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Role of Coulomb interaction in the valley photogalvanic effect
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We develop a theory of Coulomb interaction-related contribution to the photogalvanic current of the carriers
of charge in two-dimensional noncentrosymmetric Dirac materials possessing a nontrivial structure of valleys
and exposed to an external electromagnetic field. The valley photogalvanic effect occurs here due to the trigonal
warping of electrons and holes’ dispersions in a given valley of the monolayer. We study the low-frequency
limit of the external field: The field frequency is smaller than the temperature T , and the electron-electron
and electron-hole scattering times are much larger than the electron-impurity and hole-impurity scattering
times. In this regime, we employ the Boltzmann transport equations and show that electron-hole scattering
dominates electron-electron scattering in intrinsic semiconductors. A Coulomb electron-hole interaction-related
contribution to the valley photogalvanic current can reduce the value of the bare photogalvanic current as electron
and hole currents flow in opposite directions.
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I. INTRODUCTION

The influence of Coulomb scattering, namely, electron-
electron (e-e) and electron-hole (e-h) interactions, on the
transport properties of solids is an active research area. At
low temperatures, when particle-phonon scattering is frozen,
the particle-particle scattering mechanisms may determine the
temperate behavior of transport coefficients, particularly the
Drude conductivity [1]. In Galilean-invariant systems with
the parabolic spectrum, particle collisions do not affect the
conductivity since the velocity is proportional to the particle
momentum, and thus the conservation of total momentum
under e-e and h-h collisions results in the conservation of
velocity. Nevertheless, in strongly disordered samples, elas-
tic scattering on impurities plays a sufficient role: Impurities
break the Galilean invariance, and then the influence of par-
ticle collisions not only can be finite but also results in
strong Coulomb-induced corrections to conductivity [2]. In
particular, weak localization corrections and corrections to
magneto-oscillation transport phenomena [3], including the
Shubnikov–de Haas effect, can emerge.

An interaction between charged particles can be repulsive
or attractive, revealing different behavior in different tem-
perature ranges. Indeed, in addition to the direct Coulomb
repulsion between identical particles (e-e or h-h) and attrac-
tion of different particles (e-h in semiconductors), the other
interaction channels may also strongly affect the conductivity
of the material. In particular, strong particle-particle attraction
in the Cooper channel leads to a renormalization of the Drude
conductivity by superconducting fluctuations at sufficiently
low temperatures (in the vicinity of the superconducting tran-
sition temperature). This constitutes the phenomenon referred

to as paraconductivity [4]. Furthermore, recent technologi-
cal achievements open the way to the creation of ultraclean
nanostructures, where the electron (and hole) mean free path,
which is usually limited by the interaction with impurities, is
comparable with or even exceeds the sample width [5,6]. The
system is in the hydrodynamic regime of electron transport
[7–9]. In this regime, the particle momentum predominantly
changes due to electron scattering off the sample boundaries.
In some materials, the e-e and e-h interaction starts to play
a key role in particle transport, determining the viscosity of
electron liquid.

This subject is especially timely for novel two-dimensional
(2D) materials such as monolayers of graphene [10,11] and
transition-metal dichalcogenides (TMDs) [12–14], the
materials which we consider. A key specific property of
these materials is the two-valley structure of the dispersion
of carriers of charge. A characteristic band structure results
in the emergence of specific valley transport phenomena,
such as the valley acoustoelectric effect and valley Hall effect
[15–21]. Recently, both the diffusive and hydrodynamic
regimes of valley Hall and anomalous Hall effects have been
intensively studied theoretically [22–24]. Photoexcitation of
valley-dependent currents is possible even in conventional
semiconductor devices such as silicon-based transistors
[25–27]. One of the critical properties of electrons and holes
in the valleys of TMDs or a gapped graphene is the trigonal
warping of valleys reflecting the symmetry of the crystal
lattice. It results in the modification of the particle energy,
εp ≈ p2/2m + ηw(p3

x − 3px p2
y ), where p is the momentum

of an electron or a hole, m is the effective mass, η = ±1 is the
valley index, and w is the warping parameter. Owing to that,
in addition to the valley Hall effect, these materials reveal
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FIG. 1. (a) System schematic: A 2D material exposed to a linearly polarized EM field with the frequency � and a circularly polarized
light with the polarization σ . A circular-polarized EM field changes electron population at a given valley due to a photoinduced interband
transition, whereas a linearly polarized EM results in a valley photogalvanic effect (vPGE). (b) Reciprocal space of the 2D system, reflecting
the multivalley structure. Electrons scatter by holes in different valleys.

fascinating nonlinear transport phenomena such as the valley
photogalvanic effect (vPGE) [28–31]. From the mathematical
point of view, the vPGE represents the second-order response
of the stationary electric current density to the external
alternating electromagnetic (EM) field with a frequency much
smaller than the material bandgap.

Various contributions to vPGE might exist at small tem-
peratures. For instance, an attractive e-e interaction (the
Cooper channel) can influence the magnitude of the vPGE
[32]. Namely, the emergence of superconducting fluctuations
strongly affects the vPGE in the vicinity of the superconduct-
ing transition temperature, obeying the law (T − Tc)−3 when
T → Tc from above [32]. The goal of this paper is to examine
the vPGE in gapped Dirac materials due to a particle-particle
interaction in the Coulomb channel, when either the particle
density is low enough or the temperature is higher than the
superconducting transition temperature, thus the supercon-
ducting fluctuations do not yet play an important role.

In a previous work by some of the authors of this paper
[29], bare vPGE in a nondegenerate electron gas was studied.
Here, we will assume that the electron and hole gases are
nondegenerate, satisfying the Boltzmann statistics, and apply
the two-band model with the parabolic dispersion of electrons
and holes with equal effective masses and accounting for the
warping-related corrections to the parabolic dispersion. The
main advantages of this model are that (i) it captures all the
main physical effects and (ii) it can also be applied to a gapped
monolayer graphene.

In an intrinsic gapped Dirac material at a finite tempera-
ture, three channels of particle-particle interaction can exist:
e-e, h-h, and e-h. In contrast to the gapless graphene case
[33], our calculations show that e-e and h-h contributions do
not play a role in vPGE (at least in the framework of the
two-band model). Thus, we focus on e-h scattering as a dom-
inating source of the particle-particle interaction correction to
the vPGE.

The paper is organized as follows. In Sec. II, we describe
the general formalism and present the final expressions for the
e-h interaction-induced corrections to the vPGE current. In
Sec. III we discuss the results. The last two sections contain
the conclusion and acknowledgments.

II. GENERAL FORMALISM

We will consider the diffusive regime, assuming that the
temperature is low enough, thus the particle-impurity collision
rate exceeds the particle-particle one [1,34]. The EM field falls
normally to the 2D monolayer (Fig. 1). We will assume that
the frequency of the external electromagnetic field, producing
the vPGE (the probe), does not exceed the temperature, which
determines the mean kinetic energies of electrons and holes.
Such an approximation allows us to consider the effect of the
particle-particle collisions via successive approximations.

The second-order transport phenomena in general and par-
ticularly the vPGE are usually sensitive to the polarization of
the EM field and the symmetry of the system under study,
namely, the time-reversal symmetry and the spatial inversion
symmetry. The phenomenological relation connecting the
photoinduced rectified electric current and the amplitude of
external probe EM field reads jα = λαβγ EβE∗

γ , where λαβγ is
the third-order tensor acquiring nonzero components in non-
centrosymmetric materials. In nongyrotropic semiconductor
materials, the (rectified) photoinduced electric current occurs
as a second-order response to a linearly polarized external EM
field. This constitutes the PGE. This effect does not directly
relate to light pressure, the photon-drag phenomenon, or the
nonuniformity of the sample or light field intensity, as the
photoinduced Dember effect. Within the D3h point symmetry
group, the third-order conductivity (or transport coefficient)
tensor possesses only one nonzero component. Thus, phe-
nomenologically, the PGE current can be expressed as

jx = λ(|Ex|2 − |Ey|2), jy = −λ(ExE∗
y + E∗

x Ey). (1)

Therefore, our main task comes down to calculating the co-
efficient λ, considering the contribution of the electron-hole
interaction.

The Boltzmann equations, describing (i) the electron and
hole scattering on impurities and (ii) the interparticle scatter-
ing in the framework of the two-band model, read

∂ fp

∂t
− F(t ) · ∂ fp

∂p
= Qei{ fp} + Qeh{ fp}, (2)

∂ fk

∂t
+ F(t ) · ∂ fk

∂k
= Qhi{ fk} + Qhe{ fk}, (3)
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where F(t ) = Fe−i�t + F∗ei�t is the time-dependent force
acting on the mobility electrons and holes of the Dirac mono-
layer exposed to an external linearly polarized probe EM field
E = (Ex, Ey), thus F = eE, e > 0. Throughout the paper, the
momenta k and k′ refer to holes, and p and p′ to electrons (for
clarity and in order to avoid mistakes). The right-hand sides
(RHSs) of these Boltzmann equations contain the collision
integrals, describing the particle-impurity and interparticle in-
teractions. In general, the RHS of Eq. (2) should also contain
e-e and h-h interactions. However, an analysis shows that in
the framework of a two-band model with equal masses of elec-
trons and holes, these contributions vanish [35]. Furthermore,
let us limit ourselves to considering electron and hole scatter-
ing on short-range impurities and assume the corresponding
scattering times are identical and independent of the electron
and hole energies. In this case, it is easier to implement
the relaxation time approximation for the particle-impurity
scattering,

Qe(h)i{ fp(k)} = − fp(k) − np(k)

τi
, (4)

Qeh{ fp} = 2π

h̄S3

∑
p′,k′,k

|Up′−p|2δk′+p′−k−p

× [(1 − fk )(1 − fp) fk′ fp′ − (1 − fk′ )(1 − fp′ ) fk fp]

× δ(εk′ + εp′ − εk − εp), (5)

where np(k) are equilibrium distribution functions of electrons
(holes). Expression (5) determines the electron-hole collision

integral. Evidently, Qeh is a nonlinear function of the elec-
tron and hole distribution functions. Here, Up is a Fourier
transform of the electron-hole interaction potential. In what
follows, we will set the sample area S = 1 in front of the sums
for brevity (in most of places). These factors cancel out in the
derivations and do not appear in the final formulas. We also
use h̄ = kB = 1 units and restore dimensionality in the final
results.

In Eqs. (4) and (5), we account for trigonal warping of
the electron and hole dispersion: εp = ε0

p + wp with ε0
p =

p2/(2m), and wp = we(p3
x − 3px p2

y ). Note, we include the
valley index ηe into the definition of the warping parame-
ter, ηewe → we, for brevity. Thus, ve(p) = p/m + we[3(p2

x −
p2

y )i − 6px pyj] or ve(p) = [px/m + 3we(p2
x − p2

y ), py/m −
6we px py]. The relation for the holes is similar with the re-
placement we → wh.

The actual distribution functions entering Eqs. (4) and
(5) can be expanded into the powers of the external EM
field as fp(k) = np(k) + δ f (1)

p(k)(t ) + δ f (2)
p(k) with δ f (1)

p(k)(t ) =
δ f (1)

p(k)e
−i�t + f (1)∗

p(k) ei�t , thus δ f (1)
p(k)(t ) and δ f (2)

p(k) are the alter-
nating first-order and the stationary second-order corrections
to the equilibrium distribution function with respect to the
external EM field amplitude. The first-order corrections (to
electron and hole distribution functions) satisfy the equations

∂δ f (1)
p (t )

∂t
− F(t ) · ∂np

∂p
+ δ f (1)

p (t )

τi
= QI

eh

{
δ f (1)

p (t )
}
, (6)

∂δ f (1)
k (t )

∂t
+ F(t ) · ∂nk

∂k
+ δ f (1)

k (t )

τi
= QI

he

{
δ f (1)

k (t )
}
, (7)

QI
eh

{
δ f (1)

p

} = −2π
∑

p′,k′,k

|Up′−p|2δ(εk′ + εp′ − εk − εp)δk′+p′−k−p

× [
δ f (1)

p [(1 − nk )nk′np′ + nk(1 − nk′ )(1 − np′ )] − δ f (1)
p′ [(1 − nk )(1 − np)nk′ + nknp(1 − nk′ )]

+ δ f (1)
k [(1 − np)nk′np′ + np(1 − nk′ )(1 − np′ )] − δ f (1)

k′ [(1 − nk )(1 − np)np′ + nknp(1 − np′ )]
]
, (8)

where QI
eh{δ f (1)

p } is a linearized collision integral with respect to the first-order correction to the electron distribution function;

QI
he{δ f (1)

k } can be found analogously (see Supplemental Material for details [35]).
The stationary vPGE current density is determined by the stationary part of the second-order correction to the particle

distribution functions, which satisfies the equations

−F · ∂δ f (1)∗
p

∂p
− F∗ · ∂δ f (1)

p

∂p
+ δ f (2)

p

τi
= QI

eh

{
δ f (2)

p

} + QII
eh

{
δ f (1)

p

}
, (9)

F · ∂δ f (1)∗
k

∂k
+ F∗ · ∂δ f (1)

k

∂k
+ δ f (2)

k

τi
= QI

eh

{
δ f (2)

k

} + QII
eh

{
δ f (1)

k

}
, (10)

QI
eh

{
δ f (2)

p

} = −2π
∑

p′,k′,k

|Up′−p|2δ(εk′ + εp′ − εk − εp)δk′+p′−k−p

× [
δ f (2)

p [(1 − nk )nk′np′ + nk(1 − nk′ )(1 − np′ )] − δ f (2)
p′ [(1 − nk )(1 − np)nk′ + nknp(1 − nk′ )]

+ δ f (2)
k [(1 − np)nk′np′ + np(1 − nk′ )(1 − np′ )] − δ f (2)

k′ [(1 − nk )(1 − np)np′ + nknp(1 − np′ )]
]
, (11)

QII
eh{δ f (1)

p } = −2π
∑

p′,k′,k

|Up′−p|2δ(εk′ + εp′ − εk − εp)δk′+p′−k−p

× [
δ f (1)

p (t )δ f (1)
k (t )[(1 − nk′ )(1 − np′ ) − nk′np′] − δ f (1)

p′ (t )δ f (1)
k′ (t )[(1 − nk )(1 − np) − nknp]

]
, (12)
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where A(t )B(t ) stands for the time averaging; QII combines
the second-order terms after the linearization of the e-h
collision integral. Solving Eqs. (6)–(10) by successive approx-
imations with respect to the particle collision integrals, we
come up with the Coulomb-induced corrections as δ f (2)

p =
δ0 f (2)

p + δC f (2)
p and δ f (2)

k = δ0 f (2)
k + δC f (2)

k , where

δ0 f (2)
p = τi

(
F · ∂pδ0 f (1)∗

p + F∗ · ∂pδ0 f (1)
p

)
, (13)

δ0 f (2)
k = −τi

(
F · ∂kδ0 f (1)∗

k + F∗ · ∂kδ0 f (1)
k

)
, (14)

and thus

δC f (2)
p = τi

(
F · ∂pδC f (1)∗

p + F∗ · ∂pδC f (1)
p

)
+ τi

(
QI

eh

{
δ0 f (2)

p

} + QII
eh

{
δ0 f (1)

p

})
, (15)

δC f (2)
k = −τi

(
F · ∂kδC f (1)∗

k + F∗ · ∂pδC f (1)
k

)
+ τi

(
QI

he

{
δ0 f (2)

k

} + QII
he

{
δ0 f (1)

k

})
. (16)

Expressions (15) and (16) describe full e-h scattering correc-
tions to the electric current density,

jα = e
∑

k

vh
α (k)δC f (2)

k − e
∑

p

ve
α (p)δC f (2)

p . (17)

Without loss of generality, we can choose a particular direc-
tion of the force to make our derivations clear, F = (Fx, 0),
and then

jx = e
∑

k

vh
x (k)δ f (2)

k − e
∑

p

ve
x (p)δ f (2)

p . (18)

It is more convenient to split contributions (15) and (16)
into several terms and consider them separately (see Supple-
mental Material [35] for details). Performing the calculations,
we find

jx = (we − wh)
141

32

e

h̄

τ 3
i F 2

x

1 + �2τ 2
i

nenh√
mT 3

× 1√
π

∫ ∞

0
dq|Uq|2q2e− q2

4mT , (19)

where ne and nh are electron and hole equilibrium densities at
a given temperature (we restored the Planck’s and other con-
stants). Formula (19) is a general expression for the Coulomb
interaction-induced vPGE current. When applied to a TMD
MoS2 monolayer, Uq takes the form of the Keldysh-Rytova
potential [36,37], Uq = 2πe2/εq(1 + 2πα2Dq), where α2D is
a polarizability of the monolayer, and ε is the dielectric con-
stant of surrounding media. This form of particle-particle
interaction is general, and at α2D = 0, it turns into the bare
Coulomb interaction. Introducing the dimensionless variable
x = q/

√
4mT , we find an electron-hole interaction-induced

contribution to λ, describing the vPGE current density:

λ = (we − wh)
141

16

e3

h̄

τ 3
i

1 + �2τ 2
i

nenh

T

(
2πe2

ε

)2

J ,

J = 1√
π

∫ ∞

0
dx

[
1

1 + x 2πα2D

√
4mT

]2

e−x2
. (20)

Formula (20) is the central result of this paper. It should be
mentioned that the dimensionless integral J can be estimated

numerically or even found analytically, but the resulting ex-
pression is rather complicated, and thus, we do not present
it here.

III. RESULTS AND DISCUSSION

Formula (20) potentially has two important limiting cases
due to the presence of two effective distances: α2D and
h̄/

√
4mT (in the power of the exponent). The estimation

shows that α2D

√
4mT � 1 up to the Debye temperatures (and

even higher), when particle-phonon scattering starts to play
the dominating role. Thus, we can safely disregard the term
proportional to α2D. Then, the integral over x turns into the
Euler-Poisson integral, which gives

λ = (we − wh)
141

32

e3

h̄

τ 3
i

1 + �2τ 2
i

(
2πe2

ε

)2
nenh

T
. (21)

Let us mention that in (21), all the temperature dependence is
in the fraction containing the concentrations ne, nh, and T .

Furthermore, let us compare Eq. (21) with the bare vPGE
effect, reported elsewhere [29]. Combining together the bare
vPGE current and the Coulomb-induced correction to the
current yields

λ̃ = 12
e3τ 2

i

1 + �2τ 2
i

[
(nhwh − newe)

− (wh − we)C0
(2π )2

h̄

e4nenh

(2εT )2
(T τi )

]
, (22)

where C0 ≈ 0.37, and we use λ̃ instead of λ to distinguish
between the Coulomb-related and full (bare plus Coulomb
force-induced) vPGE currents. Evidently, the dependence on
the particle densities of the first and the second terms here
differ. The dependence on the product nenh of the second term
is an attribute of the Coulomb-related contribution.

In order to clearly understand the physics of the Coulomb-
induced term, let us take into account that the equilibrium
densities in an intrinsic Dirac material equal ne = nh = ni,
where ni = (mT/2π h̄2) exp(−�/2T ) is an intrinsic particle
density with � the material bandgap. Thus, the square brack-
ets in Eq. (22) read as

ni(wh − we)

[
1 − C0

(2π )2

h̄

(
e2√ni

2εT

)2

(T τi )

]
. (23)

We immediately conclude that the second term is opposite to
the bare vPGE contribution [38]. It results in the suppression
of the vPGE due to the Coulomb interaction between electrons
and holes. Such behavior can be qualitatively explained by the
following argument: Electrons and holes experience friction
(or a Coulomb drag) since they move in opposite directions.
To qualitatively estimate the Coulomb contribution, an esti-
mation of intensity is necessary.

In the second term in square brackets of Eq. (23), the factor
e2√ni/2T � 1 is the relation of the Coulomb interaction en-
ergy of the electron and the hole to their kinetic energy given
by temperature for nondegenerate gas statistics. Such behavior
is expected because we considered the Coulomb-related con-
tribution to vPGE perturbatively. However, the factor T τi/h̄
in Eq. (23) reflects the relation between particles’ kinetic
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energy and their broadening due to scattering on impurities.
The latter should be weak compared to the particle energy,
thus T τi/h̄ 	 1. This factor compensates for the smallness
of the preceding factor and can even result in an essential
suppression of the vPGE due to electron-hole scattering.

Furthermore, the general result (22) only holds in the equi-
librium. The net vPGE current should be summed over two
nonequivalent valleys, and it vanishes due to the time-reversal
symmetry. Indeed, restoring the valley indices ηe = ±1 and
ηh = ∓1 for electron and hole warping amplitudes, we →
ηewe, wh → ηhwe, and summing up over ηe = ±1 and ηh =
∓1 at equilibrium densities nηe

e = nηh

h = ni in both valleys,
yields zero net vPGE current. In order to achieve a nonzero
net current, the time-reversal symmetry is to be destroyed.
It can be done by sample illumination with a circularly po-
larized pump EM field with frequency producing interband
transitions populating a given valley (at given circular polar-
ization) (see, e.g., Ref. [14]), and leaving the other valley with
equilibrium populations, ni.

Let the valley with ηe = −ηh = 1 be populated with den-
sities ne = nh = ni + δnph, where δnph is the photoinduced
density correction. If the electrons and holes in the other
valley ηe = −ηh = −1 have equilibrium densities ni, the net
vPGE current is determined by the coefficient λ̃ in the form

λ̃ = −12
e3τ 2

i

1 + �2τ 2
i

(wh + we)

×
[

1 − C0
(2π )2

h̄

e4(2ni + δnph)

(2εT )2
(T τi )

]
δnph. (24)

At low intensity of photogeneration, ni 	 δnph, the total cur-
rent increases linearly with the circular light intensity, δnph ∼
I . With increasing the intensity when the density of nonequi-
librium carriers exceeds the density of the equilibrium ones,
ni � δnph, the Coulomb-induced term increases as I2, and it
can totally suppress the vPGE effect.

The developed formalism is applicable to two types of
systems. (i) It can be directly applied to small-band-gap ma-
terials, such as gapped graphene, where the intrinsic charge
density can be rather large, and two cases, ni 	 δnph and ni �
δnph, are possible. (ii) In the case of intrinsic large-band-gap
materials, such as TMDs, the intrinsic density at reasonable
temperatures is exponentially small, and vPGE is determined
exclusively by the density of optically generated carriers of
charge, δnph, in one of the valleys.

Let us estimate the Coulomb-induced vPGE for small-
gap materials considering the gapped graphene as a testing
ground. Assuming ni 	 δnph and taking ni = 5 × 107 cm−2,
T = 30 K, τi = 10−12 s, ε = 3, the second term in the
square brackets in Eq. (24) is ≈0.26. Then, due to the factor

T τi/h̄ > 1, the Coulomb-induced term may sufficiently sup-
press the noninteracting particle contribution.

Furthermore, let us discuss the applicability of the two-
band model. In the case of gapped graphene, the gap is
induced when the monolayer is placed on a substrate. In this
case, two bands naturally emerge and the two-band model is
perfectly justified to study the effect of electron-hole scatter-
ing processes on the conductivity of intrinsic graphene [39].
In the case of a TMD monolayer, its band structure consists
of the spin-orbit split subbands both in the conduction and
valence bands. The intrinsic electron-hole densities here are
exponentially small due to the large band gap. Hence, the
vPGE may only exist in the presence of photoinduced elec-
trons and holes. The interband optical transitions conserve the
spin, and thus the photogenerated carriers effectively occupy
only one spin subband in conduction and one spin subband in
the valence band. In the case of large spin relaxation times,
the two-band model is also an adequate approximation.

IV. CONCLUSIONS

We developed a theory of the Coulomb interaction-
related contribution to the valley photogalvanic effect in
two-dimensional noncentrosymmetric Dirac materials pos-
sessing the nontrivial structure of valleys and exposed to an
external electromagnetic field, taking gapped graphene and
MoS2 as examples. The valley photogalvanic effect is the
result of two factors: (i) the presence of the trigonal warping
of electrons and holes’ bands and (ii) the Coulomb inter-
action between the carriers of charge. We considered the
low-frequency limit of the external linearly polarized probe
field: The field frequency is smaller than the temperature T ,
and the electron-electron and electron-hole scattering times
are much larger than the particle-impurity scattering time.
Using the Boltzmann transport equations, we demonstrated
that the electron-hole scattering dominates electron-electron
scattering in intrinsic semiconductors and it might be com-
parable with the bare valley photogalvanic effect. We found
that the Coulomb interaction-related contribution to the valley
photogalvanic current is opposite to the bare valley photogal-
vanic current.
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