQUID, it
can mimic the boundary conditions that would be imposed by
a fast oscillating mirror on the EM field, which creates pairs
of photons inside the cavity [32]. Building on this, similar
setups have been proposed to explore and exploit the effects of
vacuum fluctuations [33,34]. In particular, the DCE has been
proposed as a resource to create entanglement between super-
conducting qubits [35]. The crucial element in these scenarios
is the externally driven SQUID that creates an interaction
between pairs of modes of the cavity. However, the degrees of
freedom of the SQUID will be absent in the interaction and it
only acts as a time-dependent phase in the Hamiltonian of the
system.

In the present work, we extend the previous studies by
investigating the effect of including the internal degrees of
freedom of the SQUID on the modes of the cavity with which
it interacts. Our proposed setup, shown in Fig. 1, consists of
two cavities connected by a SQUID in the middle. This can
be interpreted as a transmission line interrupted by a SQUID
[2,6,7,30,36,37]. By quantizing the SQUID and the cavity
field, we find that the SQUID degrees of freedom will generate
a three-body interaction Hamiltonian with the cavity modes.
We show that, by truncating the cavity to only two interacting
modes, the DCE setup will reduce to an absorption refriger-
ator. Therefore, by assigning temperatures to the cavity and
SQUID modes, one can use the SQUID as a work source
to cool down the coldest mode of the cavity. Furthermore,
since the SQUID couples to all the modes of the cavity, we
investigate the effect of the interplay of more than one pair of
modes on the performance of the cooling process. We observe
that, depending on the temperature of the extra modes of the
cavity, they can have a positive or a negative effect on the
cooling.
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FIG. 1. The schematics of the system consisting of a transmission line interrupted by a SQUID. Each transmission line element consists
of a capacitance C±

0 and an inductance �±
0 . The SQUID itself consists of two Josephson junctions with Josephson energy EJ in parallel to a

capacitance CJ . The SQUID is threaded by a flux f . The quantities �±
j denote the fluxes at the nodes of the system.

This paper is structured as follows. In Sec. II we present our
setup by explaining the Lagrangian of the system. In Sec. III,
following Ref. [38], we derive the quantized Hamiltonian
of the SQUID and the cavity. Employing this Hamiltonian,
we show in Sec. IV that this setup can be reduced to
an absorption refrigerator Hamiltonian. Finally, in Sec. V,
we study the effect of adding more modes of the cavity
on the cooling performance. We present our conclusions
in Sec. VI.

II. THE SYSTEM

The main object of study of this paper will be a sys-
tem consisting of a transmission line with a SQUID in the
middle, as illustrated in Fig. 1. This system is analogous
to an optical cavity divided by a wall, which can in turn
impose a time-dependent boundary condition on the EM
field [35].

In our system, the cavities are represented by a large but
finite number of LC circuits, each of them consisting of identi-
cal inductors and capacitors per unit length denoted by �±

0 and
C±

0 , respectively. The primary variables used to describe the
transmission lines are the node flux variables �±

j (t ) associated
with each node in the cavity. A node flux � in the circuit is
defined as the integral of the voltage between the node and the
ground � = ∫ t

0 ν(t )dt , where ν(t ) is the voltage associated
with each element of the circuit and �±

j (t ) ≡ 2π�/φ0 are
dimensionless, with φ0 = h̄/(2e). The SQUID, which plays
the role of the wall in the optical analog, consists of two
parallel Josephson junctions (JJs) with identical Josephson
energies EJ and capacitances CJ . It is represented by the
node flux at x = 0, referred to as �0, and the phase differ-
ence 2 f , which is associated with the SQUID self-inductance
L. Additionally, this phase difference can be affected by an
external flux.

We begin our analysis by first writing the Lagrangian of the
cavities and the SQUID. The total Lagrangian of the system
shown in Fig. 1 can be written as

L = Lc + Ls + L f . (1)

The Lagrangian Lc describes the bare cavity and is obtained
by summing over the Lagrangians of each LC circuit element

of the two cavities on the right (α = +) and left (α = −) side
of the SQUID,

Lc = 1

2

(
h̄

2e

)2 ∑
α=±

[
N∑

j=1

�xCα
0

(
�̇α

j

)2

−
N−1∑
j=0

(
�α

j+1 − �α
j

)2

�α
0 �x

]
, (2)

where �̇α
j ≡ ∂t�

α
j , �+

0 = �−
0 ≡ �0, and we have introduced

�x, the length of each circuit element. Next, the Lagrangian
Ls pertains to the SQUID part of the system,

Ls =
(

h̄

2e

)2

CJ
(
�̇2

0 + ḟ 2
)+ EJ

∑
α=±

cos(�0 + α f ). (3)

We can identify the first term as the sum of the Coulomb
energies in the SQUID. The second term denotes the Joseph-
son energies which are obtained by assuming that the SQUID
inductance L is split into two equal parts L/2 shared between
the two JJs, with a phase drop of f over each part. Therefore,
the phase difference on one of the JJs is �0 − f while it is
�0 + f on the other one.

Finally, the kinetic energy of the SQUID ring inductance L
corresponds to the term

L f = −
(

h̄

2e

)2 1

2L

(
4 f 2 + 8

M

Lext
f fext

)
, (4)

where the first term inside the bracket is the kinetic energy
produced by the inductance L. In the second term we have
accounted for the presence of an external circuit with induc-
tance Lext which is magnetically coupled to the SQUID by a
mutual inductance M, which can be modulated by the external
flux fext.

Next, we perform a continuum limit by introducing the
field

�(α j�x) ≡ �α
j (5)

for j ∈ {0, . . . , N} and α = ±, and by taking the limit �x →
0. The Lagrangian of the SQUID coupled to the cavity
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becomes in the continuum limit

Lcav = Lc + Ls

=
(

h̄

2e

)2 C0

2

∫ d/2

−d/2
dx

{[
1 + 2CJ

C0
δ(x)

]
�̇2 − v2�′2

}

+ EJ

∫ d/2

−d/2
dxδ(x) cos(�) cos( f ), (6)

where �′ ≡ ∂x�, d = 2N�x denotes the lengths of the side
cavities, and v = 1/

√
�0C0 is the cavity field propagation ve-

locity. Note that for simplicity we assumed identical cavities
to the left and right, i.e., �0 = �α

0 and C0 = Cα
0 .

Next, we can employ the full Lagrangian to derive the
equations of motion. Defining EL = h̄2/(8e2L), we obtain the
Euler-Lagrange equations for the variables �(x), �0 = �(0),
and f ,

�̈ − v2�′′ = 0, (7)

2

(
h̄

2e

)2

[CJ�̈0 − C0v
2(�′

0+ − �′
0−)] + 2EJ cos( f )�0 = 0,

(8)(
h̄

2e

)2

CJ f̈ + EJ cos �0 sin f + EL

(
f + M

Lext
fext

)
= 0.

(9)

These equations describe two coupled nonlinear oscillators, so
the solution will in general feature chaotic behavior. With this
in mind, we will restrict our analysis to the case in which the
flux variable �0 � 1 and this is satisfied in the phase regime
of superconducting qubits where EJ � (2e)2/(2CJ ) [3]. In
this case, Eqs. (8) and (9) will decouple, and the equation of
motion for f will read(

h̄

2e

)2

CJ f̈ + EJ sin f + EL

(
f + M

Lext
fext

)
= 0, (10)

and for small values of f it will describe a shifted harmonic
oscillator.

Before further discussing the dynamics of f , we will focus
on the equation of motion (7) for �(x, t ). It can be solved by
introducing a time-dependent basis [7] such that

�(x, t ) =
∑

n

φn(t )ψn(x, t ), (11)

where the summation runs over all the modes of the cavity.
Here, ψn(x, t ) are the mode functions of the superconduct-
ing cavity, and they describe the spatial distribution of the
EM field for that mode, while φn(t ), the time-dependent flux
variable, is the weight of these modes, and describes their
amplitudes and phases. Each of the instantaneous eigenmodes
ψn(x, t ) obeys the equations

ψ ′′
n (x, t ) + k2

n (t )ψn(x, t ) = 0,

ψ ′
n(−d/2, t ) = ψ ′

n(d/2, t ) = 0, ψ ′
n(0+, t ) − ψ ′

n(0−, t )

= 2

v2

(
−CJv

2k2
n (t )

C0
+ EJ cos f (t )(

h̄
2e

)2C0

)
ψn(0, t ), (12)

where kn(t ) = ωn(t )/v is the wave vector and
ωn(t ) ≡ ω( f (t )) is the time-dependent frequency of the
nth oscillator which can be obtained by solving Eq. (12) (see
Ref. [39] for more details). It is important here to remark that
the time dependence in the functions ψn(x, t ) is a result of
the time dependence of the frequencies of the cavity modes
ωn(t ), which is in turn caused by the time-dependent SQUID
flux variable f (t ). We can also note that this is equivalent
to imposing Neumann boundary conditions on the EM field.
Using Eq. (11) and the given boundary conditions one can
obtain the Lagrangian of the cavity Lcav in terms of φn(t )
and ψn(x, t ) in the following form (see Appendix A for more
details),

Lcav = h̄2

4EC

∑
n

(
φ̇2

n − ω2
n(t )φ2

n

)+ h̄2 ḟ

2EC

∑
nm

Mnmφ̇nφm

+ h̄2

4EC

ḟ 2

2

∑
nmk

MnkMmkφnφm. (13)

In the above Lagrangian we defined EC = (2e)2/(2C) as the
charging energy corresponding to the capacitance C of the
cavity mode, and we have defined

Mnm = 1

d

∫ d/2

−d/2
dx[1 + 2CJ/C0δ(x)]ψm

dψn

df
, (14)

where the time dependence of the ψn functions is related
to the field f . The Lagrangian (13) indicates that the time
dependence in f causes an interaction among the modes of the
cavity. We can interpret such an interaction as a manifestation
of the dynamical Casimir effect (DCE). In the standard DCE
setting, the SQUID flux f is externally driven, thus inducing
an interaction among the cavity modes (two-mode squeezing)
[32,35,40]. In contrast, we are aiming at considering f as
an interacting mode rather than a time-dependent phase. To
do so, we will consider the full Lagrangian of the system
L = Lcav + L f to find the total Hamiltonian. Following a
procedure analogous to Ref. [38], we will find the quantized
Hamiltonian of the cavity and the SQUID in the next section.

III. QUANTIZED HAMILTONIAN

We can write the full Lagrangian L of the system by com-
bining Eq. (13) with L f from the SQUID Lagrangian,

L = h̄2

4EC

∑
n

(
φ̇2

n − ω2
n(t )φ2

n

)+ h̄2

2EC
ḟ
∑
nm

Mnmφ̇nφm

+ h̄2

4EC

ḟ 2

2

∑
n,m,k

MnkMmkφnφm + h̄2

2ECJ

ḟ 2

2
− V ( f ),

(15)

where we have defined the energy of the Josephson capaci-
tance as ECJ = (2e)2/2CJ , and

V ( f ) = −EJ cos f +
(

h̄

2e

)2 1

L

(
f 2 + M

Lext
f fext

)
(16)

is the potential term.
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From this Lagrangian one obtains the momentum variables
conjugate to the SQUID flux f and the cavity fluxes φn,

qn = 1

h̄

∂L
∂φ̇n

= h̄

2EC

(
φ̇n + ḟ

∑
m

Mnmφm

)
, (17)

p f = 1

h̄

∂L
∂ ḟ

= h̄

2ECJ

ḟ

+ h̄

2EC

(
ḟ
∑
nmk

MnkMmkφnφm +
∑
nm

Mnmφ̇nφm

)
. (18)

Here, qn denotes the charge variable of the nth oscillator of
the cavity and p f is the momentum variable of the SQUID.
Note that the fraction 1/h̄ is added to make the momenta di-
mensionless. By performing a Legendre transformation of the
Lagrangian we can find the Hamiltonian of the total system in
terms of the flux and charge variables. Moreover, we promote
the momentum and position variables to quantum operators by
imposing the commutation relation [φn, qn] = i. In this way
we can substitute

φn =
√

h̄ωn(t )

2EC
(an + a†

n), (19)

qn = −i

√
EC

2h̄ωn(t )
(an − a†

n). (20)

Hence, the Hamiltonian will take the following form,

H =
∑

n

h̄ωn(t )a†
nan + (2e)2

2CJ
[p f + ( f )]2 + V ( f ), (21)

where  ( f ) ≡ (i/2)
∑

nm Mnm (an − a†
n) (an + a†

n). This
Hamiltonian indicates that the SQUID momentum will in-
teract with the cavity modes through the term . The f
dependence of  comes from the fact that the operators
an and a†

n in (20) depend on f through the time-dependent
frequency ωn(t ).

At this point we are in a position to perform a first lin-
ear approximation of the Hamiltonian. This can be done by
assuming that the position variable f of the SQUID under-
goes only small oscillations about its rest position f0, i.e.,
f (t ) ≈ f0 + δ f (t ) where δ f (t ) � 1. In this case, the fre-
quency can be expanded to first order in δ f as ωn( f ) ≈
ωn( f0) + δ f ω′

n( f0). Replacing this into Eq. (20) we find, to
first order in δ f ,

an ≈ an( f0) − 1

2
δ f

ω′
n( f0)

ωn( f0)
a†

n( f0). (22)

Moreover, we should also do the same expansion for the
other f -dependent parameters of the system, i.e., Mnm

and ( f ). Therefore, we write Mnm = Mnm0 + δ f M ′
nm with

M ′
mn0 = ∑

k Mnk0Mmk0 and

Mnm0 = 1

d

∫ d/2

−d/2
dx[1 + 2CJ/C0δ(x)]ψm( f0)

× dψn( f0)

df0
. (23)

Using this we can also write ( f ) ≈ ( f0) + δ f ′( f0) such
that

′( f0) =
√

ωm( f0)

ωn( f0)
M ′

nm(am + a†
m)(an − a†

n)

+
√

ωm( f0)

ωn( f0)
Mnm

ω′
n( f0)

ωn( f0)
(am + a†

m)(an − a†
n), (24)

where we have dropped the f0 dependence of the ladder oper-
ators. Now we can insert the above expansions into Eq. (21)
and find the Hamiltonian in terms of δ f . Dropping the f0

dependence of ω′
n and ωn we find

H = h̄
∑

n

(ωn + ω′
nδ f )

(
a†

n − δ f
ω′

n

2ωn
an

)(
an − δ f

ω′
n

2ωn
a†

n

)

+ ECJ (p f + 0 + δ f ′
0)2 + V (δ f ). (25)

Equation (25) evidently denotes the nonlinear interaction
between the modes and δ f . To find the first linear order of the
interaction Hamiltonian in terms of δ f , we perform a unitary
transformation H ′ = T †HT where

T = exp

{
iδ f

(
0 + 1

2
δ f ′

0

)}
. (26)

Applying this on the square term in Eq. (25) we see that
T †(p f + 0 + δ f ′

0)2T = p2
f , so the transformation effec-

tively shifts the momentum p f by 0 + δ′
0. The effect of

the translation on the other parts of the Hamiltonian gives
rise to interaction terms in powers of δ f (see Appendix B for
details). To keep the linear interaction terms, we proceed to
a rotating wave approximation (RWA) in order to eliminate
fast-oscillating terms in the Hamiltonian. To do so, we first
promote p f and δ f to quantum operators, as was done for
the cavity variables, by defining their commutation relation
[δ f , p f ] = i. Thus, we can write

δ f =
√

ECJ

h̄ω f
(a f + a†

f ), (27)

p f = −i
1

2

√
h̄ω f

ECJ

(a f − a†
f ), (28)

where

ω2
f = EJECJ

h̄2

[
cos f0 +

(
h̄

2e

)2 2

LEJ

]
(29)

is the frequency of the oscillations in δ f (see Appendix B
for details). To perform the RWA, we have to transform the
Hamiltonian (25) into the rotating frame by the application of
the unitary operator

U = exp

(
it

h̄

∑
n

h̄ωna†
nan + h̄ω f a†

f a f

)
. (30)

Afterwards we only keep the terms that satisfy the res-
onance condition ω f = ωn + ωm for m 
= n. Going back
to the Schrödinger picture, the Hamiltonian of the system
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becomes

HRWA = h̄
∑

n

ωna†
nan + h̄ω f a†

f a f

− h̄

2

√
ECJ

h̄ω f

∑
n,m

Mnm0

√
ωm

ωn
ω f (a†

f aman + a f a†
ma†

n),

(31)

where the summation runs over all the frequencies that satisfy
the resonance condition. The Hamiltonian in Eq. (31) reflects
the three-body interaction among the modes of the cavity and
the SQUID mode. One interesting feature of this Hamiltonian
is that by choosing only two interacting modes from the cav-
ity, one can show that the system can behave as a quantum
autonomous refrigerator.

IV. ABSORPTION REFRIGERATOR

At this point, we proceed by simplifying the Hamiltonian
(31) further by only considering two modes of the cavity,
i.e., n, m ∈ {1, 2}, so that the only interaction term contains
a†

f a2a1 + H.c. The Hamiltonian then describes an absorption
refrigerator [23–25].

In this setup, the interaction term a†
f a2a1 entails that

one photon is created in the SQUID while two photons
are annihilated in the two modes of the cavity. This low-
ers the energy stored in the two modes and increases
the energy of the SQUID, so that one can achieve au-
tonomous cooling of one mode by utilizing the other two
modes.

On the other hand, the Hermitian conjugate term a f a†
2a†

1
describes a reverse process, i.e., one photon being annihi-
lated in the SQUID while one photon is created at each
cavity mode. However, one can favor the cooling term by
conveniently choosing the energy levels of each oscillator.
One possibility is to connect each cavity to a heat bath,
allowing them to reach a thermal equilibrium state with tem-
peratures Ti for i ∈ { f , 1, 2}. By adjusting these temperatures,
the occupation probabilities of the oscillators can be tuned.
The initial occupation number ni of the ith oscillator can be
expressed as

ni = Tr[ρTi a
†
i ai], (32)

where

ρTi =
exp

(
− h̄ωi

kBTi
a†

i ai

)
Tr
[
exp

(
− h̄ωi

kBTi
a†

i ai

)] (33)

is the thermal initial state of the ith oscillator i ∈ { f , 1, 2}.
In general, the system can operate both as a refrigerator

and as a heat engine. By applying the resonance condition
ω f = ω1 + ω2, one can adjust the temperatures of the three
modes (corresponding to the initial occupation probabilities)
in a way that allows the SQUID to cool down the other two
cavities. This occurs when the temperature of the SQUID
is higher than or equal to the cold mode (T2) while still
being smaller than the hot mode (T1), i.e., T2 � Tf < T1. In
this temperature regime, the state of the SQUID will have a
lower occupation probability than to the other modes, so the

FIG. 2. Averaged energies of each mode after time t, showing
the increase in energy of the SQUID and the decrease in energy
of the cold mode (n2) and the hot mode (n1). The solid lines show
the average energy of each oscillator at time t . Dashed lines in-
dicate the average energy at the initial time. This plot is depicted
for frequencies ω f = 3ω0, ω1 = 2ω0, and ω2 = ω0, where ω0 =
1 GHz, and the temperatures are Tf = 65(h̄ω0/kB ), T2 = Tf , and
T1 = 100(h̄ω0/kB ).

final average energy of the SQUID, E f (t ) = Tr[ω f a†
f a f ρ(t )],

exceeds its initial energy obtained from the thermal state
E f (t ) = Tr[ω f a†

f a f ρTf (0)]. Moreover, the setup in Fig. 1 of-
fers the freedom to select the modes that are located on the left
or right side of the SQUID. Therefore, it is possible to cool
one half of the cavity by choosing parameters that localize
the field modes [39]. There are two options to ensure that the
system will indeed work as a refrigerator. The first approach
involves connecting each mode to separate heat baths initially,
allowing them to reach their respective temperatures. Subse-
quently, the modes interact with each other while still being
influenced by the baths. In this scenario, the dynamics at time
t can be obtained by solving a master equation as demon-
strated in Ref. [23]. An alternative approach is to disconnect
the modes from the heat baths once they have reached their
respective temperatures. Afterward, the modes interact with
each other without the influence of the baths [25]. In this case,
the dynamics are determined by the unitary time evolution.
Since both cases lead to similar results, for simplicity and
the sole purpose of demonstrating the behavior of the cooling
system in our setup, we will consider the latter scenario from
this point on.

To obtain numerical results, we use the QuTip library [41]
to solve the unitary dynamics caused by the rotated Hamil-
tonian (31). In Fig. 2, we show the resulting average energy
of each mode as a function of time t . The comparison with
their initial values clearly indicates that the energy of the
SQUID increases while the other two modes become colder.
This confirms that this configuration operates as a refrigerator,
consistent with the findings in Refs. [24,25]. As a matter of
fact, a better indication that this setup can work as a cooler
can be achieved by monitoring the temperature of the cold
mode while it remains in contact with a heat bath as shown
in Ref. [23]. This involves solving a quantum master equa-
tion to find the dynamics of each mode. In contrast, here we
limited ourselves to a closed system case as it still captures the
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FIG. 3. Cooling performance with respect to small deviation
from the resonant condition (ω1 = 2ω0). One notices that slight
changes in the frequency of the hot mode ω1 will affect the cooling.
This plot is depicted for frequencies ω f = 3ω0 and ω2 = ω0, where
ω0 = 1 GHz, and the temperatures are Tf = 65(h̄ω0/kB ), T2 = Tf ,
and T1 = 100(h̄ω0/kB ).

essential dynamical behavior of the cooler similarly to the
open dynamics [25].

As a further remark regarding the cooling performance,
one may notice that the resonant condition ω f = ω1 + ω2 is
essential to obtain the Hamiltonian in Eq. (31). However, the
effect of small deviation from the resonant condition on the
cooling performance can be interesting to study. Figure 3
denotes the behavior of the cold-mode energy (n2) when
the frequency of the hot mode, ω1, is slightly changed from
its resonant value. We observe that, when ω1 is increased
(decreased), the cooling performance will be decreased (in-
creased) with respect to the resonant condition. This can be
explained by having a look at the changes in the occupation
probabilities of each oscillator in the system. In the reso-
nant case, by fixing the frequencies of the modes, we could
adjust the occupation probabilities by changing the temper-
atures to favor the cooling term, a†

f a1a2, in the interaction
Hamiltonian of (31). Nevertheless, when we deviate from
the resonant condition, we are effectively fixing the tem-
peratures of the modes and by increasing (decreasing) ω1

the occupation probability of the hot mode will be lowered
(increased) and therefore we are moving away (closer) from
the cooling term. This as a result will affect the cooling
performance.

V. ENHANCED COOLING

In the previous section, we show that by keeping only
two interacting modes of the cavity, the system can act
as an absorption refrigerator. However, one of the advan-
tages of the proposed setup is that it gives us the freedom
to retain more modes as long as they fulfill the resonance
condition ω f = ωn + ωm. In this section we will study the
effect on the refrigeration process of two extra modes from
the cavity.

We now consider the Hamiltonian (31) with four modes
ω1,2,3,4, such that they satisfy ω f = ω3 + ω4 = ω1 + ω2. The

FIG. 4. Average energy of the cold mode (n2) as a function of
time t . The blue line indicates the energy of the cold mode when the
SQUID is interacting only with the hot and cold modes (two modes)
of the cavity. The red line denotes the energy of the cold mode when
two extra modes are added. The frequencies are ω f = 3ω0, ω3 =
1.8ω0, and ω4 = 1.2ω0, and the temperatures are Tf = 65(h̄ω0/kB ),
T3 = T4 = 92(h̄ω0/kB ).

resulting Hamiltonian will take the form

Href = h̄
∑

n=1,2

ωna†
nan + h̄ω f a†

f a f

− 1

2

√
h̄ω f ECJ

∑
n,m=1,2

Mnm0

√
ωm

ωn
(a†

f a2a1 + a f a†
2a†

1)

− 1

2

√
h̄ω f ECJ

∑
n,m=3,4

Mnm0

√
ωm

ωn
(a†

f a3a4 + a f a†
3a†

4).

(34)

The modes 1 and 2 are the hot and cold modes of the re-
frigerators, and they will not interact directly with the extra
modes 3 and 4. To study the impact of these modes on the
refrigeration process, we assign thermal states to the two
modes with temperatures T3 and T4.

It turns out that the refrigeration process will depend
strongly on the temperatures of those modes. If we set their
temperatures to be higher than the temperature of the cold
mode (T2) and the SQUID mode (Tf ), the energy of the cold
mode will be higher compared to the two-mode case. The
reason lies behind the fact that when the SQUID mode in-
teracts with the extra modes, due to their higher temperature,
the SQUID mode will become hotter and its state population
will grow. Therefore, since the SQUID is simultaneously in
contact with the cold mode, due to its higher energy, it will
not be able to decrease the energy of the cold mode as it did
before. The result of this process is sketched in Fig. 4. We
notice, as expected, that when the temperatures of the two
extra modes are higher than that of the SQUID and the cold
mode, the cooling process is less effective. On the other hand,
if we choose the temperatures of the extra modes to be equal to
the temperatures of the SQUID and the cold mode, we observe
enhanced cooling (see Fig. 5). When the SQUID interacts with
the cold mode, its energy will increase. Therefore, during the
interaction with the extra modes, it will release its energy to
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FIG. 5. Averaged energy of all the modes after time ω0t . The cold
mode (n2) cools down and the cooling period is longer compared to
the case of only two interacting modes (see Fig. 2).

those modes. Thus, when it comes back to interact with the
cold mode again, it has a lower population than before and
therefore it can lower the cold-mode energy. This results in
an enhancement in the refrigeration process, and the two extra
modes are acting like heat sinks that decrease the energy of the
SQUID during the interaction. Figure 6 shows the behavior of
the cold mode when the temperatures of the extra modes are
equal to that of the SQUID and the cold mode. We notice that
this not only improves the cooling process but also that the
cold mode keeps its minimum energy for a longer period of
time before moving into the oscillatory dynamics.

The effect of decreasing the temperatures of the extra
modes below the temperature of the SQUID and cold mode
is also depicted in Fig. 7. We observe that if we decrease the
temperature of the extra modes to below the temperature of
the cold and SQUID modes, we can improve the cooling effect

FIG. 6. Averaged energy of the cold mode. When the SQUID is
interacting with the two extra modes which have the same temper-
ature of the cold mode, the cooling process is enhanced (red line).
The frequencies are ω f = 3ω0, ω3 = 1.8ω0, and ω4 = 1.2ω0, and the
temperatures are Tf = 65(h̄ω f /kB ) and T3 = T4 = Tf .

FIG. 7. Averaged energy of the cold mode. By decreasing the
temperature of the extra modes, one can further enhance the cooling
of the cold mode (n2). We compare the cooling in the case of two
modes (blue line) to the case of cooling in the presence of four modes
for T3 = T4 = 65h̄ω0 (red line), T3 = T4 = 40h̄ω0 (yellow line), and
T3 = T4 = h̄ω0 (black line).

even further. Nevertheless, this cooling will stop at some point
which can be related to the fundamental limit of cooling [42].
This effect can be observed in externally driven systems and
we do not have drive in our Hamiltonian due to quantizing the
SQUID degrees of freedom. However, since the original setup
stems from the dynamical Casimir effect, we can argue that
this cooling limit should still exist because we are considering
the quantized version of the driven SQUID. This means that
a time-dependent classical phase in the Hamiltonian is now
treated quantum mechanically to create a three-body Hamil-
tonian instead of two-body interaction.

VI. CONCLUSIONS

We investigated cooling in a setup consisting of a finite
transmission line interrupted by a SQUID, a system that has
been used to experimentally realize the dynamical Casimir
effect [32]. By quantizing the SQUID degrees of freedom, we
obtained the Lagrangian of the quantized system in terms of
the modes inside the cavity. After switching to the Hamilto-
nian representation, we obtained a three-body interaction term
consisting of the cavity-mode operators and the SQUID. By
keeping only two interacting modes of the cavity we reduced
the Hamiltonian into the form of the absorption refrigerator
interaction. Therefore, we showed that in some temperature
regime, by increasing the energy of the SQUID mode, one
can cool down the two modes of the cavity.

To study the effect of the other existing modes of the
cavity on the cooling process, we explored the influence of
including two extra modes in the interaction with the SQUID.
In this way we observed that, if the initial temperatures of the
extra modes are equal to the cold mode and the SQUID, one
can cool the cold mode even further than the previous case.
This result is significant as it demonstrates the versatility of
the architecture depicted in Fig. 1 where the system offers
the flexibility to work with multiple cavity modes and their
interactions with the SQUID.
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Since the Hamiltonian (31) contains a squeezing interac-
tion term which stems from the DCE, we expect that this
interaction among the cavity modes and the SQUID can create
entanglement among the involved modes which may play a
role in the cooling effect. Analyzing the role of entanglement
for cooling is beyond the scope of the present work but would
be interesting to study in future work.
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APPENDIX A: LAGRANGIAN OF THE CAVITY MODES

To obtain the Lagrangian of the cavity Lcav we first need to
find

�̇ =
∑

n

φ̇nψn + φnψ̇, (A1)

�′(x, t ) =
∑

n

φn(t )ψ ′
n(x, t ), (A2)

and consequently

�̇2 =
∑
n,m

φ̇nφ̇mψnψm +
∑
n,m

φnφmψ̇nψ̇m

+ 2
∑
n,m

φ̇nφmψnψ̇m, (A3)

�′2(x, t ) =
∑
mn

φn(t )φm(t )ψ ′
n(x, t )ψ ′

m(x, t ). (A4)

We then replace these terms inside the Lagrangian (6) and
from the first term we will have

(
h̄

2e

)2

C0

∫ d/2

−d/2
[1 + 2CJ/C0δ(x)]�̇2 =

(
h̄

2e

)2

C0

∑
n,m

φ̇nφ̇m

∫ d/2

−d/2
[1 + 2CJ/C0δ(x)]ψnψm +

(
h̄

2e

)2

C0

∑
n,m

φnφm

×
∫ d/2

−d/2
[1 + 2CJ/C0δ(x)]ψ̇nψ̇m + 2

(
h̄

2e

)2

C0

∑
n,m

φ̇nφm

∫ d/2

−d/2
[1 + 2CJ/C0δ(x)]ψnψ̇m.

(A5)

We define the inner product as

1

d

∫ d/2

−d/2
[1 + 2CJ/C0δ(x)]ψnψm = δmn, (A6)

and using this we obtain(
h̄

2e

)2

C0

∫ d/2

−d/2
[1 + 2CJ/C0δ(x)]�̇2 =

(
h̄

2e

)2

C
∑

n

φ̇2
n + 2

(
h̄

2e

)2

C
∑
n,m

Amnφ̇nφm +
(

h̄

2e

)2

C
∑
n,m

Bmnφnφm, (A7)

where we defined C0 = C/d and

Amn = 1

d

∫ d/2

−d/2
dx[1 + 2CJ/C0δ(x)]ψnψ̇m, (A8)

Bmn = 1

d

∫ d/2

−d/2
dx[1 + 2CJ/C0δ(x)]ψ̇nψ̇m

=
∑

k

AmkAnk =
∑

k

AmkAnk . (A9)

The next term in the Lagrangian will give rise to

−
∫ d/2

−d/2
dxv2�′2

= −v2
∑
mn

φn(t )φm(t )
∫ d/2

−d/2
dxψ ′

n(x, t )ψ ′
m(x, t )

= −v2
∑
mn

k2
nφ

2
n (t ) + EJ cos f �0, (A10)

where to obtain the last equality we have used the boundary
condition (12) together with the inner product.

APPENDIX B: HAMILTONIAN OF THE SYSTEM

After doing the Legendre transformation of the Lagrangian
in Eq. (15) we will find the Hamiltonian such that

H = 1

2

(
h̄

2e

)2

C
∑

n

(
φ̇n

2

+ ω2
nφ

2
n

)+ h̄

(
1

2e

)2

C ḟ
∑
n,m

Mnmφ̇nφm +
(

h̄

2e

)2

CJ
ḟ 2

2

+
(

h̄

2e

)2

C
ḟ 2

2

∑
n,m,k

MnkMmkφnφm + V ( f ). (B1)
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Now we need to replace the momentum variables above. We
notice that

φ̇n = 1

h̄
(

1
2e

)2
C

qn − ḟ Mnmφm; (B2)

thus, using this we can write

p f =
∑
n,m

Mnmqnφm + h̄

(
1

2e

)2

CJ ḟ , (B3)

and hence

ḟ = 1

h̄
(

1
2e

)2
CJ

p f − 1

h̄
(

1
2e

)2
CJ

∑
n,m

Mnmqnφm. (B4)

Replacing φ̇n in the Hamiltonian (B1) we find

H =
∑

n

[
(2e)2

2C
q2

n + 1

2

(
h̄

2e

)2

Cω2
nφ

2
n

]

+
(

h̄

2e

)2

CJ
ḟ 2

2
+ V ( f ). (B5)

Therefore the final Hamiltonian after replacing ˙δ f as well will
take the following form,

H =
∑

n

[
(2e)2

2C
q2

n + 1

2

(
h̄

2e

)2

Cω2
nφ

2
n

]

+ (2e)2

2CJ

⎛
⎝p f −

∑
n,m

Mnmqnφm

⎞
⎠

2

+ V ( f ). (B6)

To go further we first quantize the full Hamiltonian by as-
suming the usual commutation reaction among the operators.
Therefore we write

φn =
√

h̄ωn

2EC
(an + a†

n), (B7)

qn = −i

√
EC

2h̄ωn
(an − a†

n). (B8)

Thus the Hamiltonian will become

H =
∑

n

h̄ωna†
nan + (2e)2

2CJ
[p f + ( f )]2 + V ( f ), (B9)

where ( f ) = i
2

∑
n,m Mnm(an − a†

n)(an + a†
n). We notice that

the operators an and a†
n depend on δ f through ωn. Therefore,

there exists an interaction among the cavity fields and the
SQUID degrees of freedom f . This said, we can now do the
first linear approximation of the Hamiltonian. This can be
done by assuming that the position of the SQUID, f , has small
oscillations around its rest position, f0.

Explicitly, we can write for f (t ) ≈ f0 + δ f (t ), where
δ f (t ) � 1,

ωn( f ) ≈ ωn( f0) + δ f ω′
n( f0). (B10)

Therefore

an ≈
√

EC

2h̄ωn( f0)
φn + i

√
h̄ωn( f0)

2EC
qn − 1

2
δ f

× ω′
n( f0)

ωn( f0)

⎛
⎝
√

EC

2h̄ωn( f0)
φn − i

√
h̄ωn( f0)

2EC
qn

⎞
⎠, (B11)

which can be written as

an ≈ an( f0) − 1

2
δ f

ω′
n( f0)

ωn( f0)
a†

n( f0). (B12)

Moreover, we notice that in this limit using Eq. (14) we have

Mnm = Mnm0 + δ f M ′
nm0, (B13)

with M ′
mn0 = ∑

k Mnk0Mmk0 and

Mnm0 = 1

d

∫ d/2

−d/2
dx[1 + 2CJ/C0δ(x)]ψm( f0)

dkn

df0

dψn( f0)

dkn
.

(B14)

Now we should replace all these terms back into the bare
Hamiltonian and ( f ). In this way, these terms give nonlinear
contributions to the interaction Hamiltonian. Therefore, using
the fact that δ f � 1, we can do a linear approximation. To do
so we write ( f ) ≈ ( f0) + δ f ′( f0) where ′ can be found
by replacing the above expansions of creation and annihilation
operators and Mnm in ( f ) and only keeping the first order in
δ f ,

′( f0) =
√

ωm( f0)

ωn( f0)

[
M ′

nm + Mnm
ω′

n( f0)

ωn( f0)

]

× [am( f0) + a†
m( f0)][an( f0) − a†

n( f0)]. (B15)

Replacing this into the Hamiltonian we will have

H = h̄
∑

n

(ωn + ω′
nδ f )

(
a†

n − δ f
ω′

n

2ωn
an

)(
an − δ f

ω′
n

2ωn
a†

n

)

+ (2e)2

2CJ
(p f + 0 + δ f ′

0)2 + V (δ f ), (B16)

where we just for simplicity replaced ( f0) with 0 and the
same for ′. Moreover

V (δ f ) =
(

h̄

2e

)2 1

2
CJω

2
f δ f 2 +

(
h̄

2e

)2 2M

LLext
δ f fext. (B17)

In the above Hamiltonian, the ladder operators are indepen-
dent of f . To find the form of the interaction, we perform a
unitary transformation H ′ = T †HT where

T = exp
{
iδ f
(
0 + 1

2δ f ′
0

)}
. (B18)

We first apply this on the second term of the Hamiltonian and
the result will be

T †(p f + 0 + δ f ′
0)2T = p2

f , (B19)

so we are shifting the momentum by 0 + δ f ′
0.

Next we need to transform the first term in the
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Hamiltonian,

T †h̄
∑

n

(ωn + ω′
nδ f )

(
a†

n − δ f
ω′

n

2ωn
an

)(
an − δ f

ω′
n

2ωn
a†

n

)
T

≈ h̄
∑

n

ωn

(
a†

nan − δ f
ω′

n

2ωn

(
a†2

n + a2
n

)+ δ f 2

(
ω′

n

2ωn

)2

ana†
n

)
+ h̄

∑
n

ω′
n

(
δ f a†

nan − δ f 2 ω′
n

2ωn

(
a†2

n + a2
n

))

× −h̄

2
δ f
∑
n,m

Mnm

√
ωm

ωn
[ωm(am − a†

m)(an − a†
n) + ωn(am + a†

m)(an + a†
n)]

− −h̄

4
δ f 2

∑
n,m

M̃nm

√
ωm

ωn
[ωm(am − a†

m)(an − a†
n) + ωn(am + a†

m)(an + a†
n)]

− h̄

2
δ f 2

∑
mn

Mnm

√
ωm

ωn

[
ωn

ω′
n

ωn
(am + a†

m)(a†
n + an) + ωm

ω′
m

ωm
(a†

m − am)(an − a†
n)

]

− h̄

2
δ f 2

∑
n,m

Mnm

√
ωm

ωn
[ω′

m(am − a†
m)(an − a†

n) + ω′
n(am + a†

m)(an + a†
n)] + O(δ f 3), (B20)

where M̃nm = M ′
nm + Mnm

ω′
n

ωn
. Now these terms are denoting

the interaction between the cavities and the squid in powers
of δ f and we only kept terms up to the second order in δ f .
We can further simplify this Hamiltonian in two ways. First,
since δ f is very small, we can neglect all second-order terms
in δ f . Note that there exists a second-order term in V (δ f )
which is written as ( h̄

2e )2 1
2CJω

2
f δ f 2. However, the prefactor of

this term, ( h̄
2e )2 1

2CJ = h̄2ω2
f /4ECJ ∝ EJ , is large. The second

simplification is the rotating wave approximation (RWA). One
can show that all the terms of second order in δ f will be
eliminated by the approximation. To sketch the RWA, we first
write

δ f =
√

ECJ

h̄ω f
(a f + a†

f ), (B21)

p f = −i
1

2

√
h̄ω f

ECJ

(a f − a†
f ). (B22)

Replacing them in the Hamiltonian will result in a bare Hamil-
tonian of the form

H0 = h̄
∑

n

ωna†
nan + h̄ω f a†

f a f . (B23)

Therefore we can use the above Hamiltonian and move to the
rotating frame by applying the unitary transformation

U = exp

{
it

h̄

[∑
n

h̄ωna†
nan + h̄ω f a†

f a f

]}
(B24)

on the interaction Hamiltonian (B20). Therefore, after doing
the RWA, using the resonance condition ω f = ωn + ωm for

m 
= n, and going back to the Schrödinger picture, we obtain

HRWA = h̄
∑

n

ωna†
nan + h̄ω f a†

f a f + h̄
∑

n

ωn
ECJ

h̄ω f

(
ω′

n

2ωn

)2

× ana†
na f a†

f − h̄

2

√
ECJ

h̄ω f

∑
n,m

Mnm

√
ωm

ωn
(ωm + ωn)

× (a†
f aman + a f a†

ma†
n). (B25)

Moreover, we can neglect the third term of the first line by
reasoning that ECJ /h̄ω f ∝ √

ECJ /EJ � 1. Therefore that term
is negligible and we can write the final Hamiltonian as

Hrwa = h̄
∑

n

ωna†
nan + h̄ω f a†

f a f

− h̄

2

√
ECJ

h̄ω f

∑
n,m

Mnm

√
ωm

ωn
(ωm + ωn)

× (a†
f aman + a f a†

ma†
n). (B26)

APPENDIX C: THE SQUID LAGRANGIAN

The phase drop of the SQUID over its inductance L follows

(
h̄

2e

)2

CJ f̈ + EJ sin f +
(

h̄

2e

)2 2

L

(
f + M

Lext
fext

)
= 0.

(C1)

Therefore its Lagrangian can be written as

L =
(

h̄

2e

)2 CJ

2
ḟ 2 − V ( f ), (C2)
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where

V ( f ) = −EJ cos f +
(

h̄

2e

)2 1

L

(
f 2 + M

Lext
f fext

)
. (C3)

This Lagrangian is exact up to the assumption that �0 � 1.
However, we can also look at the limit of small displacement
of f around f0 namely assuming

f = f0 + δ f (t ),

fxt = Fext + δ fext (t ), (C4)

where δ f � 1 and δ fext � 1. This limit will be useful once
we write the full Hamiltonian and we need to make the linear
interaction approximation.

Therefore the equation of motion for f can be rewritten as

(
h̄

2e

)2

CJ ¨δ f +
(

EJ cos f0 +
(

h̄

2e

)2 2

L

)
δ f

+ EJ sin f0 +
(

h̄

2e

)2 2

L
f0

= −
(

h̄

2e

)2 2M

LLext
δ fext −

(
h̄

2e

)2 2M

LLext
Fext. (C5)

The stationary solution where we set δ f = 0 and δ fext = 0
gives

EJ sin f0 +
(

h̄

2e

)2 2

L

(
f0 + M

Lext
Fext

)
= 0. (C6)

This indicates the relation between f0 and Fext. Using it we get(
h̄

2e

)2

CJ ¨δ f +
(

EJ cos f0 +
(

h̄

2e

)2 2

L

)
δ f

= −
(

h̄

2e

)2 2M

LLext
δ fext, (C7)

which is basically a forced oscillator. To quantize f , we
first write the Hamiltonian using the above equation of
motion. Since assuming �0 to be small will effectively de-
couple f from the rest of the system, we can quantize its
Hamiltonian independently. One can rewrite the Lagrangian
of f according to its equation of motion (C1), which will
lead to

L f =
(

h̄

2e

)2

CJ

˙δ f
2

2
−
(

h̄

2e

)2 1

2
CJω

2
f δ f 2

−
(

h̄

2e

)2 2M

LLext
δ f δ fext, (C8)

where

ω2
f = 1(

h̄
2e

)2
CJ

(
EJ cos f0 +

(
h̄

2e

)2 2

L

)
. (C9)

[1] M. H. Devoret, L. Houches, Session LXIII , edited by
S. Reynaud, E. Giacobino, and J. Zinn-Justin (Elsevier Science,
1995).

[2] M. H. Devoret, B. Huard, R. Schoelkopf, and L. F. Cugliandolo,
Quantum Machines: Measurement and Control of Engineered
Quantum Systems (Oxford University Press, 2014).

[3] M. H. Devoret, A. Wallraff, and J. M. Martinis, arXiv:cond-
mat/0411174.

[4] F. Beaudoin, J. M. Gambetta, and A. Blais, Phys. Rev. A 84,
043832 (2011).

[5] J. Majer, J. Chow, J. Gambetta, J. Koch, B. Johnson, J. Schreier,
L. Frunzio, D. Schuster, A. A. Houck, A. Wallraff et al., Nature
(London) 449, 443 (2007).

[6] W. Wustmann and V. Shumeiko, Phys. Rev. B 87, 184501
(2013).

[7] C. D. Fosco, F. C. Lombardo, and F. D. Mazzitelli, Phys. Rev.
D 87, 105008 (2013).

[8] J. Senior, A. Gubaydullin, B. Karimi, J. T. Peltonen,
J. Ankerhold, and J. P. Pekola, Commun. Phys. 3, 40
(2020).

[9] B. Karimi and J. P. Pekola, Phys. Rev. B 94, 184503 (2016).
[10] S. S. Kadijani, T. L. Schmidt, M. Esposito, and N. Freitas, Phys.

Rev. B 102, 235422 (2020).
[11] R. Uzdin, A. Levy, and R. Kosloff, Phys. Rev. X 5, 031044

(2015).

[12] K. Zhang, F. Bariani, and P. Meystre, Phys. Rev. Lett. 112,
150602 (2014).

[13] J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, and E. Lutz,
Phys. Rev. Lett. 112, 030602 (2014).

[14] S. Chand and A. Biswas, Phys. Rev. E 95, 032111 (2017).
[15] J. Klaers, S. Faelt, A. Imamoglu, and E. Togan, Phys. Rev. X 7,

031044 (2017).
[16] P. A. Camati, J. F. G. Santos, and R. M. Serra, Phys. Rev. A 99,

062103 (2019).
[17] J. Roßnagel, S. T. Dawkins, K. N. Tolazzi, O. Abah, E.

Lutz, F. Schmidt-Kaler, and K. Singer, Science 352, 325
(2016).

[18] A. Levy and R. Kosloff, Phys. Rev. Lett. 108, 070604
(2012).

[19] J. P. Palao, R. Kosloff, and J. M. Gordon, Phys. Rev. E 64,
056130 (2001).

[20] N. Linden, S. Popescu, and P. Skrzypczyk, Phys. Rev. Lett. 105,
130401 (2010).

[21] M. T. Mitchison, Contemp. Phys. 60, 164 (2019).
[22] M. A. Aamir, P. J. Suria, J. A. M. Guzmán, C. Castillo-

Moreno, J. M. Epstein, N. Y. Halpern, and S. Gasparinetti,
arXiv:2305.16710.

[23] P. P. Hofer, M. Perarnau-Llobet, J. B. Brask, R. Silva,
M. Huber, and N. Brunner, Phys. Rev. B 94, 235420
(2016).

245417-11

https://boulderschool.yale.edu/sites/default/files/files/devoret_quantum_fluct_les_houches.pdf
https://arxiv.org/abs/cond-mat/0411174
https://doi.org/10.1103/PhysRevA.84.043832
https://doi.org/10.1038/nature06184
https://doi.org/10.1103/PhysRevB.87.184501
https://doi.org/10.1103/PhysRevD.87.105008
https://doi.org/10.1038/s42005-020-0307-5
https://doi.org/10.1103/PhysRevB.94.184503
https://doi.org/10.1103/PhysRevB.102.235422
https://doi.org/10.1103/PhysRevX.5.031044
https://doi.org/10.1103/PhysRevLett.112.150602
https://doi.org/10.1103/PhysRevLett.112.030602
https://doi.org/10.1103/PhysRevE.95.032111
https://doi.org/10.1103/PhysRevX.7.031044
https://doi.org/10.1103/PhysRevA.99.062103
https://doi.org/10.1126/science.aad6320
https://doi.org/10.1103/PhysRevLett.108.070604
https://doi.org/10.1103/PhysRevE.64.056130
https://doi.org/10.1103/PhysRevLett.105.130401
https://doi.org/10.1080/00107514.2019.1631555
https://arxiv.org/abs/2305.16710
https://doi.org/10.1103/PhysRevB.94.235420


KADIJANI, DEL GROSSO, SCHMIDT, AND FARIAS PHYSICAL REVIEW B 109, 245417 (2024)

[24] G. Maslennikov, S. Ding, R. Hablützel, J. Gan, A. Roulet,
S. Nimmrichter, J. Dai, V. Scarani, and D. Matsukevich, Nat.
Commun. 10, 202 (2019).

[25] S. Nimmrichter, J. Dai, A. Roulet, and V. Scarani, Quantum 1,
37 (2017).

[26] V. Dodonov, Physics (Basel, Switz.) 2, 67 (2020).
[27] A. Motazedifard, M. Naderi, and R. Roknizadeh, J. Opt. Soc.

Am. B 32, 1555 (2015).
[28] A. Motazedifard, A. Dalafi, M. Naderi, and R. Roknizadeh,

Ann. Phys. 396, 202 (2018).
[29] A. Motazedifard, M. Naderi, and R. Roknizadeh, J. Opt. Soc.

Am. B 34, 642 (2017).
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