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Quantum thermal chokelike behavior exhibited in a spin-boson
model under noncommutative coupling
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Studying heat transport in nonequilibrium dissipative systems is key to energy modulation. Driving thermal
devices have attracted much attention from the perspective of active heat control. In this article, we explore
the driving nonequilibrium spin-boson model with noncommutative coupling, which is described by a two-level
system coupled to two bosonic baths in the (x cos θ + z sin θ ) direction and z direction (dephasing channel),
respectively. Based on the noncommutativity, we propose a model with quantum thermal chokelike behavior,
where the currents flowing into the two thermal baths display distinctly different oscillation amplitudes. This
phenomenon leads to a transformation of a largely oscillating current from one bath to nearly nonoscillating one
at the other bath. To quantify the asymmetry in the oscillation amplitudes of the currents flowing into the two
baths, we introduce a thermal choke ratio. This ratio exhibits a monotonic decrease as the noncommutativity
parameter vanishes. We further calculate the time-independent currents via the Floquet theory using the secular
approximation and find that they coincide with the time averages of the above oscillating currents. Moreover,
we investigate the dependence of these time-independent mean currents on various parameters. Our findings will
advance the understanding of externally driven thermal analogs of electronic devices, and contribute to energy
transport control in nanoscale systems.
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I. INTRODUCTION

Controlling the thermal transport in nanosystems is a
crucial problem in modern thermodynamics [1–6] with the ad-
vancement of nanotechnology. In contrast with the control of
electron transport, heat is usually considered less exploitable.
Over the last two decades, there have been extensive discus-
sions about the heat conduction in the physical community.
The vast majority has focused on the time-independent non-
driven cases [2,7]. There has been a lot of progress concerning
the study of stationary heat transport, such as thermal rectifiers
[8] and negative differential thermal resistance [9,10]. These
advances have enabled thermal analogs [11–15] of electronic
devices, which opens new ways for precise heat manage-
ment. However, research on externally driven, oscillating heat
currents, which can exhibit intriguing phenomena, remains
relatively unexplored [16–19]. Notably, existing studies in this
area have primarily focused on the analysis of stationary mean
currents, neglecting the oscillatory behavior. Consequently,
the development of thermal analogs for alternating-current
electronic devices remains an open frontier, both theoretically
and experimentally.

One of the paradigm models for the discussions of heat
conduction is the nonequilibrium spin-boson (NESB) model
[8], which consists of a two-level system coupled to two
bosonic baths at its two ends, i.e., boundary-driven system
[20]. It has been widely explored both in the context of
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quantum information and quantum thermal conduction
[21–25]. Seeking for solutions of the quantum dissipative
model has witnessed significant progresses both analytically
and numerically. Theoretically, exact master equations [26],
projection operator techniques [27], the noninteracting blip
approximation [28], and polaron transformation [29–32] are
usually used. Numerically, widely applied methods are the nu-
merical renormalization group [33], quasiadiabatic propagator
path integral [34,35], time-evolving matrix product opera-
tor [36], stochastic dynamical equations [37], and hierarchy
equations of motion (HEOM) [38,39]. Generally, numerical
approaches offer advantages in tackling complex scenarios,
including strong coupling and non-Markovian regimes, while
analytical methods often provide deeper physical intuition. In
this work, we leverage the quantum master equation frame-
work incorporating the polaron transformation to investigate
heat currents within an externally driven NESB model. The
validity of our results is further verified through comparisons
with the HEOM method.

Contrary to the common NESB model [8,37], in this
paper, we propose a quantum thermal chokelike model,
i.e., a thermal analog of electronic chokes, which transform
high-frequency alternating currents with continually chang-
ing direction into direct currents with constant direction.
Specifically, the two-level system is coupled to the first bath
in the (x cos θ + z sin θ ) direction but to the second bath
in the z direction, where the former can be regarded as a
generalized amplitude damping channel and the latter as a
dephasing channel [40–42]. This model has attracted interests
recently [43–46], but only the time-independent current has
been considered so far. We find that the noncommuativity
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FIG. 1. Scheme of the model for the quantum thermal choke.
The Hamiltonian of driving system is HS (t ) = σz(E0 cos �t + ω0)/2.
The first bath denotes the noncommutative coupling through σθ =
cos θσx + sin θσz, and the second bath represents the dephasing
channel. The two wavy lines illustrate the asymmetry of the oscil-
lation amplitudes of the heat currents. In this article, we utilize the
natural unit h̄ = kB = 1. Without specific mention, we set the energy
splitting and driving parameters as ω0 = 0.1ωc, E0 = 0.3ωc, � =
0.04ωc, and the temperatures of two baths as T1 = 0.7ωc, T2 = 0.3ωc

throughout this paper.

of system-bath couplings gives rise to a distinct quantum
feature in the energy transport, namely, the asymmetry of the
current oscillation amplitudes. It is shown that the oscillation
amplitude of the current into the second dephasing bath is
largely suppressed compared to that of the first generalized
amplitude damping bath. Consequently, the heat current ex-
hibits periodic reversals of direction into the first bath, while
the current into the second bath maintains a nearly constant,
unidirectional flow. This behavior mirrors the transformation
of an alternating current into a direct current. To quantify this
asymmetry, we introduce a thermal choke ratio based on the
difference in oscillation amplitudes. Finally, we employ Flo-
quet theory [47–52] to analyze the stationary, time-averaged
heat currents at both ends of the two-level system. This
approach allows us to investigate the dependence of these
stationary heat currents on various parameters.

This paper is structured as follows. In Sec. II, we introduce
the driven NESB with noncommutative coupling and calculate
the heat currents into each bath in the first subsection. Ap-
plying the polaron transformation, we perform the standard
procedures to obtain the quantum master equation (QME)
[53], and then nontrivially incorporate the full counting statis-
tics to obtain the heat currents into each bath, respectively.
In the next subsection, we employ the Floquet theory to ex-
plicitly obtain the stationary mean heat currents within the
secular approximation. In Sec. III, we define the thermal
choke ratio to characterize the asymmetry of the oscillation
amplitudes of the currents into each bath, and consider how
the stationary currents respond to the variation of different
parameters, i.e., driving amplitude, coupling strength, and
noncommutative angle. In Sec. IV, we conclude this study
and give some outlooks about the control of oscillating heat
currents.

II. MODEL AND METHODS

The model consists of a two-level system and two bosonic
baths, as illustrated in Fig. 1, whose Hamiltonian can be

written as

H (t ) = HS (t ) +
∑
ν=1,2

HB,ν + HI,1 + HI,2

= σz

2
(E0 cos �t + ω0) +

∑
j,ν

ω j,νb†
j,νb j,ν

+ σθ

∑
j

g j,1(b†
j,1 + b j,1) + σz

∑
j

g j,2(b†
j,2 + b j,2),

(1)

where σi (i = x, y, z) refers to the Pauli matrix. Here, ω0

denotes the energy splitting of two-level system, which is
monochromatically modulated with frequency � and am-
plitude E0. To simplify notation and calculations, we adopt
natural units throughout this work, setting the reduced Planck
constant h̄ and the Boltzmann constant kB to unity, i.e., h̄ =
kB = 1. The bosonic operator b†

j,ν (b j,ν) creates (annihilates)
one photon of mode ω j,ν in the νth bath, and g j,ν represents
the original coupling strength between the driven system and
the νth bath. We have introduced the noncommutative cou-
pling through σθ = cos θσx + sin θσz [43,44], different from
usual NESB model. When θ = π/2, this model is exactly
solvable. In this article, we mainly consider the case of
θ = 0, where the central system is coupled to two bosonic
baths through an amplitude damping channel and a dephasing
channel, respectively, unless we focus on the effect of non-
commutativity represented by θ . Different from the model
in Ref. [44], we fix the coupling to the second bath in z
direction instead of x direction. Hereafter, we characterize
the baths’ effect by the spectral density function Iν (ω) =
π

∑
j g2

j,νδ(ω − ω j,ν ) = ανω
sω1−s

c exp(− ω
ωc

), and we utilize
super-Ohmic spectral density via setting s = 3. If not ex-
plicitly mentioned, we take the cutoff frequency ωc = 1 in
the numerical simulations, and the dimensionless coupling
strength α1 = α2 = 0.01.

A. Time-dependent currents via the Redfield theory

The calculation of the heat current in NESB can be carried
out using the full counting statistics [7]. Since we concern
the noncommutative system-bath coupling, we need to in-
troduce two auxiliary counting fields to obtain the currents
from each bath, respectively. This is different from the time-
independent case, where the magnitude of the current from
each bath is equal due to energy conservation. The full
counting-statistics procedure incorporates the unitary trans-

formation Uν = exp(−iχν

∑
k

ωk,ν

2 b†
k,ν

bk,ν ), and therefore the
original Hamiltonian is transformed into H[χ

2 ](t ) = HS (t ) +∑
ν=1,2 HB,ν + HI,1[χ1

2 ] + HI,2[χ2

2 ], where χ = (χ1, χ2). To
enable the investigation of the strong coupling regime to the
second bath, we perform the polaron transformation on the
second bath via P[χ2

2 ] = ∑
j

g j,2

ω j,2
(b†

j,2ei χ2
2 ω j,2 − b j,2e−i χ2

2 ω j,2 ).
This transformation includes the auxiliary counting field of
the second bath, which is recovered to the original polaron
transformation when we set χ2 = 0. The final Hamiltonian for
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the total system can be rewritten as

H ′
[
χ

2

]
(t ) = eσzP[ χ2

2 ]H

[
χ

2

]
(t )e−σzP[ χ2

2 ]

= σz

2
(E0 cos �t + ω0) +

∑
j,ν

ω j,νb†
j,νb j,ν

+ S

[
χ2

2

] ∑
j

g j,1(b†
j,1ei χ1

2 ω j,1 + b j,1e−i χ1
2 ω j,1 )

≡ H0(t ) + HSB

[
χ

2

]
, (2)

where S[χ2

2 ] = σz sin θ + σx cos θ cosh(2P[χ2

2 ]) + iσy cos θ

sinh(2P[χ2

2 ]), and H0(t ) is the noninteracting Hamiltonian.
We can now proceed by applying established procedures

for deriving the QME as outlined in, e.g., Ref. [53]. Using the
Born-Markovian approximation, we obtain the Hamiltonian
in the interaction picture

HI
SB

[
χ

2

]
(t ) = U †

0 (t )HSB

[
χ

2

]
U0(t )

= SI

[
χ2

2

]
(t )

∑
j

g j,1(b†
j,1eiω j,1t ei χ1

2 ω j,1 + H.c.),

(3)

where U0(t ) is the evolution operator for the free Hamiltonian
H0(t ). For the sake of conciseness, we omit the interaction
picture superscript I in what follows. The evolution of the
generalized density matrix is

∂ρS (χ, t )

∂t
= −

∫ ∞

0
dsTrB

[
HSB

[
χ

2

]
(t ), [HSB

[
χ

2

]
(t − s),

× ρS (χ, t ) ⊗ ρ
eq
B ]χ

]
χ

, (4)

where the subscript χ denotes a generalized commutation
relation [A(χ ), B(χ )]χ = A(χ )B(χ ) − B(χ )A(−χ ). After te-
dious but straightforward calculations, we obtain the final
evolution equation for the diagonal elements of the general-
ized density matrix

∂

∂t

(
ρS (χ, t )11

ρS (χ, t )22

)
=

(
A11(t ) A12(χ, t )

A21(χ, t ) A22(t )

)(
ρS (χ, t )11

ρS (χ, t )22

)
,

(5)

where the expressions of time-dependent coefficient matrix’s
elements are shown in Appendix A. This equation is obtained
by applying the vectorization technique to Eq. (4). The time-
dependent cumulant-generating function is given by the trace
of the generalized density matrix G(χ, t ) ≡ ln[TrSρS (χ, t )],
which gives the heat current with respect to the νth bath
Jν (t ) ≡ (−1)ν ∂

∂t
∂

∂χν
G(χ, t )|χν=0. We set the direction of the

heat current positive when it is from the first bath to the second
bath, i.e., J1(t ) > 0, and J2(t ) > 0 when heat leaves the first
bath and enters the second one. That is why we add (−1)ν in
the definition of current above.

The results of the above QME are compared to that of
HEOM in Fig. 2. Our results demonstrate a significant sup-
pression of the oscillation amplitude in the current flowing
into the second bath. Furthermore, the current direction into

FIG. 2. Heat currents Jν (t ) as a function of time t . The HEOM is
utilized with Qutip [54,55], with the maximum depth of the hierarchy
being 3 and the cut-off number of exponential terms for approximat-
ing the correlation function being 18. We can see that the results
of the QME match that of the HEOM well. The noncommutativity
θ = 0, and the coupling strengths are α1 = α2 = 0.01. All variables
such as t and Jν (t ) are rescaled with respect to the cutoff frequency
ωc to make the dimensions reasonable hereafter. The sign of the
flow represents the direction, e.g., J1(t ) > 0 means that the current
flows from the first bath into the two-level system, while J2(t ) > 0
means that the current flows from the two-level system to the second
bath. Obviously, J1(t ) exhibits larger oscillation amplitude compared
to J2(t ).

the first bath exhibits periodic reversals, while the current
into the second bath maintains a constant direction. This be-
havior makes the whole system a thermal chokelike device.
It makes the oscillation amplitudes of the two-end currents
highly asymmetric, thus converting the high-amplitude alter-
nating current into an effectively direct one. Note that the
conventional electric choke is usually a two-terminal device
while we here consider a more general case that is effectively
a three-terminal one [Eq. (1)] incorporating the driving field.
The suppression of the oscillation amplitude in the second
bath can be attributed to the dephasing channel’s limited in-
fluence on population change, resulting in a less pronounced
current oscillation. Notably, we observe a closer agreement
between the results obtained from QME and HEOM for higher
temperatures or lower driving frequencies. This convergence
stems from the Markovian approximation inherent in the
QME approach. As temperature increases, the validity of the
Markovian approximation allows for the exploration of higher
driving frequencies while still capturing the thermal chokelike
behavior. It is important to note that the driving frequency
primarily affects the oscillation period of the heat currents,
not the occurrence of the thermal choke effect itself.

B. Mean heat currents via the Floquet theory

To gain a deeper physical insight into the dynamics, we in-
vestigate the time-independent stationary current via invoking
the secular approximation. We carry out this calculation using
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the Floquet theory, which makes the secular approximation
clearer for the time-dependent Hamiltonian in Eq. (5).

Within the Floquet theory, the Floquet Hamiltonian, Flo-
quet basis, and quasienergy of the system part are required,
which can be a computationally demanding task. Fortu-
nately, these quantities are directly accessible in our case.
Since the system Hamiltonian is HS (t ) = σz

2 (E0 cos �t +
ω0), the Floquet Hamiltonian is HF = ω0

2 σz, whose eigen-
states are |u+(−)(0)〉 = | ↑ (↓)〉. The micromotion operator
K (t ) = E0

2�
sin �tσz can be obtained from the evolution

operator and the Floquet Hamiltonian, and hence the Flo-
quet basis, is |u+(−)(t )〉 = e−iK (t )|u+(−)(0)〉 = | ↑〉e−i E0

2�
sin �t

(| ↓〉ei E0
2�

sin �t ). Expanding the interaction picture operators in
terms of the eigenstates of the Floquet Hamiltonian, we find

〈uα (0)|σx(t )|uβ (0)〉
= 〈uα (t )|σx|uβ (t )〉ei(εα−εβ )t

=
∑

n

1

T

∫ T

0
dt ′[〈uα (t ′)|σx|uβ (t ′)〉e−in�t ′

]ei(εα−εβ+n�)t ,

(6)

where ε+ = ω0
2 , ε− = −ω0

2 are the eigenvalues of the Floquet
Hamiltonian. With the above type of relations, we deal with
the expressions like σx(t )σx(t − s)ρS (χ, t ) frequently encoun-
tered in the derivation of QME. In the Floquet theory, we
apply the secular approximation (or the rotating-wave approx-
imation) more clearly by eliminating the exponential terms
oscillating as a function of time t rather than the variable of
integration s. The details are presented in Appendix B. Fi-
nally, we get the evolution equation with a constant-coefficient
Lindblad superoperator

∂

∂t

(
ρS (χ, t )11

ρS (χ, t )22

)
=

(
F11 F12(χ)

F21(χ) F22

)(
ρS (χ, t )11

ρS (χ, t )22

)
. (7)

The stationary solution of the above generalized master
equation gives two time-independent heat currents into each
bath [31,56], which is the derivative of the eigenvalue with
the largest real value of the coefficient matrix with respect
to iχν , i.e.,

J̄ν = (−1)ν+1
∂F12(χ)
∂ (iχν ) F21(χ) + ∂F21(χ)

∂ (iχν ) F12(χ)

F11 + F22

∣∣∣∣∣
χ=0

. (8)

As seen in Fig. 3, they are the same as the time average
of the time-dependent currents in the above subsection. To
distinguish the mean heat current from the time-oscillating
one, we adopt the symbol J̄ to denote the time-averaged mean
heat current [Eq. (8)] according to the Floquet theory, and
〈Jν〉T to represent the numerical average of time-dependent
currents obtained from Eq. (5) over a single period.

Note that Eq. (7) differs from Eq. (5) due to the inclu-
sion of the secular approximation in the former. The secular
approximation averages out rapidly oscillating terms in the
master equation, as given in Eq. (B1). Consequently, the
Lindblad-type equations typically lose the information about
the oscillatory behavior of the heat currents.

FIG. 3. Comparison between Floquet mean currents J̄ν , time-
dependent oscillating currents Jν (t ) via QME, and their numerical
averages per period 〈Jν〉T from each bath. The results demonstrate
that J̄ν coincides with 〈Jν〉T . This observation demonstrates that the
Lindblad equation, relying on the secular approximation, generally
yields time-averaged stationary heat currents. A similar observation
is found for the population dynamics, as given in Refs. [57,58].

III. RESULTS AND DISCUSSIONS

A. Thermal choke ratio

The noncommutative coupling in the NESB model gives
rise to a thermal chokelike behavior, which can significantly
modify the oscillation amplitudes of the currents flowing from
or into the baths. This current oscillation can be utilized to
perform precise thermal management or reservoir engineer-
ing. To characterize the degree of asymmetry of the oscillation
amplitudes, we define the normalized thermal choke ratio in
terms of the amplitudes of two ends due to noncommutative
coupling as

η := A1 − A2

maxθ {A1 − A2} , (9)

where A1 refers to the oscillation amplitude of the current
flowing out of the first bath and A2 to the current flowing into
the second bath. Our definition and discussions of the ther-
mal choke ratio go beyond the time-independent rectification
ratio and step into the periodically driven thermal analogues
of electronic devices. Next, we investigate how the thermal
choke ratio changes with the noncommutativity θ in Fig. 4.
We observe a monotonic decrease in the thermal choke ratio
with increasing θ . This signifies a diminishing asymmetry in
the oscillation amplitudes of the currents as the noncommu-
tativity weakens. This behavior is a direct consequence of the
quantum nature of noncommutativity. Since the thermal choke
ratio is normalized, η is maximum when θ = 0 representing
the largest noncommutativity. When θ = π

2 , the noncommuta-
tivity vanishes, and the oscillations of both currents disappear,
indicating that the two-level system with two dephasing baths
is not a good candidate for heat transport.

Figure 5 demonstrates that increasing the coupling strength
α2 to the second bath can indeed reduce the asymmetry in
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FIG. 4. Thermal choke ratio as a function of the noncom-
mutativity θ .

the oscillation amplitudes of the currents induced by non-
commutative coupling. This offers an additional means for
fine-tuning the oscillation amplitudes of both currents. How-
ever, as the figure reveals, achieving a significant reduction
in asymmetry requires a relatively large disparity between the
coupling strengths of the two baths. Furthermore, the results in
Fig. 5 also highlight the remarkable robustness of the thermal
chokelike behavior in our model to variations in coupling
strength.

It is important to note that variations in coupling strengths
alone, without the introduction of noncommutativity, can also
induce an asymmetry in the oscillation amplitudes of the
heat currents. However, achieving a significant asymmetry

FIG. 5. Compensation of the oscillation amplitude of current via
enhancing the coupling strength to the second bath. Here we set the
coupling strength as α1 = 0.01, α2 = 0.1 while the other parameters
remain the same as that for Fig. 2. Compared with Fig. 2, the os-
cillation amplitude of the second bath’s current becomes larger and
comparable with that of the first bath’s current.

FIG. 6. (a) Mean heat current J̄ν as a function of the driving am-
plitude E0. A critical driving amplitude Ec exists where the average
heat current vanishes, indicating no net energy injection from the first
bath. (b) Mean heat current J̄ν as a function of the coupling strength,
where α1 = α2 = α. The average energy flow from the system to the
second bath becomes unidirectional, with the heat current oscillating
largely from the first bath. Notably, the mean current into the second
bath exhibits a power-law dependence, i.e., J̄2 ∼ α2, within the range
of small coupling strength.

necessitates an exceedingly large difference between the two
coupling strengths. Additionally, excessively weak coupling
is required, resulting in a vanishing mean heat current flowing
into the corresponding bath. Consequently, even with distinct
oscillation amplitudes, the absence of a net unidirectional
energy flow disqualifies this approach from being considered
a viable thermal choke effect. Conversely, the scheme relying
on the noncommutativity exhibits this asymmetry intrinsi-
cally, without sacrificing other degrees of freedom.

B. Mean heat current

In this subsection, we investigate the properties of the
stationary mean heat current, which are directly related to the
average energy transport.

The stationary mean heat currents J̄ν from each bath are
determined by the Floquet theory, which corresponds to the
time average of the oscillating currents Jν (t ). These mean
currents often characterize the long-term behavior of heat
transport. In Fig. 6(a), we consider how these stationary heat
currents depend to the variation of the driving amplitude
E0. When E0 = 0, the two currents are equal due to energy
conservation. The heat current initially flows from the first
bath to the two-level system and then into the second bath.
However, as the driving amplitude increases, the injected en-
ergy alters the flow direction of heat, leading to a reversal of
the current back into the first bath. Notably, compared to the
significant variation observed in the current from the first bath,
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FIG. 7. Mean heat currents J̄ν with respect to the noncommuta-
tivity θ . One can find that the absolute ratio between the two currents
|J1/J2| is independent of θ from the Eq. (8).

the current flowing into the second bath remains relatively
unaffected. This behavior reflects the decreased sensitivity of
the dephasing channel to energy transport. In Fig. 6(b), we
observe that the mean current entering the second bath main-
tains a quadratic dependence on the coupling strength α, as
predicted by previous studies [44,59] in no driving case. This
is in contrast to the current from the first bath, which exhibits a
more complex behavior due to the reversal of its flow direction
caused by the driving field. This can be understood from the
Lindblad superoperator’s elements of Eq. (7). The derivative
of exp(Q2) (see Appendix B) with respect to iχ2 gives an
additional ∂Q2/∂ (iχ2). Since the functions C1 and Q2 are
both proportional to the coupling strength α, the expression
in Eq. (8) is proportional to α2.

In Fig. 7, we illustrate the change of the mean currents
with respect to the noncommutativity θ . When θ = π

2 , both
currents vanish. Along with the decrease of θ , i.e., the increase
of noncommutativity, the magnitudes of both currents ascend.
When θ = 0, the mean stationary current entering the second
bath exceeds that from the first bath due to a blocking effect

of the injected energy on the current from the first bath. In
conclusion, when θ = 0, the current flowing into the second
bath exhibits a larger average value and experiences less os-
cillation.

IV. CONCLUSIONS AND OUTLOOK

In summary, we present a model for achieving quantum
thermal choke behavior by employing noncommutative cou-
pling between a system and heat baths. When the direction of
the system-bath coupling is the same as that of the modulated
energy splitting, the corresponding heat current’s oscillation
is largely suppressed. This approach facilitates achieving a
thermal chokelike effect characterized by a unidirectional heat
current on one side of the system, while the current on the
opposite side exhibits continuous directional switching. This
behavior bears a resemblance to the rectification of alter-
nating electric current into direct current. We further define
the thermal choke ratio to characterize the change of current
amplitudes. Besides, we illustrate that the secular approxima-
tion is the reason why Lindblad-type equations always give
the stationary currents even when the system is periodically
driven. Our discussions improve the control of heat flow, and
hence assist in manipulating the oscillation amplitude of heat
currents with more efficiency and precision. Together with
previous discussions of the time-averaged heat current, the
thermal analog of electronics will find applications in thermal
information processing.

For future outlook, the non-Markovian effect [60] on the
oscillating heat currents and the discussions of backflow [61]
are interesting to investigate. Additionally, having established
control over current oscillation amplitudes, future work will
explore the generalizability of this model to finite-size heat
baths. [62,63].
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APPENDIX A: DERIVATION OF THE TIME-DEPENDENT EVOLUTION EQUATION
FOR GENERALIZED MASTER EQUATION

We substitute Eq. (3) into the evolution equation of the generalized density matrix Eq. (4), and the first term becomes

−
∫ ∞

0
dsTrBHSB

[
χ

2

]
(t )HSB

[
χ

2

]
(t − s)

[
ρS (χ, t ) ⊗ ρ

eq
B

]

= −
∫ ∞

0
dsTrB1

[ ∑
j

g j,1(b†
j,1ei χ

2 ω j,1 eiω j,1t + H.c.)
∑

j

g j,1(b†
j,1ei χ

2 ω j,1 eiω j,1(t−s) + H.c.)ρeq
B1

]

×
{

TrB2

[
cosh

[∑
j

2g j,2

ω j,2
(b†

j,2ei χ

2 ω j,2 − H.c.)

]
cosh

[∑
j

2g j,2

ω j,2
(b†

j,2ei χ

2 ω j,2 e−iω j,2s − H.c.)

]
ρ

eq
B2

]

× σx(t )σx(t − s)ρS (χ, t ) cos2 θ
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+ TrB2

[
cosh

[ ∑
j

2g j,2

ω j,2
(b†

j,2ei χ

2 ω j,2 − H.c.)

]
sinh

[∑
j

2g j,2

ω j,2
(b†

j,2ei χ

2 ω j,2 e−iω j,2s − H.c.)

]
ρ

eq
B2

]
iσx(t )σy(t − s)ρS (χ, t ) cos2 θ

+ TrB2

[
sinh

[ ∑
j

2g j,2

ω j,2
(b†

j,2ei χ

2 ω j,2 − H.c.)

]
cosh

[∑
j

2g j,2

ω j,2
(b†

j,2ei χ

2 ω j,2 e−iω j,2s − H.c.)

]
ρ

eq
B2

]
iσy(t )σx(t − s)ρS (χ, t ) cos2 θ

− TrB2

[
sinh

[ ∑
j

2g j,2

ω j,2
(b†

j,2ei χ

2 ω j,2 − H.c.)

]
sinh

[ ∑
j

2g j,2

ω j,2
(b†

j,2ei χ

2 ω j,2 e−iω j,2s − H.c.)

]
ρ

eq
B2

]
σy(t )σy(t − s)ρS (χ, t ) cos2 θ

+ TrB2

[
cosh

[ ∑
j

2g j,2

ω j,2
(b†

j,2ei χ

2 ω j,2 eiω j,2t − H.c.)

]
ρ

eq
B2

]
σx(t )σzρS (χ, t ) sin θ cos θ

+ TrB2

[
cosh

[ ∑
j

2g j,2

ω j,2
(b†

j,2ei χ

2 ω j,2 eiω j,2(t−s) − H.c.)

]
ρ

eq
B2

]
σzσx(t − s)ρS (χ, t ) sin θ cos θ + ρS (χ, t ) sin2 θ

}

= −
∫ ∞

0
dsC1(s)

[(
1

2
ηe−Q2(s) + 1

2
ηeQ2(s)

)
σx(t )σx(t − s)ρS (χ, t ) cos2 θ −

(
1

2
ηe−Q2(s) − 1

2
ηeQ2(s)

)

× σy(t )σy(t − s)ρS (χ, t ) cos2 θ

+ √
ησx(t )σzρS (χ, t ) sin θ cos θ + √

ησzσx(t − s)ρS (χ, t ) sin θ cos θ + ρS (χ, t ) sin2 θ

]
, (A1)

where we define Q2(t ) = 4
π

∫ ∞
0 dω I2(ω)

ω2 ( 1
eβω−1 eiωt + ( 1

eβω−1 + 1)e−iωt ), η2 = exp[−Q2(0)], and C1(t ) = 1
π

∫ ∞
0 dωI1(ω)

[coth β1ω

2 cos ωt − i sin ωt]. The other three terms in the expansion of Eq. (4) are calculated in a similar way.
Since the counting of the heat current is only determined by the diagonal elements of generalized density matrix ρS (χ, t ), we

apply the vectorization on the above four terms and obtain the evolution equation for the diagonal elements of ρS (χ, t ):

∂

∂t

(
ρS (χ, t )11

ρS (χ, t )22

)
=

(
A11(t ) A12(χ, t )

A21(χ, t ) A22(t )

)(
ρS (χ, t )11

ρS (χ, t )22

)
. (A2)

The explicit expressions for the time-dependent coefficient Lindblad superoperator elements are

A11(t ) = −
∫ ∞

0
dsC1(−s)η2 cos2 θeQ2(−s)e−iφ(s,t ) −

∫ ∞

0
dsC1(s)η2 cos2 θeQ2(s)eiφ(s,t ) + 4

∫ ∞

0
dsD1(s) sin2 θ,

A12(χ, t ) =
∫ ∞

0
dsC1(s − χ1)η2 cos2 θeQ2(−χ2+s)e−iφ(s,t ) +

∫ ∞

0
dsC1(−s − χ1)η2 cos2 θeQ2(−χ2−s)eiφ(s,t ),

A21(χ, t ) =
∫ ∞

0
dsC1(s − χ1)η2 cos2 θeQ2(−χ2+s)eiφ(s,t ) +

∫ ∞

0
dsC1(−s − χ1)η2 cos2 θeQ2(−χ2−s)e−iφ(s,t ),

A22(t ) = −
∫ ∞

0
dsC1(−s)η2 cos2 θeQ2(−s)eiφ(s,t ) −

∫ ∞

0
dsC1(s)η2 cos2 θeQ2(s)e−iφ(s,t ) + 4

∫ ∞

0
dsD1(s) sin2 θ, (A3)

where φ(s, t ) = (ω0s + E0
�

(sin[�(s − t )] + sin[�t])), and D1(s) = −C1(s) − C1(−s) + C1(s − χ1) + C1(−s − χ1). The pres-
ence of time-dependent elements within the Lindblad superoperator renders an analytical solution to the evolution
equation intractable. However, the heat current flowing between the system and the baths can be determined numerically using
the fourth-order Runge-Kutta method.

APPENDIX B: FLOQUET THEORY FOR THE STATIONARY HEAT CURRENTS

One usually seeks for the stationary heat current rather than the time-dependent one, which is directly related to the average
energy. With the Floquet method, which makes the secular approximation more clear, we obtain the stationary heat current. The
key point is to address the expressions such as σx(t )σx(t − s)ρS (χ, t ) and σy(t )σy(t − s)ρS (χ, t ). We take one matrix element of
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σx(t )σx(t − s)ρS (χ, t ) as an example. Equation (6) in the main text gives

〈↑ |σx(t )σx(t − s)ρS (χ, t )| ↑〉 =
∑
n,m

1

T 2

∫ T

0
e−in�t ′

ei E0
�

sin �t ′
dt ′

∫ T

0
e−im�t ′′

e−i E0
�

sin �t ′′
dt ′′ei(ω0+n�)t ei(−ω0+m�)(t−s)ρS (χ, t )11

=
∑

n

Bn

(
E0

�

)
B−n

(
− E0

�

)
ei(ω0+n�)sρS (χ, t )11, (B1)

where we only take m = −n in the summation in the last equality and Bn is the nth Bessel function of the first kind. This is
just the secular approximation (or rotating-wave approximation) and is usually justified with relatively large � compared to the
relaxation time and intrinsic characteristic time of the system. This method yields the constant-coefficient Lindblad superoperator
and hence time-independent steady currents.

Applying the above reduction repeatedly, we obtain the following time-independent evolution equation

∂

∂t

(
ρS (χ, t )11

ρS (χ, t )22

)
=

(
F11 F12(χ)

F21(χ) F22

)(
ρS (χ, t )11

ρS (χ, t )22

)
, (B2)

where the expressions for the coefficient matrix elements are given by

F11 = 4
∫ ∞

0
dsD1(s) sin2 θ −

∫ ∞

0
dsC1(s)ηeQ2(s) cos2 θ

∑
n

Bn

(
E0

�

)
B−n

(
− E0

�

)
ei(ω0+n�)s

−
∫ ∞

0
dsC1(−s)ηeQ2(−s) cos2 θ

∑
n

Bn

(
− E0

�

)
B−n

(
E0

�

)
ei(−ω0+n�)s,

F22 = 4
∫ ∞

0
dsD1(s) sin2 θ −

∫ ∞

0
dsC1(s)ηeQ2(s) cos2 θ

∑
n

Bn

(
− E0

�

)
B−n

(
E0

�

)
ei(−ω0+n�)s

−
∫ ∞

0
dsC1(−s)ηeQ2(−s) cos2 θ

∑
n

Bn

(
E0

�

)
B−n

(
− E0

�

)
ei(ω0+n�)s,

F12 =
∫ ∞

0
dsC1(−χ1 − s)ηeQ2(−χ2−s) cos2 θ

∑
n

Bn

(
E0

�

)
B−n

(
− E0

�

)
ei(ω0+n�)s

+
∫ ∞

0
dsC1(−χ1 + s)ηeQ2(−χ2+s) cos2 θ

∑
n

Bn

(
E0

�

)
B−n

(
− E0

�

)
ei(−ω0−n�)s,

F21 =
∫ ∞

0
dsC1(−χ1 − s)ηeQ2(−χ2−s) cos2 θ

∑
n

Bn

(
− E0

�

)
B−n

(
E0

�

)
ei(−ω0+n�)s

+
∫ ∞

0
dsC1(−χ1 + s)ηeQ2(−χ2+s) cos2 θ

∑
n

Bn

(
− E0

�

)
B−n

(
E0

�

)
ei(ω0−n�)s. (B3)
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