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Modified tight-binding model for strain effects in monolayer transition metal dichalcogenides
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Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have emerged as a materials paradigm for
realizing next-generation on-chip electronic and optoelectronic devices. Strain engineering is actively pursued
to tune the electronic properties of 2D TMDCs. However, a generalizable, analytical approach for describing the
underlying physics of strain effects on band structure is still lacking. Here, we develop a tight-binding model
(TBM) that incorporates strain effect to characterize the band structure tuning of TMDC (MoS2, MoSe2, WS2,
and WSe2) monolayers under biaxial strain fields; strain-dependent Slater-Koster parameters are employed to
describe electron hopping and orbital overlap in the strained monolayers. Our approach follows from the Wills-
Harrison suggestions of a linear relationship between biaxial strain and Slater-Koster parameters. This leads to a
linear dependence of the electronic band gap on applied strain for both direct-indirect (MoX2) and indirect-direct
(WX2) band gap transitions. We further study the influence of biaxial strain on the energy differences between
different high-symmetry points in k space to deduce the physical origin of strain-induced variations in the band
gap type and size. In this process, we select different TBMs (6- or 11-band) and compare them with different
first-principles calculation results (DFT-PBE or DFT-HSE) to demonstrate the effectiveness and completeness of
our method. Building on this model, we also examined the changes in effective mass and optical conductivity of
TMDCs under strain, offering insights that can aid in the development of practical device applications utilizing
these materials. Our investigation may be extended to general strained monolayer TMDCs, paving the way for
exploring the electronic properties of nanotubes, wrinkled 2D materials, and van der Waals heterostructures
under inhomogeneous strain.
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I. INTRODUCTION

Two-dimensional (2D) transition metal dichalcogenides
(TMDCs), consisting of a transition metal (M) atomic layer
sandwiched between two chalcogen (X ) layers, have attracted
considerable attention due to their remarkable electronic and
optical properties [1]. Their electronic properties may be dras-
tically altered by external strain, allowing control over the
performance and optical response of 2D TMDC-based devices
[2,3]. Specifically, TMDC band gaps may be decreased (in-
creased) with the application of tensile (compressive) strains
[4]. A direct-to-indirect band gap transition occurs at 2%
tensile strain in monolayer MoS2 [4], according to theory
and recently observed experimentally [5–7]. Most theoretical
studies of strain effects in TMDCs rely on density functional
theory (DFT) calculations to provide reasonable descriptions
of the electronic band structure. While DFT calculations have
many advantages, they are not convenient for combination
with other effects [8]. The Slater-Koster tight-binding (TB)
method was proposed to address the computational difficul-
ties of the linear combination of atomic orbitals method [9].
Cappelluti et al. [10] applied the Slater-Koster TB model
(TBM) to TMDC monolayers to understand the nature of
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their band structures; subsequently, spin-orbit coupling (SOC)
effects were also included in this approach [11]. Recently,
Dias et al. [12] developed an improved 11-band TBM to better
describe the band structure of the TMDC monolayer by con-
sidering the second-nearest-neighbor hopping. Additionally,
while there has been commendable work on incorporating the
influence of strain on TMDC band structure into the TBM
and comparing these with the actual material characteristics,
these efforts still exhibit certain limitations and shortcom-
ings. For instance, some early studies merely discussed the
potential effects of strain without comparing them with ac-
tual first-principles outcomes. Subsequent studies [13], while
comparing with DFT results, only presented results under
specific strains, and there were notable discrepancies between
DFT and TBM outcomes at certain key points that deter-
mine the band gap size and type [14]. In other studies, the
failure to consider the impact of strain on the Slater-Koster
on-site term [15] or to accurately assess its influence on
the Slater-Koster parameters led to significant discrepancies
from actual outcomes; for instance, a mere 0.04 eV band
gap change under 5% strain was reported [16]. To better
characterize the band evolution of TMDC monolayers with
strain, we propose an improved Slater-Koster TBM based
upon strain-dependent Slater-Koster parameters. We believe
that the primary contribution of this paper is the development
of a slightly improved general TBM. By directly comparing
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with DFT results, this model offers a more intuitive and ac-
curate depiction of the band structure changes in monolayer
TMDCs under strain, making it easier for those interested
in this subject to understand and follow. This approach is
applicable to efficient predictions in cases where there is de-
fect disorder [17], nonuniform strains [18], and strain-induced
bound state [19] or topological phase transitions [20].

This paper is organized as follows. In Sec. II, we pro-
pose a Slater-Koster TBM with strain-dependent Slater-Koster
parameters and lattice constants for TMDC monolayers that
mimic the characteristics of electronic band structures that
include SOC. In Sec. III, we compare the band structure,
band gap, and energy level of typical high-symmetry points
of k space in TMDC monolayers derived from TBM and DFT
calculations and show that both 6- and 11-band TBMs capture
the main features of the band structure and the trend in the
band gap vs strain. In this section, we also use this modified
model to predict some strain-level dependent properties of the
TMDC monolayer. Finally, we examine the impact of these
results and identify future opportunities in Sec. IV.

II. THEORETICAL APPROACH

A. Crystal structure

Monolayer TMDCs are composed of three atomic sheets:
X -M-X , where the atoms in the transition metal M layer
and the two chalcogen X layers all sit on triangular lattice
sites, as illustrated in Figs. 1(a) and 1(b). Such TMDC mono-
layers have a hexagonal 2D Brillouin zone (BZ), as shown
in Fig. 1(c), exhibit a direct band gap at the BZ K point
= 4π/3a(1, 0), a valence band (VB) secondary extremum at
the point � = (0, 0) and a conduction band (CB) secondary
extremum at the Q point ≈ 4π/3a( 1

2 , 0) (roughly midway
between the � and K points), according to the previous DFT
calculations [21,22]. Although DFT calculations provide a
comprehensive description of the above characteristics un-
der uniform strain [21,23], they cannot be easily applied to
strained samples with wrinkles, systems with a large number
of atoms, and some special topological materials [18,24].
Compared with DFT, TBMs have the ability to easily deal
with all of these issues [25,26]. In this section, we use the
six-band TBM developed by Cappelluti et al. [10,11] and
the 11-band TBM improved by Dias et al. [12] for TMDC
monolayers to describe the strain effect in TMDC monolayers.

B. DFT calculations

The DFT calculations in this paper were performed using
VASP [27,28]. The exchange and correlation energy functional
is evaluated within the Perdew-Burke Ernzerhof (PBE) ap-
proximation [29]. An energy cutoff for the plane-wave basis
set was set to 500 eV. All atoms were allowed to fully relax
until the forces on each atom are < 0.005eV/ Å, and total
energy difference is < 10−6 eV. For geometry optimization,
the BZ is sampled by a Monkhorst-Pack special k-point mesh
of 15 × 15 × 1. To simulate the 2D sheet structure and remove
the spurious interactions between artificial periodic images, a
vacuum region of 20 Å is used along the z direction. SOC
effects are also considered in the DFT calculation. The bi-
axial strain is defined as ε = (a − a0)/a0, where a0 and a

FIG. 1. (a) Lattice structure of the transition metal dichalco-
genide (TMDC) MX2 unit cell. a and u represent the lattice constant
and the distance between the transition metal and chalcogen layers.
(b) Top view of the monolayer MX2 lattice array. �δi, �ai, and �ci

are the vectors to represent nearest-neighbor (M-X ) hopping pro-
cesses, same-type-atom nearest-neighbor (M-M and X -X ) hopping
processes, and same-type-atom second-nearest neighbors (M-M and
X -X ), respectively. (c) Schematic of the effects of biaxial strain on
the lattice structure, electron wave function overlap, and the Brillouin
zone (BZ). In the case of tensile biaxial strain, the distances between
the atoms increases in all orientations. The larger distance weakens
electron wave function overlap, shrinks the BZ, and shifts the high-
symmetry points in the k space accordingly.

represent the lattice constants of unstrained TMDCs and biax-
ially strained TMDC monolayer, respectively. The unstrained
lattice constants adapted in our model are listed in Table I
[30,31].

C. Six-band TBM

As shown in Fig. 2, DFT calculations including the
SOC effect indicate that chalcogen-atom (X ) p orbitals
(px, py, and pz ) and transition-metal-atom (M) d orbitals
(d3z2-r2 , dyz, dxz, dx2-y2 , and dxy) dominate the CBs and VBs of
TMDC monolayers [10]. Hence, a Hilbert space defined by an
11-fold vector describes five d orbitals of the M atom and six
p orbitals of two X atoms in a unit cell [10]:

� = (
pt

x, pt
y, pt

z, d3z2-r2 , dyz, dxz, dx2-y2 , dxy, pb
x, pb

y, pb
z

)
, (1)

TABLE I. Lattice constants of unstrained TMDC monolayers
used for DFT calculations. a0 represents the unstrained lattice con-
stant, and u represents the distance between transition metal and
chalcogen layers. All parameters are in Å units.

a0 (Å) u (Å)

MoS2 monolayer 3.160 1.586
WS2 monolayer 3.153 1.571
MoSe2 monolayer 3.288 1.644
WSe2 monolayer 3.282 1.641
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FIG. 2. Orbital-projected monolayer MoS2 and WS2 band structure obtained by density functional theory (DFT) calculations. (a) Orbital-
projected band structure for Mo-atom 4d orbitals and (b) S-atom 3p orbitals in MoS2. (c) Orbital-projected band structure for W-atom 5d
orbitals and (d) S-atom 3p orbitals in WS2. Band color represents orbital weight.

where t and b refer the chalcogen atoms in the top and bottom
layers. A TBM can be constructed based upon the hopping in-
tegrals between different orbitals of nearest neighbors. These
may be determined from the Slater-Koster parameters cor-
responding to σ , δ, and π ligands [9] (Vpdσ ,Vpdπ for M-X
bonds, Vddσ ,Vddπ ,Vddδ for M-M bonds, and Vppσ ,Vppπ for
X -X bonds; in the subscripts, p, d stand for the p, d orbitals in
the corresponding atoms, while σ , π , and δ denote the manner
in which electron clouds overlap between different orbitals,
namely, the bond type). Five on-site parameters related to
the crystal field (�0,�1,�2,�p, and �z) are required in this
model to describe the energies of atomic levels l = 0 (d3z2-r2 ),
1 (dyz, dxz), and 2 (dx2−y2 , dxy) orbitals of the M atom and
in-plane (px, py) and out-plane (pz ) orbitals of the X atom.
By introducing the linear symmetric and antisymmetric com-
binations of X -atom p orbitals (note the inversion of z → −z),
the Hilbert space may be represented as [10]

� = (
d3z2-r2 , dx2-y2 , dxy, pS

x, pS
y, pA

z

)
, (2)

where pS
i = (pt

i + pb
i )/

√
2 and pA

i = (pt
i − pb

i )/
√

2, with i =
x, y, z, correspond to the symmetric and antisymmetric combi-
nations, respectively. According to the above reduced Hilbert
basis, the TBM Hamiltonian in real space is

H =
∑
i,μν

�μ,νc†
i,μci,ν +

∑
i j,μν

[ti j,μνc†
i,μc j,μ + H. c.], (3)

where c†
i,μ(ci,ν ) represents the creation (annihilation) of an

electron in orbitals μ(ν) = 1, . . . , 6 related to Eq. (2) in
the i unit cell, ti j,μν are the hopping terms, and H.c. is the
abbreviation of Hermitian conjugate. Employing a Fourier
transformation, the Hamiltonian in k space maybe be ex-
pressed as [11]

H =
(
HMM HMX

H†
MX HXX

)
, (4a)

HMM = �M + 2
∑

i=1,2,3

tMM
i cos(�k · �ai ), (4b)

HXX = �X + 2
∑

i=1,2,3

tXX
i cos(�k · �ai ), (4c)

HMX =
∑

i=1,2,3

tMX
i exp(−i�k · �δi ), (4d)

where vector �δi represents the nearest neighbors (M-X ):

�δ1 =
(

a

2
,
−√

3a

6
,±u

)
,

�δ2 =
(

0,

√
3a

3
,±u

)
,

�δ3 =
(

−a

2
,
−√

3a

6
,±u

)
, (5)

and vector �ai corresponds to same-type-atom nearest neigh-
bors (M-M or X -X ):

�a1 =
(

−a

2
,

√
3a

2
, 0

)
,

�a2 = (a, 0, 0),

�a3 =
(

−a

2
,
−√

3a

2
, 0

)
. (6)

More details on the Hamiltonian are provided in Appendix A.

D. 11-band TBM

To have a more accurate description of the band struc-
ture of a TMDC monolayer, we also referred to the 11-band
TBM developed by Dias et al. [12], which considers the
second-nearest-neighbor hopping. This model did not re-
duce the basis but divided it into two categories based
on its parity, namely, the even part [dz2 , dxy, dx2-y2 , pe

z =
(pt

z − pb
z )/

√
2, pe

x = (pt
x + pb

x )/
√

2, pe
y = (pt

y + pb
y)/

√
2] and

odd part [dxz, dyz, po
z = (pt

z + pb
z )/

√
2, po

x = (pt
x − pb

x )/
√

2,
po

y = (pt
y − pb

y)/
√

2]. Hence, the Hilbert space is on the basis
of the 11-fold vector:

� = (
dz2 , dxy, dx2-y2 , pe

z, pe
x, pe

y, dxz, dyz, po
z, po

x, po
y

)
. (7)

In this way, the Hamiltonian matrix elements will be decou-
pled into two parts, the 6 × 6 block based on the even basis
set and 5 × 5 block associated with the odd basis set, which is
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given by

HTB =
(
HE 0
0 HO

)
, (8)

where HE/O represent the elements associated with the
even/odd part. Furthermore, HE/O is defined by

HE/O =
(

ME/O + HE/O
M−M HE/O

M−X

HE/O
M−X

†
X E/O + HE/O

X−X

)
,

ME =

⎛⎜⎝Ee
d0

0 0

0 Ee
d1

0
0 0 Ee

d1

⎞⎟⎠,

MO =
(

Eo
d2

0
0 Eo

d2

)
,

X E =
⎛⎝Ee

s2
0 0

0 Ee
s1

0
0 0 Ee

s1

⎞⎠,

X O =
⎛⎝Ee

s2
0 0

0 Ee
s1

0
0 0 Ee

s1

⎞⎠. (9)

in which ME/O and X E/O are the matrix elements associated
with the on-site energy, and HE/O

M-M , HE/O
X -X , and HE/O

M-X are the
hopping matrices between same kinds of atoms (M-M, X -X )
and different types of atoms (M-X ), respectively. By consid-
ering the second-nearest neighbor, the hopping matrices are
defined by

HE/O
M-X =

3∑
i=1

exp(i�k · �ai )HE/O
M-X ( �ai ),

HE/O
M-M =

6∑
i=1

exp(i�k · �δi )HE/O
M (�δi ) +

6∑
i=1

exp(i�k · �ci )HE/O
M ( �ci ),

HE/O
X -X = HE/O

tb +
6∑

i=1

exp(i�k · �δi )HE/O
X (�δi ),

+
6∑

i=1

exp(i�k · �ci )HE/O
X ( �ci ). (10)

in which tb indicates the intralayer X -X hopping between
the atoms in top and bottom layers. The hopping vectors are
shown in Fig. 1(b). The additional vectors (ci), beyond the
six-band TBM, representing the hopping between the second-
nearest-neighbor same-type atom are defined as follows:

�c1 =
(

3

2
a,

√
3

2
a, 0

)
, �c2 = (0,

√
3a, 0),

�c3 =
(

−3

2
a,

√
3

2
a, 0

)
, �c4 =

(
−3

2
a,−

√
3

2
a, 0

)
,

�c5 = (0,−
√

3a, 0), �c6 =
(

3

2
a,−

√
3

2
a, 0

)
. (11)

By further introducing the SOC and assuming that
those interactions only exist in intra-atomic states, only the
intra-atomic Hamiltonian matrix elements will be modulated.
In general, the SOC in the TMDC monolayer can be described
by

HSOC =
∑

α

λ

h̄
�Lα · �Sα, (12)

where λα is the SOC strength related to different atom types,
in this case, λM and λX . The �Lα and �Sα are the orbital angular
momentum operator and electronic spin operator. Following
the abovementioned description and considering the parity of
the basis function, the basis can be divided into even and
odd parts. Hence, when introducing the SOC effect into the
Hamiltonian, the whole Hamiltonian will consist of four parts
by considering the basis function parity and the spin de-
gree of freedom simultaneously, namely, (Even,↑), (Even,↓),
(Odd,↑), and (Odd,↓). Finally, the Hamiltonian will be de-
scribed by a 22 × 22 matrix, which is given by

H =
(
HTB 0

0 HTB

)
+

(
H↑↑

SO H↑↓
SO

H↓↑
SO H↓↓

SO

)
, (13)

where

H↑↑
SO =

(
H↑↑

SO1 0
0 H↑↑

SO2

)
, H↑↓

SO =
(

0 H↑↓
SO1

H↑↓
SO2 0

)
,

H↓↑
SO =

(
0 H↓↑

SO1

H↓↑
SO2 0

)
, H↓↓

SO =
(
H↓↓

SO1 0
0 H↓↓

SO2

)
. (14)

The detail on the SOC term can be found in Ref. [12] or
Appendix B.

E. Strain-dependent interatomic hopping parameters and
on-site parameters

In the Slater-Koster TBM, the interatomic hopping param-
eters are two-center integrals representing the atomic orbital
overlap [9]. Figure 1(c) shows that the atomic orbital over-
lap varies with strain. Thus, the effect of strain on the band
structure may be modeled by applying interatomic-distance-
dependent hopping parameters. Specifically, the hopping
parameters under the lattice deformation are [18,32]

ti j,μν ( �ri j ) = ti j,μν

( �r0
i j

)⎛⎝1 − �i j,μv

∣∣�ri j − �r0
i j

∣∣
�r0
i j

⎞⎠, (15)

where �r0
i j and �ri j are the distance between atom

(i, μ) and atom ( j, ν) in the unstrained and strained
TMDCs, respectively. The coefficient �i j,μv defined by
−d ln ti j,μν (r)/d ln(r)|r=|r0

i j | characterizes the electron-
phonon coupling strength of the corresponding bond [32],
determined by directly comparing the shift of electrons levels
with lattice deformation obtained by frozen-phonon DFT and
coefficient �i j,μv obtained from the corresponding TBM.
This method has been verified in bilayer graphene [33];
however, the large number of orbitals involved in the TBM
of TMDCs hinders its application in TMDCs. To address this
issue and derive the monolayer TMDC coefficients �i j,μv , we
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introduce the Wills-Harrison approach [34]:

ti j,μν (r) ∝ |r|−(lμ+lν+1), (16)

where lμ, lν are the absolute value of the angular momen-
tum for orbital μ, ν. In TMDCs, ld = 2 and lp = 1, so the
coefficient � for p-p (Vppσ ,Vppπ ), p-d (Vpdσ ,Vpdπ ), and d-d
(Vddσ ,Vddπ ,Vddδ) should be 3, 4, and 5, respectively.

The pioneering work of Tserbak [35] and Boykin [36]
demonstrated that the shifts in the diagonal Hamiltonian
matrix elements (on-site parameters related to the crystal
field) are also required for strained semiconductors. The on-
diagonal parameters �i are fitted to shift in proportion to the
magnitude of the strain [35,36]:

�i = �i0 + bi(ε‖ − ε⊥), (17)

where ε‖ and ε⊥ are strain components parallel and per-
pendicular to the atom layer, �i0 are the on-site parameters
for the unstrained materials, and bi is an orbital-dependent
parameter that weigh the shifts with strain. This theoretical
model worked well in some strained semiconductors such as
Si, Ge [37], and GaAs [38]. We follow the above approach
to derive the strain-dependent on-site parameters in TMDC
monolayers.

III. RESULT AND DISCUSSION

A. Slater-Koster parameters of the six-band TBM

The six-band TBM introduced in Sec. II reproduces the
band structures of monolayer MoS2 and WS2 when we choose
an appropriate set of Slater-Koster parameters by fitting the
energy level and energy dispersion of the high-symmetry
points of CBs and VBs. Among them, we focus on the min-
imum of the CB located at the K and/or Q points and the
maximum of the VB at the K and/or � points; these de-
termined the band gap type and magnitude. Therefore, we
sacrifice the accuracy of less important regions of the band
structure to achieve the best accuracy for those near-gap points
(K , �, and Q points). The spin-orbit constants for transition
metal λM and chalcogens λX are obtained by comparison
with the spin-orbit splitting at the K point obtained from
DFT [11]. An appropriate set of Slater-Koster parameters and
corresponding shift coefficients is listed in Tables II and III.

B. Band structures of unstrained monolayer TMDCs by the
six-band TBM

TBM band structures for monolayer MoS2 and WS2 are
shown in Fig. 3 obtained using the DFT band structure-fitted
Slater-Koster parameters listed in Table II. While the nearest-
and/or next-nearest-neighbor hopping TBM does not capture
all of the details of the DFT band structure, the TBM provides
an excellent description of the VB edges at the K and �

points and the CB edges at the K and Q points—these are
sensitive to strain and determine how the band gap varies with
strain. Thus, an accurate description of those points suffices
to characterize the main strain effects on the relevant features
of the band structure. Both the DFT (black dots) and TBM
results (red solid lines) illustrate that monolayer MoS2 has a
direct band gap at the K valley and the secondary minimum of
the CB at the Q point, where the latter possesses much higher

TABLE II. Slater-Koster parameters and SOC parameters. All
parameters are in eV.

Label MoS2 WS2

Crystal fields �0 −1.094 −1.090
�2 −1.511 −1.525
�p −3.559 −3.599
�z −6.886 −7.598

M-X Vpdσ −3.679 −3.785
Vpdπ 1.199 1.275

M-M Vddσ −0.895 −0.925
Vddπ 0.252 0.261
Vddδ 0.228 0.220

X -X Vppσ 1.225 1.250
Vppπ −0.467 −0.476

SOC λM 0.074 0.210
λX 0.052 0.159

TABLE III. Shift coefficient for the interatomic hopping and on-
site terms. Note that, for �d−d for Vddδ , the sign of this term is −,
which is different from the others. The sign of hopping parameters
is determined by the bond type (σ , δ, or π bond). In general, Vddσ <

0, Vddδ < 0, and Vddπ > 0 [39,40]. However, due to the difficulty to
acquire the perfect set of parameters, the Vddδ used in our model is
>0. Therefore, we set the shift coefficient of Vddδ as −5 rather than
5. All bi data are in eV.

Label MoS2 WS2

Interatomic �p−p 3 3
�p−d 4 4
�d−d 5(−5 for Vddσ ) 5(−5 for Vddσ )

On-site b0 0.1 1.36
b2 −0.2 −3.43
bp −4.4 −32.39
bz 8.8 132.76

FIG. 3. Band structures of an unstrained (a) MoS2 monolayer
and (b) WS2 monolayer obtained by density functional theory (DFT)
and the six-band tight-binding model (TBM). Red solid lines (black
dots) correspond to TBM (DFT) results. Noticeably, the energy of
the maximum of the valance band (VB) is set to zero.
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FIG. 4. Variation of the band gap and energy differences for special k points with biaxial strain for (a) MoS2 monolayer and (b) WS2

monolayer obtained by the six-band tight-binding model (TBM). The direct-indirect band gap transition occurs at 1.4% biaxial strain in MoS2

monolayer, and the indirect-direct band gap transition occurs at 0.4% biaxial strain in WS2 monolayer.

energy (∼120 meV) than the K point [see Fig. 3(a)]. However,
monolayer WS2 exhibits the indirect band gap (Q to K) with
the minimum of the CB at the Q point [see Fig. 3(b)], which
differs from the common sense that unstrained monolayer
TMDCs are direct band gap semiconductors [22,23,41,42].
We attribute this discrepancy to differences in DFT algorithms
(or possibly to differences in lattice constants employed in
the DFT literature). On the other hand, Ahn et al. [43] ex-
perimentally imply that the intrinsic WX2 monolayer is an
indirect band gap semiconductor below room temperature,
which leads to the observed abnormal enhancement of pho-
toluminescence with increasing temperature.

C. Band gap shift, �-point shift, and Q-point shift of the
six-band TBM

Using the TBM parameters listed in Tables II and III, we
determine how the band gap and strain energy difference of
special k points vary with strain. We focus on the energy
difference between the VB � and K points in MoS2 and the
energy difference between the CB Q and K points in WS2—
see Fig. 4. For the MoS2 monolayer, the band gap decreases
with increasing tensile biaxial strain (both DFT and TBM);
the shift coefficients (derivative of the band gap with respect
to biaxial strain) are nearly equivalent (−113.1 meV/% for
DFT results and −112.8 meV/% for TBM results). The �-K
energy difference is zero at a biaxial strain of 1.4% for both
DFT and TBM, as shown in Fig. 4(a); this corresponds to
the direct-to-indirect band gap transition. The WS2 monolayer
exhibits an indirect band gap for biaxial strains between 0
and 0.4% (from the VB K to the CB Q points), as shown
in Fig. 4(b). In the indirect band gap region, the band gap
increases with increasing biaxial tensile strain due to the
increasing energy of the CB Q point. On the other hand,
in the direct band gap region (>0.4% strain), the band gap
decreases linearly with increasing biaxial tensile strain with a
shift coefficient of −133.4 (−134.5) meV/% for TBM (DFT).
Thus, the TBM demonstrates linear band gap shifts with strain
as well as transitions between direct and indirect band gaps.

D. Band structures of strained monolayer TMDCs by the
six-band TBM

We next consider how well the TBM describes the band
structure of strained TMDC monolayers, especially at the
special points (�, K , and Q). We use the parameters listed in
Tables II and III to calculate the band structures of the MoS2

monolayer under 1.5% biaxial strain and the WS2 monolayer
under 0.7% biaxial strain; see Figs. 5(a) and 5(b). The TBM
qualitatively reproduces the overall DFT band structure and
is quantitative at the high-symmetry points. However, there
are situations in which the quantitative agreement is less than
ideal, e.g., the CB Q point in MoS2 and the VB � point in
WS2. These points were not included in fitting the shift pa-
rameters (these focused upon the VB � point in MoS2 and the
CB Q point in WS2). In WS2, large on-site shift coefficients

FIG. 5. Band structures of an strained MoS2 monolayer and WS2

monolayer obtained by density functional theory (DFT) and the
six-band tight-binding model (TBM). (a) Band structure of MoS2

monolayer under 1.5% biaxial strain. (b) Band structure of WS2

monolayer under 0.7% biaxial strain. Red solid lines correspond
to TBM results, and black dots correspond to DFT results. The
maximum valence band (VB) energy was set to zero.
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TABLE IV. Slater-Koster parameters and SOC parameters used
in the 11-band TBM. All Slater-Koster parameters and b are in eV.

Label MoS2(� or b) WS2(� or b)

Even part Ee
d0 −0.5048 (−2.692) −0.3429 (−3.429)

Ee
d1 −0.2399 (1.167) −0.8690 (9.732)

Ee
s1 −4.5896 (−70.28) −4.6903 (−70.04)

Ee
s2 −9.352 (−124.7) −10.718 (−142.9)

V e
pdπ −1.4399 (+4) −1.4058 (+4)

V e
pdσ 4.9182 (+4) 6.1212 (+4)

V e
ppσ −0.1024 (+3) −0.4416 (+3)

V e
ppπ −0.5173 (−3) −0.4557 (−3)

V e
ddσ −0.8060 (−5) −1.0730 (−5)

V e
ddπ 0.6847 (−5) 0.8816 (−5)

V e
ddδ 0.3275 (+5) 0.41004 (+5)

Ke
ppσ 0.4170 (−3) 0.1585 (−3)

Ke
ppπ 0.0016 (+3) 0.0292 (+3)

Ke
ddσ 0.0377 (+5) 0.0609 (+5)

Ke
ddπ 0.1153 (−5) 0.1534 (−5)

Ke
ddδ −0.0366 (−5) −0.0109 (−5)

MoS2(� or b) WS2(� or b)
Odd part Eo

d2 0.5624 (3.7493) 0.9765 (13.02)
Eo

s1 −1.525 (−10.16) −0.9087 (−12.12)
Eo

s2 −0.6737 (−4.491) −1.0191 (−13.59)
V o

pdπ −0.8832 (+4) −0.9413 (+4)
V o

pdσ 2.5811 (+4) 2.7891 (+4)
V o

ppσ 0.9107 (−3) 0.9425 (−3)
V o

ppπ −0.3095 (−3) −0.2980 (−3)
V o

ddσ −1.0740 (−5) −1.0740 (−5)
V o

ddπ 0.0180 (−5) −0.0170 (+5)
V o

ddδ 0.0596 (+5) 0.00432 (+5)
Ko

ppσ −0.0442 (+3) −0.0189 (+3)
Ko

ppπ 0.0103 (+3) 0.0293 (+3)
Ko

ddσ 0.0012 (−5) 0.0012 (−5)
Ko

ddπ 0.0061 (−5) −0.0162 (+5)
Ko

ddδ 0.0221 (+5) −0.0229 (−5)
MoS2 WS2

SOC λM 0.1050 0.3188
λX 0.0536 0.0536

were necessary to reproduce the variation of the CB Q point
but led to an overestimate of the strain effect on the VB �

point. Accordingly, we sacrificed the accuracy of the Q point
to obtain good fit with respect to the � point in the MoS2

monolayer. Despite these limitations, the TBMs do provide
reasonable descriptions of the main features of how the band
structure changes with strain.

We note that it is possible to obtain TBM coefficients and
shift coefficients that give superior overall fits to the DFT band
structure by including more data in the training set, especially
data for other points in the band structure and by going to
larger strain. The choice depends on which features of the
band structure are important for the applications of interest.
Here, our focus was on how strain modifies the band structure
points that determine whether the band gaps are direct or
indirect. By the way, we can seek a more accurate model
which contains more Slater-Koster parameters that may better
describe the band structure and its evolution with strain. To
verify the above illustration and conjecture, in the next sec-

FIG. 6. Band structure of monolayer (a)–(c) MoS2 and (d)–(f)
WS2 under different strain level. The black dots and red solid lines
represent the results obtained by DFT-HSE and the 11-band tight-
binding model (TBM), respectively.

tion, we use the 11-band TBM determined by 31 Slater-Koster
parameters to fit the results obtained by DFT-HSE calculation.

E. Band structures of monolayer TMDCs by the 11-band TBM
and DFT-HSE

To demonstrate that our abovementioned effects of strain
on TB parameters are reliable and generalizable. We extend
the above method to 11-band TBM and DFT-HSE calcula-
tions. The 11-band TBM considers more bands, which needs
more TB parameters to describe the Hamiltonian and sub-
sequently the band structure. We use the same method as
discussed in Sec III A to fit the calculation results using VASP

with the HSE hybrid function approach [44]. The Slater-
Koster parameters used in the 11-band TBM are given in
Table IV. To make the 11-band TBM results under strain
consistent with the HSE results, we follow the discussion
in the caption of Table III to select the appropriate shift
coefficient parameters (� or b) for the interatomic hopping
term and on-site term, shown in Table IV. We display in
Fig. 6 the evolution process of band structure with strain level
obtained by both HSE results and the 11-band TBM. In this
section, we further study the band structure under compressive
strain, and the strain range is from −0.5 to 1.5%. We can see
that the TBM results predict the well-fitted band structure of
monolayer TMDCs under different strain levels, especially at
some special points, such as K , Q, M, and � points.
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FIG. 7. Variation of the band gap and energy differences for special k points with biaxial strain for (a) MoS2 monolayer and (b) WS2

monolayer obtained by the 11-band tight-binding model (TBM). The indirect-direct band gap transition occurs at 0.2% biaxial strain in WS2

monolayer.

F. Band gap shift, �-point shift, and Q-point
shift of the 11-band TBM

Following a similar discussion in Sec. III C, we focus on
the energy difference between the VB � and K points in MoS2

and the energy difference between the CB Q and K points
in WS2. Using the TBM parameters listed in Table IV, we
determine the band gap and strain energy difference of special
k points under different strain levels, as displayed in Fig. 7.
The WS2 monolayer also shows indirect-to-direct band gap
transition when we change the DFT calculations to DFT-HSE
calculations. The TBM results of the band gap, energy shift of
high-symmetry points (Q, K , and �) are consistent with that
of the HSE results. These results further demonstrate that our
proposed strain-related shift-coefficient-parameter-mediated
TBM for strained TMDC monolayers can well describe the
evolution of their band structure at different strain levels, and
this method is universal, achieving good agreement in differ-
ent TBM (6- or 11-band) and the use of the first-principles
calculation methods (DFT-PBE or DFT-HSE).

G. Strain-induced changing of electron effective mass and SOC
splitting by the 11-band TBM

After confirming the feasibility of our strain-related TBM,
we can also simply calculate other electrical properties of
monolayer TMDCs that are potentially modulated by external
strain, such as SOC splitting and effective mass of electrons.
From Fig. 8, it is evident that the SOC splitting is signifi-
cantly influenced by strain, which may be surprising. After
all, SOC is primarily a relativistic effect inherent to atomic
cores, making it primarily an atomic property. However, as the
strain increases, the SOC in the VB progressively increases,
maintaining consistency across both compressive and tensile
strains. For MoS2(WS2), the change in the SOC splitting
value is ∼2 (25) meV/%. Our interpretation is that, while
strain does not alter the intrinsic properties of atoms, it does
influence the intermixing of various atomic orbitals (for in-
stance, different Matom d and X p orbitals), thus significantly
affecting the effective spin-orbit splitting. This finding aligns
with previous research trends [45], yet our observed change

FIG. 8. Effective mass of electron at K (K ′) valley and spin-orbit coupling (SOC) splitting value of valence band (VB) K points for
(a) monolayer MoS2 and (b) monolayer WS2 obtained by the 11-band tight-binding model (TBM).
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FIG. 9. Optical conductivity of monolayer (a) MoS2 and (b) WS2

under different strain level. The pink arrow indicates the increasing
trend of the A exciton peak with increasing tensile strain.

in SOC splitting with strain is roughly twice that reported in
those studies. This discrepancy likely arises from the biaxial
strain applied in our study, as opposed to the uniaxial strain
reported in Ref. [45].

Furthermore, as shown in Fig. 8, we calculate the effective
mass of electrons located at K points following the formula:

m∗ = h̄2

d2E/dk2
. (18)

Due to the SOC effect, the electrons in different CBs have
different effective masses. We can also observe that, as strain
increases, the effective masses of electrons in both CBs tend
to decrease. Typically, a smaller effective mass of electrons is
associated with higher carrier mobility, potentially enhancing
the performance of electronic devices. This information can
inform simulations of these materials in fields such as elec-
tronic design automation.

H. Optical conductivity of strained monolayer
TMDCs by the 11-band TBM

Once we have developed the TBM for TMDCs un-
der strain, we can utilize it to calculate and predict some
strain-level-dependent observables, such as the optical con-
ductivity σ (ω). For this purpose, we employ the Kubo
formula:

σ (ω) = e2

h

h̄

Aω

∑
mn,k

[ f (En) − f (Em)]

×|〈�n(k)|̂v|�m(k)〉|2
×δ{h̄ω − [En(k) − Em(k)]}, (19)

to calculate it, where A is the constant representing the unit
cell area, �n(k) is the eigenstate of eigenenergy En, f (En) is
the Fermi-Dirac distribution function, and v̂ = (1/h̄)∂Ĥ/∂k
is the velocity operator. As illustrated in Figs. 9 and 10, we
observe that, for all materials, there is a threshold for the
optical transitions, which nearly equals the energy gap. For
the first peak, it splits into two peaks due to the SOC effect,
resulting in the emergence of two groups of optical transitions
in the spectrum. Given that the SOC of heavier W atoms is
stronger, this effect is particularly pronounced in WX2 mate-
rials, where these two peaks align with the absorption peaks

FIG. 10. Optical conductivity of monolayer (a) MoSe2 and
(b) WSe2 under different strain level.

of A and B excitons in the optical absorption spectrum. In
the higher-energy region, we identify a primary peak, which
is attributed to band-nesting effects and corresponds to the C
exciton peak in the absorption spectrum. Next, we examine
how these optical conductivities vary under strain in MoS2

and WS2. We observe that, for both materials, as strain in-
creases, their first peak experiences a redshift, aligning with
the redshift observed in our band calculations. However, the
difference lies in the fact that, with the increase in strain for
MoS2, the absolute value of the peak tends to decrease (espe-
cially when compared with the value of the C exciton peak),
whereas for WS2, the trend is reversed, with the absolute value
of the peak increasing as strain increases (as indicated by the
pink arrows in the figure). This phenomenon can be reflected
by the changes in the band structure under strain. For MoS2,
as strain increases, the energy of the � point and K on the VB
approach each other, indicating a trend toward transitioning
from a direct to an indirect band gap. For the WS2 mono-
layer, as strain increases, it transitions from an indirect to a
direct band gap, leading to an increase in optical conductivity
with increasing strain. The same phenomenon is observed in
WSe2. This theoretical prediction aligns with experimental
findings. For MoS2, as strain increases, the photolumines-
cence (PL) of monolayer MoS2 weakens [46]. Conversely, for
WX2 materials, their PL or absorption significantly increases
[47,48], which further confirms the effectiveness of our mod-
ified model.

IV. CONCLUSIONS

In conclusion, we have applied the Slater-Koster TBM
approach to investigate strain effects on the band structures
of monolayer MoS2 and WS2 by accounting for how the rel-
evant TBM parameters vary with strain. We found that those
Slater-Koster parameters representing orbital overlap provide
information on how the parameters associated with the hop-
ping processes vary with strain and the sign of the shifts of
these parameters with respect to strain. This approach enables
the construction of a more precise TBM for describing the
influence of strain on the electron hopping processes and on-
site energies. Our TBM can determine both strain-dependent
shifts in the band gap and the energies of the bands at high-
symmetry k points. Therefore, we believe that this theory
has the potential to be extended to other systems that can be
described using the TBM and TBM parameters, such as defect
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states caused by atomic vacancies in TMDC monolayers [49].
Overall, the agreement with DFT calculations for these critical
features of the band structure will provide a valuable approach
for investigating more complex strain states and local varia-
tions in strain in general 2D materials or even some confined
finite systems with low symmetry.
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APPENDIX A: FULL DESCRIPTION OF TERMS
IN THE HAMILTONIAN OF TMDC MONOLAYERS

OF THE SIX-BAND TBM

The full description of the terms in the Hamiltonian
in Eq. (4) will be discussed in this Appendix. Accord-

ing to Ref. [11], Eq. (4) can be illustrated in a compact
form:

� =
(

�M 0
0 �X

)
, (A1)

where

�M =
⎛⎝�0 0 0

0 �2 −iλMŝz

0 iλMŝz �2

⎞⎠, (A2)

�X =
⎛⎝�p + t⊥

xx −i λX
2 ŝz 0

−i λX
2 ŝz �p + t⊥

yy 0
0 0 �z − t⊥

zz

⎞⎠, (A3)

where t⊥
xx = t⊥

yy = Vppπ , t⊥
zz = Vppσ , and those terms are ex-

pected to represent the effect of hopping in the vertical
direction between top and bottom X atoms. Here, λM and λX

are the SOC of the M and X atoms, respectively. The hopping
effect between the nearest neighbors (M-X ) are [18]

tMX
1 =

√
2

7
√

7

⎛⎜⎜⎝
−9Vpdπ + √

3Vpdσ 3
√

3Vpdπ − Vpdσ 12Vpdπ + √
3Vpdσ

5
√

3Vpdπ + 3Vpdσ 9Vpdπ − √
3Vpdσ −2

√
3Vpdπ + 3Vpdσ

−Vpdπ − 3
√

3Vpdσ 5
√

3Vpdπ + 3Vpdσ 6Vpdπ − 3
√

3Vpdσ

⎞⎟⎟⎠, (A4)

tMX
2 =

√
2

7
√

7

⎛⎜⎝ 0 −6
√

3Vpdπ + 2Vpdσ 12Vpdπ + √
3Vpdσ

0 −6Vpdπ − 4
√

3Vpdσ 4
√

3Vpdπ − 6Vpdσ

14Vpdπ 0 0

⎞⎟⎠, (A5)

tMX
3 =

√
2

7
√

7

⎛⎜⎜⎝
9Vpdπ − √

3Vpdσ 3
√

3Vpdπ − Vpdσ 12Vpdπ + √
3Vpdσ

−5
√

3Vpdπ − 3Vpdσ 9Vpdπ − √
3Vpdσ −2

√
3Vpdπ + 3Vpdσ

−Vpdπ − 3
√

3Vpdσ −5
√

3Vpdπ − 3Vpdσ −6Vpdπ + 3
√

3Vpdσ

⎞⎟⎟⎠. (A6)

The hopping effect between the nearest same kinds of atoms (M-M, X -X ) are

tMM
1 = 1

4

⎡⎢⎢⎣
3Vddδ + Vddσ

√
3

2 (−Vddδ + Vddσ ) 3
2 (−Vddδ + Vddσ )

√
3

2 (−Vddδ + Vddσ ) 1
4 (Vddδ + 12Vddπ + 3Vddσ )

√
3

4 (Vddδ − 4Vddπ + 3Vddσ )
3
2 (−Vddδ + Vddσ )

√
3

4 (Vddδ − 4Vddπ + 3Vddσ ) 1
4 (3Vddδ + 4Vddπ + 9Vddσ )

⎤⎥⎥⎦, (A7)

tMM
2 = 1

4

⎡⎢⎣ 3Vddδ + Vddσ

√
3(Vddδ − Vddσ ) 0√

3(Vddδ − Vddσ ) Vddδ + 3Vddσ 0

0 0 4Vddπ

⎤⎥⎦, (A8)

tMM
3 = 1

4

⎡⎢⎢⎣
3Vddδ + Vddσ

√
3

2 (−Vddδ + Vddσ ) − 3
2 (−Vddδ + Vddσ )

√
3

2 (−Vddδ + Vddσ ) 1
4 (Vddδ + 12Vddπ + 3Vddσ ) −

√
3

4 (Vddδ − 4Vddπ + 3Vddσ )

− 3
2 (Vddδ − Vddσ ) −

√
3

4 (Vddδ − 4Vddπ + 3Vddσ ) 1
4 (3Vddδ + 4Vddπ + 9Vddσ )

⎤⎥⎥⎦, (A9)

tXX
1 = 1

4

⎡⎢⎣ 3Vppπ + Vppσ

√
3(Vppπ − Vppσ ) 0√

3(Vppπ − Vppσ ) Vppπ + 3Vppσ 0

0 0 4Vppπ

⎤⎥⎦, (A10)

tXX
2 =

⎛⎝Vppσ 0 0
0 Vppπ 0
0 0 Vppπ

⎞⎠, (A11)

tXX
3 = 1

4

⎡⎢⎣ 3Vppπ + Vppσ −√
3(Vppπ − Vppσ ) 0

−√
3(Vppπ − Vppσ ) Vppπ + 3Vppσ 0

0 0 4Vppπ

⎤⎥⎦. (A12)

245412-10



MODIFIED TIGHT-BINDING MODEL FOR STRAIN … PHYSICAL REVIEW B 109, 245412 (2024)

The subindices 1, 2, and 3 represent the hopping direction shown in Fig. 1(b). From the above formulas, it is obvious that the
TBM Hamiltonian can be described by 11 Slater-Koster parameters (�0, �2, �p, �z, Vpdσ , Vpdπ , Vddσ , Vddπ , Vddδ , Vppσ , and
Vppπ ), which makes this TBM a semiempirical model and reduces the computational complexity.

APPENDIX B: FULL DESCRIPTION OF THE SOC TERMS
OF THE 11-BAND TBM

The full description of the SOC terms of Eq. (13) will be
displayed in this Appendix and defined as

H↑↑
SO1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 iλM 0 0 0

0 −iλM 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 − i
2λX

0 0 0 0 i
2λX 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B1)

H↑↑
SO2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 − i
2λM 0 0 0 0

i
2λM 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 − i
2λX

0 0 0 0 i
2λX 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (B2)

FIG. 11. Band structure of monolayer (a)–(c) MoSe2 and (d)–(f)
WSe2 under different strain level. The black dots and red solid lines
represent the results obtained by DFT-HSE and the 11-band tight-
binding model (TBM), respectively.

H↑↓
SO1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
√

3
2 λM i

√
3

2 λM 0 0 0

−i λM
2

λM
2 0 0 0

λM
2 i λM

2 0 0 0

0 0 0 − λX
2 i λX

2
0 0 λX

2 0 0
0 0 −i λX

2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B3)

TABLE V. Slater-Koster parameters and SOC parameters used in
the 11-band TBM for WSe2 and MoSe2. All Slater-Koster parameters
and b are in eV.

Label MoSe2(� or b) WSe2(� or b)

Even part Ee
d0 −0.2080 (−3.885) −0.3799 (−3.770)

Ee
d1 −0.0840 (1.268) −0.9623 (10.00)

Ee
s1 −4.2912 (−67.28) −5.4430 (−81.23)

Ee
s2 −7.1074 (−104.7) −7.987 (−135.5)

V e
pdπ −1.2671 (+4) −1.2484 (+4)

V e
pdσ 4.3280 (+4) 5.4356 (+4)

V e
ppσ −0.0932 (+3) −0.4045 (+3)

V e
ppπ −0.5639 (−3) −0.4940 (−3)

V e
ddσ −0.9269 (−5) −1.2233 (−5)

V e
ddπ 0.7874 (−5) 1.0051 (−5)

V e
ddδ 0.2784 (+5) 0.3526 (+5)

Ke
ppσ 0.3795 (−3) 0.1718 (−3)

Ke
ppπ 0.0014 (+3) 0.0268 (+3)

Ke
ddσ 0.0320 (+5) 0.0524 (+5)

Ke
ddπ 0.1326 (−5) 0.1748 (−5)

Ke
ddδ −0.0421 (−5) −0.0124 (−5)

MoSe2(� or b) WSe2(� or b)

Odd part Eo
d2 1.1248 (3.9456) 0.5219 (6.510)

Eo
s1 −1.9826 (−8.16) −1.6887 (−22.60)

Eo
s2 −0.7411 (−4.491) −1.9386 (−13.59)

V o
pdπ −0.7772 (+4) −0.8359 (+4)

V o
pdσ 2.2714 (+4) 2.4767 (+4)

V o
ppσ 0.9926 (−3) 1.0216 (−3)

V o
ppπ −0.3373 (−3) −0.3231 (−3)

V o
ddσ −1.2351 (−5) −1.2244 (−5)

V o
ddπ 0.02070 (−5) −0.0147 (+5)

V o
ddδ 0.0507 (+5) 0.0037 (+5)

Ko
ppσ −0.0403 (+3) −0.0173 (+3)

Ko
ppπ 0.0094 (+3) 0.0269 (+3)

Ko
ddσ 0.0014 (−5) 0.0014 (−5)

Ko
ddπ 0.0070 (−5) −0.0139 (+5)

Ko
ddδ 0.0188 (+5) −0.0261 (−5)

MoSe2 WSe2

SOC λM 0.1050 0.3188

λX 0.1680 0.1680
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H↑↓
SO2 =

⎛⎜⎜⎜⎜⎜⎜⎝

√
3

2 λM i λM
2 − λM

2 0 0 0

−i
√

3
2 λM − λM

2 −i λM
2 0 0 0

0 0 0 0 − λX
2 i λX

2

0 0 0 λX
2 0 0

0 0 0 −i λX
2 0 0

⎞⎟⎟⎟⎟⎟⎟⎠,

(B4)

H↓↑
SO1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
3

2 λM i
√

3
2 λM 0 0 0

−i λM
2 − λM

2 0 0 0

− 3
2λM − 3

2λM 0 0 0

0 0 0 λX
2 i λX

2

0 0 − λX
2 0 0

0 0 −i λX
2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B5)

H↓↑
SO2 =

⎛⎜⎜⎜⎜⎜⎝
−

√
3

2 λM −i λM
2

λM
2 0 0 0

−i
√

3
2 λM

λM
2 −i λM

2 0 0 0
0 0 0 0 λX

2 i λX
2

0 0 0 −i λX
2 0 0

0 0 0 −i λX
2 0 0

⎞⎟⎟⎟⎟⎟⎠,

(B6)

H↓↓
SO1 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 −iλM 0 0 0
0 iλM 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 i

2λX

0 0 0 0 − i
2λX 0

⎞⎟⎟⎟⎟⎟⎟⎠, (B7)

H↓↓
SO1 =

⎛⎜⎜⎜⎜⎝
0 i λM

2 0 0 0
−i λM

2 0 0 0 0
0 0 0 0 0
0 0 0 0 i λX

2
0 0 0 −i λX

2 0

⎞⎟⎟⎟⎟⎠. (B8)

APPENDIX C: BAND STRUCTURE OF MoSe2 AND WSe2

FOR THE 11-BAND TBM AND DFT-HSE METHOD

In addition to the two kinds of TMDC materials discussed
in the main text, we have included the results for two addi-
tional materials in this Appendix. As illustrated in Fig. 11,
by employing the parameters from Table V and utilizing our
modified TBM, we can still accurately depict the band struc-
ture characteristics of MoSe2 and WSe2 as they change with
strain.
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