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We present a generalization of the geometric phase to pure and thermal states in PT -symmetric quantum
mechanics (PTQM) based on the approach of the interferometric geometric phase (IGP). The formalism first
introduces the parallel-transport conditions of quantum states and reveals two geometric phases, θ1 and θ2, for
pure states in PTQM according to the states under parallel-transport. Due to the non-Hermitian Hamiltonian in
PTQM, θ 1 is complex and θ2 is its real part. The imaginary part of θ1 plays an important role when we generalize
the IGP to thermal states in PTQM. The generalized IGP modifies the thermal distribution of a thermal state,
thereby introducing effective temperatures. At certain critical points, the generalized IGP may exhibit discrete
jumps at finite temperatures, signaling a geometric phase transition. We illustrate this phenomenon in PTQM
through two examples and compare their differences.
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I. INTRODUCTION

The introduction of non-Hermitian quantum mechanics
(NHQM) [1–3] has uncovered many fascinating phenom-
ena, including Anderson localization [4], gapless quantum
phase transitions [5], unconventional behavior of quantum
emitters [6,7], tachyonic dynamics [8,9], and distinctive
topological properties [10–12]. A major branch of NHQM
includes systems with non-Hermitian Hamiltonians obeying
parity-time reversal (PT ) symmetry, which can possess real-
valued eigenvalues, making them a relevant extension of
conventional quantum mechanics. Therefore, PT -symmetric
quantum mechanics (PTQM) has attracted considerable re-
search attention in many aspects [13–19] and has been
experimentally realized across different fields, including
acoustics, optics, electronics, and quantum systems [20,21].
It has also catalyzed extensive investigations into physical and
topological characteristics of non-Hermitian systems [22–30].

Geometric phases in quantum systems, including the Berry
phase [31] and the Aharonov-Anandan phase [32], have ad-
vanced our understanding of the geometric structures behind
interesting physical systems and shown significant influence
across various fields. For instance, the Berry phase is funda-
mental in the study of topological matter since it connects
geometric objects from the underlying mathematical struc-
ture to measurable physical quantities [33–44]. Recently, the
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notion of the geometric phase has been generalized to non-
Hermitian quantum systems [45], which is further applied to
the construction of the quantum geometric tensor for non-
Hermitian systems [46]. On the other hand, the geometric
phase has also been generalized to mixed quantum states via
different approaches [47–55]. In this work, we will generalize
the one proposed by Sjöqvist et al. [47] based on an extension
of the optical process in the Mach-Zehnder interferometer,
which is referred to as the interferometric geometric phase
(IGP). Numerous studies [56–61] have been dedicated to this
field, and the IGP has been observed by various techniques,
including nuclear magnetic resonance [62,63], polarized neu-
trons [64], and the Mach-Zehnder interferometer [65]. A
different approach was introduced by Uhlmann [66–68] soon
after the discovery of the Berry phase, and the phase is usually
called the Uhlmann phase. This approach incorporates a full
mathematical structure based on fiber bundles and has gained
attention due to its relevance to condensed matter and quan-
tum information [69–76].

We aim to generalize the concept of IGP to thermal states
in PTQM. In the beginning, we establish a formalism for
a pure-state geometric phase in PT -symmetric systems by
using the conventional derivation and then introducing the
parallel-transport conditions of quantum states. In contrast
to conventional QM, a PTQM system is shown to allow
two distinct geometric phases, called θ1 and θ2, which are
differentiated by the states undergoing parallel-transport. On
the one hand, θ2 exactly coincides with the known re-
sult in Ref. [45] and is the real part of θ1. On the other
hand, θ1 is a complex-valued phase with its imaginary part
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adjusting the amplitude of the wave function due to the lack
of Hermiticity. Since θ1 will be shown to be associated with
the non-Hermitian Hamiltonian, the generalization to thermal
states in PTQM will be based on it.

Following the construction of the IGP of thermal states
in conventional QM and the derivation of the geometric
phase θ1, we develop a framework of the IGP of thermal
states in PTQM. In general, the IGP is the argument of the
thermal-weighted sum of the geometric phase factor for each
individual energy level. The imaginary part of the general-
ized IGP will be shown to alter the relative thermal weights,
which introduces effective temperatures to the thermal states.
Consequently, there may be quantized jumps of the IGP at cer-
tain temperatures and system parameters. This phenomenon
signifies a geometric phase transition at finite temperature in
PTQM. To illustrate our findings and visualize the results, we
study a two-level system and a band model, both possessing
PT symmetry, and we present their generalized IGPs. The
geometric phase transitions of the two models are located and
analyzed.

The rest of the paper is organized as follows. Section II
briefly reviews the basics of PTQM and its statistical physics.
We also review the geometric phases of pure and mixed
quantum states in Hermitian systems via parallel-transport. In
Sec. III, we generalize the formalism of the geometric phase
to PTQM, first by deriving two different expressions due
to their associated evolution equations or parallel-transport
conditions. We then generalize the results to thermal states
in PTQM and derive the generalized IGP. Section IV presents
the IGPs of two PT -symmetric systems and their geometric
phase transitions. Section V concludes our work. Some details
and derivations are summarized in the Appendixes.

II. THEORETICAL BACKGROUND

A. PT -symmetric quantum and statistical mechanics

Before presenting our findings, we first give a brief out-
line of PTQM and lay the foundation for its geometric
description. We will set c = h̄ = kB = 1 throughout the paper.
We consider a parameter-dependent finite-dimensional non-
Hermitian quantum system described by a PT -symmetric
Hamiltonian H (R). Here R = (R1, R2, . . . , Rk )T is a collec-
tion of external parameters forming a parameter manifold
M. The system may evolve along a curve R(t ) in M. The
PT -symmetry is manifested by the condition

W (R)H (R) = H†(R)W (R), (1)

where W (R) is Hermitian, and its role will become clear later.
A Hamiltonian satisfying Eq. (1) is called a pseudo-Hermitian
Hamiltonian [77]. Assuming H describes an N-level quantum
system, the eigenequations of H (R) and H†(R) are given,
respectively, by

H (R)|�n(R)〉 = En(R)|�n(R)〉, (2)

H†(R)|�n(R)〉 = En(R)|�n(R)〉 (3)

for n = 1, 2, . . . , N . No energy degeneracy is consid-
ered here for simplicity. Equation (1) implies |�n(R)〉 =
W (R)|�n(R)〉. Here W bears the role of a metric to en-
sure the orthonormal relation 〈�m(R)|W (R)|�n(R)〉 = δmn,

or equivalently, 〈�m(R)|�n(R)〉 = δmn. Thus, the inner prod-
uct between the ordinary bra and ket states is defined as
〈·|W |·〉. The associated completeness of {|�n(R)〉} is given
by

∑
n |�n(R)〉〈�n(R)| = 1.

Following Eq. (1), H is similar to a Hermitian Hamiltonian
H0 via H = SH0S−1, where W = (S−1)†S−1 [78]. The oper-
ator S is not unitary. Hereafter, we sometimes suppress the
argument R if no confusion may arise. In some situations, S
may also be Hermitian and then W = (S−1)2. Diagonalizing
H0 as H0|�0

n 〉 = En|�0
n 〉, one gets

|�n〉 = S
∣∣�0

n

〉
, |�n〉 = (S−1)†

∣∣�0
n

〉
. (4)

For a generic time-dependent state |�(t )〉 in PTQM, its equa-
tion of motion is described by the Schrödinger-like equation
[45]:

i
d

dt
|�(t )〉 =

(
H − i

2
W −1Ẇ

)
|�(t )〉. (5)

If S is a proper mapping satisfying Ṡ−1S = (Ṡ−1S)†, this equa-
tion further reduces to

i
d

dt
|�(t )〉 = H̃ |�(t )〉. (6)

Here H̃ = H − iSproperṠ−1
proper, with Sproper being a proper map-

ping. The second term of H̃ is anti-pseudo-Hermitian under
the PT transformation, rendering H̃ not Hermitian in general.
For a PTQM system, a proper S always exists [45]. However,
the analytic expression of Sproper may not be easily available.
Comparing Eqs. (6) and (2), it is important to emphasize
that for a PT -symmetric quantum system, the stationary and
dynamic Schrödinger equations are governed, respectively, by
H and H̃ . This distinction leads to nontrivial contributions
to both the dynamic and geometric phases in PTQM, which
will be elucidated in the subsequent discussions. According
to Eq. (4), |�0〉 = S−1|�〉, and its dynamic evolution can
be deduced from Eq. (5). If S is a proper mapping, it can
be shown that |�0(t )〉 obeys the conventional Schrödinger
equation

i
d

dt
|�0(t )〉 = H0|�0(t )〉. (7)

Otherwise, the dynamic equation of |�0(t )〉 would be very
complicated. Further details can be found in Appendix A.
In this case, both the stationary and dynamic equations of
|�0(t )〉 are governed by the Hermitian H0, unlike those of
|�(t )〉. Hence, the proper S acts like a “gauge” mapping
between a PTQM system and its corresponding Hermitian
counterpart.

So far the discussion concerns pure quantum states only.
Recently, there have been studies on non-Hermitian quantum
models at finite temperatures [79,80]. To broaden the scope of
non-Hermitian physics to mixed quantum states, we note that
the density matrix of a mixed state from the generalization
may also be non-Hermitian as well. As a first attempt, we
focus on states in thermal equilibrium depicted by ρ = e−βH

Z .
Here β = 1

T is the inverse temperature and Z = ∑
n e−βEn is

the partition function. In the generalized case, ρ† �= ρ due
to H† �= H . By expressing H = ∑

n En|�n〉〈�n|, the density
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matrix is given by

ρ =
∑

n

e−βEn

Z
|�n〉〈�n|, (8)

whose trace follows the normalization Trρ =∑
n〈�n|ρ|�n〉 = 1. Applying Eq. (4), we get a relation

ρ = Sρ0S−1 connecting ρ and ρ0 = e−βH0

Tre−βH0
.

B. Geometric phase of Hermitian systems

1. Pure states

The geometric phase, especially the Berry phase [31],
reflects the underlying geometry of quantum physics. For
Hermitian systems, its formulation can be derived through the
concept of the parallel condition among quantum states. Two
states, |ψ1〉 and |ψ2〉, are considered parallel with each other
if 〈ψ1|ψ2〉 = 〈ψ2|ψ1〉 > 0 [81]. The overlap is also referred
to as the fidelity [81]. The parallel condition complements
the concept of orthogonality of quantum states and builds a
binary relation between quantum states. However, it is not
an equivalence relation since it lacks transitivity. This means
even when a state |�(t )〉 ≡ |�(R(t ))〉 evolves along a path
R(t ) and preserves the condition of instantaneous parallel-
transport, or being “in-phase,” denoted as

〈�(t )|�(t + dt )〉 > 0, (9)

it is possible that the final state may not remain parallel to
the initial state. The loss of the parallelity is measured by
the geometric phase, as explained here. By expanding the
left-hand side of Eq. (9) and noticing that 〈�(t )| d

dt |�(t )〉dt
is imaginary, the parallel-transport condition is equivalent to

〈�(t )| d

dt
|�(t )〉 = 0. (10)

We rewrite |�(t )〉 as |�(t )〉 = eiθ (t )|ψ (t )〉, where θ (t ) con-
tains the information about the phase, including the dynamic
and geometric components. However, the parallel-transport
condition only allows the geometric phase to survive. Ex-
plicitly, if |�(t )〉 experiences a dynamic evolution described
by i d

dt |�(t )〉 = H |�(t )〉 with H being the Hamiltonian of
a Hermitian quantum system, the condition (10) indicates∫ t

0 dt ′〈�(t ′)|H |�(t ′)〉 = 0, i.e., the dynamic phase vanishes
instantaneously. On the other hand, dynamical evolution may
also disrupt the parallelity between quantum states and vi-
olate the parallel-transport condition. Substituting |�(t )〉 =
eiθ (t )|ψ (t )〉 into the parallel-transport condition, we get

iθ̇ + 〈ψ (t )| d

dt
|ψ (t )〉 = 0. (11)

In a cyclic process of duration τ , the solution to Eq. (11) is the
geometric phase

θ (τ ) = i
∫ τ

0
dt〈ψ (t )| d

dt
|ψ (t )〉. (12)

In essence, the parallel-transport condition allows us to sep-
arate the total phase into the dynamic and geometric phases.
The same formalism also applies to the Aharonov-Anandan
phase since |ψ (t )〉 here may be either an instantaneous eigen-
state of H or a generic linear combination of the eigenstates
of H .

2. Thermal states

The geometric-phase formalism can be generalized to
mixed quantum states undergoing a unitary evolution [47].
When a density matrix evolves as ρ(t ) = U (t )ρ(0)U †(t ) with
a unitary U (t ), it acquires a phase θ (t ) = arg Tr[ρ(0)U (t )].
Here “Tr” is the ordinary trace in the Hermitian quan-
tum system. It can be shown that ρ(t + dt ) = U (t +
dt )U †(t )ρ(t )U (t )U †(t + dt ), yielding that ρ(t ) evolves into
ρ(t + dt ) via U (t + dt )U †(t ). Accordingly, the condition
arg Tr[ρ(t )U (t + dt )U †(t )] = 0 means that ρ(t + dt ) is “in
phase” with ρ(t ) since no extra phase is accumulated during
the evolution. Taking the differential form, we obtain the
parallel-transport condition

Tr[ρ(t )U̇ (t )U †(t )] = Tr[ρ(0)U †(t )U̇ (t )] = 0. (13)

Under this condition,

θG(t ) = arg Tr[ρ(0)U (t )] (14)

is the interferometric geometric phase (IGP), introduced in
Ref. [47]. Similar to its pure-state counterpart, the parallel-
transport condition (13) also prevents the accumulation of the
dynamic phase. If U (t ) represents a dynamic evolution, then
iU̇ = HU , or equivalently, H = iU̇U †. Thus, the dynamic
phase accumulated during this evolution vanishes identically:

θD(t ) = −
∫ t

0
dt ′Tr[ρ(t ′)H (t ′)]

= −i
∫ t

0
dt ′Tr[ρ(t ′)U̇ (t ′)U †(t ′)] = 0. (15)

If the trace is evaluated with the eigenstates {|n(t )〉} of ρ(t ),
only the diagonal elements 〈n(t )|U (t )|n(t )〉 are relevant to the
determination of θG(t ). Thus, to specify U (t ), it was suggested
by Sjöqvist et al. [47] to strengthen the parallel-transport
condition as

〈n(t )|U̇ (t )U †(t )|n(t )〉 = 0, n = 1, 2, . . . , N. (16)

If ρ(t ) is the density matrix of a pure state, Eq. (13) naturally
reduces to the condition (10) for pure states.

III. GEOMETRIC PHASE OF PT -SYMMETRIC
QUANTUM SYSTEMS

A. Geometric phase for pure states

1. Adiabatic approaches

The concept of the geometric phase has been general-
ized to some non-Hermitian systems in Ref. [45], where the
expression of the Berry phase was obtained by following
Berry’s formalism of adiabatic evolution. Explicitly, for a
PT -symmetric system undergoing evolution along a loop
C(t ) := R(t ) with 0 < t < τ and R(0) = R(τ ) in the param-
eter manifold, the nth eigenstate at the end of this evolution is
given by

|�n(R(τ ))〉 = eiθD
n (τ )+iθB

n (C)|�n(R(0))〉. (17)
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Here, θD
n (t ) = −∫ t

0dt ′En(R(t ′)) represents the instantaneous
dynamic phase, and

θB
n (C) = i

∮
C

dR ·
[
〈�n|W ∇|�n〉 + 1

2
〈�n|(∇W )|�n〉

]
(18)

is the Berry phase of PTQM following this approach. It should
be noted that this result is obtained by beginning with the
stationary Schrödinger equation shown in Eq. (2) [45]. In
this approach, θD

n (t ) is generated through the time evolution
controlled by H0, as indicated by Eq. (7).

Meanwhile, a different approach is based on the time evo-
lution described by Eq. (6), whose dynamics is governed by
the effective Hamiltonian H̃ = H − iSṠ−1, with S being a
proper mapping. Different from the prior approach, it will be
shown that the “gauge” map S imparts significant effects on
both the dynamic and geometric phases. This also influences
the generalization of the geometric phase to thermal states in
PT -symmetric systems.

When following Eq. (6) along the loop C(t ), the nth eigen-
state acquires an instantaneous dynamic phase

θ1
Dn(t ) = −

∫ t

0
dt ′〈�n(t ′)|W H̃ |�n(t ′)〉

= −
∫ t

0
dt ′En(t ′) + i

∫ t

0
dt ′〈�0

n (t ′)
∣∣Ṡ−1S

∣∣�0
n (t ′)

〉

= θD
n (t ) − i

∫ t

0
dt ′〈�0

n (t ′)
∣∣S−1Ṡ

∣∣�0
n (t ′)

〉
, (19)

where |�n(t )〉 ≡ |�n(R(t ))〉 and |�0
n (t )〉 ≡ |�0

n (R(t ))〉. Im-
portantly, θD

n (t ) is real-valued, while θ1
Dn(t ) is in general

complex-valued since the dynamic equation (6) is governed
by the non-Hermitian H̃ . This is reasonable since PTQM may
be realized by open systems, and complex phases implies
gain or decay of the amplitude. Moreover, the second term
in the last line of Eq. (19) is purely imaginary if S is a proper
mapping. To derive the geometric phase, we consider a state
|�(t )〉 and expand it in terms of the instantaneous eigenstates
of H (t ) as

|�(t )〉 =
∑

n

cn(t )eiθ1
Dn(t )|�n(t )〉. (20)

If the system experiences an adiabatic evolution along C(t ),
no level crossing occurs. Thus, we found cn(t ) ≈ cn(0)eiθ1

n (t ),
or

|�n(t )〉 = eiθ1
Dn(t )+iθ1

n (t )|�n(0)〉. (21)

Here

θ1
n (t ) = i

∫ t

0
dt ′〈�n(t ′)| d

dt ′ |�n(t ′)〉. (22)

A detailed derivation is outlined in Appendix B. This defini-
tion agrees with some known results [82,83]. Thus, we come
to an interesting result: There exist two types of geometric
phases in PTQM due to the evolutionary equations associ-
ated with the non-Hermitian Hamiltonian and its Hermitian
counterpart.

2. Parallel-transport conditions

What is the relation between the geometric phases derived
previously? Moreover, we have pointed out that there is a
more generic way to derive the geometric phase based on the
parallelity between quantum states in conventional QM. Does
this approach also apply to PTQM? To answer these questions,
we first generalize the previously introduced parallel-transport
condition to PTQM. Note that the time evolution (6) in a
PT -symmetric system is controlled by H , which is related
to the Hermitian Hamiltonian H0 that governs the dynamic
equation (7) via a similarity transformation S.

It has been shown that in conventional QM, the parallel-
transport condition (10) ensures that the dynamic phase
vanishes. Equivalently, the appearance of a nonvanishing dy-
namic phase violates the instantaneous parallelity when a
state is evolved. Hence, in order to avoid violation of the
instantaneous parallelity, we follow an approach similar to
that of conventional QM to remove the dynamic phase θ1

Dn

from Eq. (20) and introduce |�̃n(t )〉 = eiθ1
n (t )|�n(t )〉. Simi-

larly, we also define |�̃0
n (t )〉 = eiθ2

n (t )|�0
n (t )〉 by eliminating

θD
n generated during a dynamic evolution controlled by H0.

A generalizations of Eq. (10) leads to the following parallel-
transport (or instantaneous in-phase) conditions:

〈�̃n(t )| d

dt
|�̃n(t )〉 = 0, (23)

〈
�̃0

n (t )
∣∣ d

dt

∣∣�̃0
n (t )

〉 = 0. (24)

Thus, θ1,2
n (t ) is the accumulated phase during the respective

parallel transport. Solving these equations, we get

θ1
n (C) = i

∮
C

dt〈�n(t )| d

dt
|�n(t )〉, (25)

θ2
n (C) = i

∮
C

dt
〈
�0

n (t )
∣∣ d

dt

∣∣�0
n (t )

〉
, (26)

at the end of the corresponding parallel transport. Equa-
tion (23) reproduces the geometric phase of Eq. (22) derived
by the adiabatic approach. Moreover, it can be verified that θ2

n
matches the Berry phase shown in Eq. (18):

θ2
n (C) = θB

n (C) (27)

as long as S is a proper mapping. This is because the adiabatic
approach is actually encompassed by the formalism based on
parallelity of quantum states.

While Eq. (19) gives a relation between the two dynamic
phases θ1

Dn and θD
n , there is a similar relation connecting θ1

n
and θ2

n :

θ1
n = θ2

n + i
∮

dt
〈
�0

n (t )
∣∣S−1Ṡ

∣∣�0
n (t )

〉
. (28)

The proofs of Eqs. (27) and (28) are outlined in Appendix B.
Interestingly, θ1

n can be complex-valued due to the presence
of the non-Hermitian H̃ in the dynamic evolution (6). Since
the dynamic phase θ1

Dn is excluded by the parallel-transport
condition, what remains is the geometric component θ1

n . As
previously noted, the second term in Eq. (28) is purely imag-
inary if S is a proper mapping, making θ2

n the real part of
θ1

n . Therefore, Sproper not only connects the Hermitian system
governed by H0 and the PT -symmetric system governed by
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H but also establishes a link between their geometric phases
θ2

n and θ1
n . The imaginary part of θ1

n results in a change
of the amplitude of the wave function since the system is
non-Hermitian. We will find similar results in our subsequent
discussions on thermal states. The relation (28) also yields an
interesting result: It is known that the non-Hermitian operator
S acts as a “gauge” to describe how the system interacts
with the environment. Apparently, θ1

n is independent of such a
gauge, as indicated by Eq. (22), since both |�n〉 and |�n〉 have
no dependence on H0. However, the real and imaginary parts
of θ1

n are determined, respectively, by the proper S.
In the framework of the IGP, the geometric phase for mixed

states is intricately linked to that of pure states. This raises
a pertinent question: In the context of PTQM, which one of
θ1,2

n is more natural for a generalization to thermal states?
Referring back to Eqs. (7), (17), and (24), it can be inferred
that both θ2

n and θD
n may arise in a quantum system governed

by H0 if S is proper. In contrast, θ1
n and θ1

Dn can be generated
in a PT -symmetric system controlled by H . Consequently,
we choose θ1

n and the corresponding approach to develop the
formalism of the IGP of thermal states in PTQM.

B. Interferometric geometric phase for thermal states

1. Basic formalism

To generalize the IGP to PTQM, we focus on states
in thermal equilibrium at temperature T described by their
non-Hermitian density matrix ρ = 1

Z e−βH as stated before.
Since the density matrix may be a non-Hermitian operator
in those cases, it usually experiences nonunitary evolution
since H is non-Hermitian. We consider a general form ρ(t ) =
U (t )ρ(0)U −1(t ) with ρ(0) = ρ. Similar to conventional QM,
the system acquires a (total) phase

θtot(t ) = arg Tr[ρ(0)U (t )] (29)

during this evolution. Since a statistical ensemble encom-
passes all energy levels, each weighted by its respective
thermal weight, it is more suitable to introduce the geometric
phase via the parallel-transport condition, which also fixes the
form of U (t ). To ensure that ρ(t + dt ) is in-phase with ρ(t )
during the evolution, the condition (13) is generalized as

Tr[ρ(t )U̇ (t )U −1(t )] = Tr[ρ(0)U −1(t )U̇ (t )] = 0. (30)

If U (t ) is a time evolution along a loop in the parameter man-
ifold, then Eq. (6) yields iU̇ = H̃U or iU̇U −1 = H̃ . Similar
to Eq. (15), the parallel-transport condition (30) causes the
dynamic phase to vanish:

θD(t ) =
∫ t

0
dt ′Tr[ρ(t ′)H̃ (t ′)] = 0. (31)

This may be realized by choosing a suitable evolution path in
the parameter manifold [76]. If the initial density matrix ρ(0)
is given by Eq. (8), the density matrix under parallel-transport
evolves as

ρ(t ) =
∑

n

e−βEn

Z
|�̌n(t )〉〈�̌n(t )|. (32)

Here |�̌n(t )〉 ≡ U (t )|�n〉 and 〈�̌n(t )| = 〈�n|U −1(t ). The
trace in Eq. (30) can be evaluated as

∑
n〈�̌n(t )| · |�̌n(t )〉.

Similar to Eq. (16), the parallel-transport condition is also
reinforced as

〈�̌n(t )|U̇ (t )U −1(t )|�̌n(t )〉 = 0,

or 〈�n|U −1(t )U̇ (t )|�n〉 = 0, n = 1, 2, . . . , N. (33)

Since the dynamic phase vanishes during parallel-transport,
the system acquires the IGP according to Eq. (29):

θG(t ) = θtot(t ) = arg Tr[ρ(0)U (t )]. (34)

A transformation satisfying the parallel-transport condition
has the form

U (t ) =
∑

n

e− ∫ t
0 〈�n(t ′ )| d

dt ′ |�n(t ′ )〉dt ′ |�n(t )〉〈�n(0)|

=
∑

n

eiθ1
n (t )|�n(t )〉〈�n(0)|, (35)

where |�n(t )〉 ≡ |�n(R(t ))〉 and |�n(t )〉 ≡ |�n(R(t ))〉
with |�n(0)〉 = |�n〉 and |�n(0)〉 = |�n〉. Thus,
|�̌n(t )〉 = eiθ1

n (t )|�n(t )〉, 〈�̌n(t )| = 〈�̌n(t )|e−iθ1
n (t ), and the

parallel-transport condition (33) can also be expressed as

〈�n(t )|U̇ (t )U −1(t )|�n(t )〉 = 0, n = 1, 2, . . . , N. (36)

Appendix C shows how U (t ) indeed satisfies this condi-
tion. Similar to its pure-state counterpart, the dynamic phase
θ1

Dn(t ) for each level is not included to avoid violating the
parallel-transport condition. The IGP accumulated during the
evolution is

θG(t ) = arg

[∑
n

e−βEn

Z
e− ∫ t

0 〈�n (t ′ )| d
dt ′ |�n(t ′ )〉dt ′

νn(t )

]
, (37)

where νn(t ) = 〈�n(0)|�n(t )〉. If the system undergoes a
cyclic process along a loop C(t ) = R(t ) with R(τ ) = R(0),
then νn(τ ) = 1 and

θG(C) = arg

[∑
n

e−βEn

Z
eiθ1

n (C)

]
. (38)

Here θ1
n (C) is the geometric phase factor associated with

the nth individual pure state in the process, given by
Eq. (25). It can be shown that θG(C) reduces to θ1

n (C)
in the zero-temperature limit since limβ→∞ e−βE1

Z = 1 and

limβ→∞ e−βEn>1

Z = 0. This is consistent with the reason that we
choose θ1

n (C) as the geometric phase for pure states in PTQM.
Its effect will be clarified later.

2. Generalization to lattice systems

The previous formalism for the IGP is a generalization
of the unitary evolution for pure quantum states where the
eigenvalues of the Hamiltonian and the density matrix remain
unchanged. Therefore, it does not apply to lattice systems with
energy bands since the energy now depends on the crystal
momentum, which is often treated as a parameter in charac-
terizing the geometry or topology. Fortunately, only a slight
modification is needed to extend the previous formalism to
lattice systems.

For simplicity, we consider a 1D lattice system where the
crystal momentum is denoted by k. Following the idea of
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Ref. [61], the 1D Brillouin zone (BZ) introduces a “transport”
of the density matrix

ρ(k) =
∑

n

λn(k)|�n(k)〉〈�(k)|. (39)

As a generalization of Eq. (33), if the following condition
is satisfied, the eigenstates of ρ are transported in a parallel
manner:

〈�n(k)|�̇n(k)〉 = 0, n = 1, 2, . . . , N, (40)

where the derivative is taken with respect to k. Generically,
|�n(k)〉 and |�n(k)〉 do not meet this parallel-transport condi-
tion, and we only need to perform the phase shift as

|�n(k)〉 → e− ∫ k
0 〈�n (k′ )| d

dk′ |�n(k′ )〉dk′ |�n(k)〉,
〈�n(k)| → e

∫ k
0 〈�n(k′ )| d

dk′ |�n(k′ )〉dk′ 〈�n(k)|, (41)

to ensure that they satisfy Eq. (40) and no other effects will
be included. If the transport starts from k = 0, the system
acquires an instantaneous geometric phase

θG(k) = arg
∑

n

[
√

λn(0)λn(k)〈�(0)|�n(k)〉] (42)

since the dynamic phase has been eliminated by the parallel-
transport condition. If the transport is conducted across the en-
tire Brillouin zone, the periodic condition requires λn(2π ) =
λn(0), and the results in Sec. III A 2 imply |�n(2π )〉 =
eiθ1

n (BZ)|�n(0)〉. Thus, the IGP that the system acquires at the
end of the transport is

θG(BZ) = arg
∑

n

[λn(0)eiθ1
n (BZ)]

= arg
∑

n

[
e−βEn (0)

Z (0)
eiθ1

n (BZ)

]
, (43)

which is a direct generalization of Eq. (38) to lattice systems.

IV. EXAMPLES

To better understand the IGP of PTQM systems, we in-
vestigate two classes of examples exhibiting different IGP
behaviors. The first example is fully solvable, allowing for
a determination of the proper S and providing insights into
the roles of θ1 and θ2. The second one is a PT -symmetric
band model, which is more relevant to condensed-matter
systems. Although the explicit expression of Sproper for the
latter is not readily available, the gauge-independent θ1 can
still be evaluated. These two examples exhibit significantly
different properties. For example, the former demonstrates
a temperature-induced geometric phase transition while the
latter does not.

A. Two-level system

We first study a PT -symmetric two-level system intro-
duced in Refs. [45,84] and calculate its IGP. The Hamiltonian
is given by

H = ε12×2 + (anr + ibnθ ) · σ, (44)

where σ = (σx, σy, σz )T is the collection of Pauli
matrices, and nr ≡ (sin θ cos φ, sin θ sin φ, cos θ )T ,
nθ ≡ (cos θ cos φ, cos θ sin φ,− sin θ )T are the unit vectors,
respectively, along the radial and tangent directions
of a meridian on a unit sphere. The eigenvalues are
E± = ε ± √

a2 − b2. We limit our discussion to the regime
of a2 > b2, where the PT -symmetry is preserved and E±
are real. Without loss of generality, we let a > 0. The two
eigenvectors are

|�+〉 = n+

((
cos θ

2 − iα sin θ
2

)
e−iφ

iα cos θ
2 + sin θ

2

)
, (45)

|�−〉 = n−

(−(iα cos θ
2 + sin θ

2

)
e−iφ

cos θ
2 − iα sin θ

2

)
, (46)

where α = b
a+√

a2−b2 and n± = e−i θ
2

√
a2+a

√
a2−b2

2(a2−b2 ) are normal-
ization coefficients. In the broken PT -symmetry phase where
a2 � b2, it is known that 〈�±|�±〉 = 0 [10,85]. Specifically,
when a2 = b2, n± diverges. Thus, the formalism developed
for the PT -symmetric case breaks down. A full analysis of
the broken PT -symmetry phase is beyond the scope of the
present work. The metric operator W of this case is

W = 1 − b

a
nφ · σ, (47)

where nφ = (− sin φ, cos φ, 0)T is the unit tangent vector of a
latitude. In what follows, we will fix a and b, thus the param-
eters (θ, φ) form the parameter manifold S2, a unit spherical
surface.

Using Eq. (18), θ2
± associated with a loop C on S2 is given

by [45]

θ2
±(C) = ∓ 1

2

a√
a2 − b2

�(C) +
(

1 ± a√
a2 − b2

)
π (48)

if the north pole is enclosed by C, or

θ2
±(C) = ∓1

2

a√
a2 − b2

�(C) (49)

if the north pole is not enclosed by C. Here �(C) =∮
Cdφ(1 − cos θ ) is the solid angle of the surface enclosed by

C with respect to the origin.
As a concrete example, we take a = 3 and b = √

5, so the
eigenvalues become E± = ε ± 2. To calculate the two terms
of θ1

±(C) via Eq. (28), a proper S is needed, which may be
constructed by solving a differential equation [45]. Details are
summarized in Appendix D. Explicitly, it is given by

Sproper =
⎛
⎝ 1

2

√
15
2 e

iφ
4 − 1

2 i
√

3
2 e− 5iφ

4

1
2 i
√

3
2 e

5iφ
4

1
2

√
15
2 e− iφ

4

⎞
⎠. (50)

Under this proper transformation, the original non-Hermitian
Hamiltonian is converted into a Hermitian one:

H0 = S−1
proper HSproper =

(
ε + 2 cos θ 2e− 3iφ

2 sin θ

2e
3iφ
2 sin θ ε − 2 cos θ

)
. (51)
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The eigenvector associated with ε + 2 is

|�0
+(θ, φ)〉 =

⎛
⎜⎝

e− 5iφ
4 [cot(θ )+csc(θ )]√

[cot(θ )+csc(θ )]2+1

e
iφ
4√

[cot(θ )+csc(θ )]2+1

⎞
⎟⎠. (52)

It can be shown that

〈�0
+|S−1dS|�0

+〉 = −1

4

√
5 sin θdφ,

i
∮

C
〈�0

+|S−1Ṡ|�0
+〉dt = −i

π

2

√
5 sin θ, (53)

where the loop C is chosen as a circle of latitude θ . Similarly,
the imaginary part of θ1

− is

i
∮

C
〈�0

−|S−1Ṡ|�0
−〉dt = i

π

2

√
5 sin θ. (54)

Since the north pole is enclosed by C (a circle of latitude),
θ2
±(C) is evaluated by Eq. (48). Using Eqs. (28), (48), (53), and

(54), the geometric phases associated with the two eigenstates
are

θ1
+(C) = π

(
2 + 3 cos θ

2

)
− i

π

2

√
5 sin θ,

θ1
−(C) = π

(
2 − 3 cos θ

2

)
+ i

π

2

√
5 sin θ, (55)

respectively. Here an extra factor 2π is dropped from θ1
+(C).

Accordingly, the IGP is

θG(C) = arg

[
e−2βeiθ1

+(C) + e2βeiθ1
−(C)

e2β + e−2β

]

= arg
[
e−2β+

√
5π
2 sin θeiθ2

+(C) + e2β−
√

5π
2 sin θeiθ2

−(C)],
(56)

where θ2
± is the real part of θ1

±, as shown by Eq. (28). The
imaginary part of θ1

± actually changes the thermal weight of
each energy-level.

Equation (14) shows that the IGP is the argument of
Tr[ρ(0)U (t )], which is the “returning amplitude” between the
initial state ρ(0) and the instantaneous state ρ(t ) [47,76]. It
can also be thought of as a generalization of the Loschmidt
amplitude in mixed quantum states. At its zeros, the IGP
exhibits discontinuities and nonanalytical behavior, signaling
a change of the geometric nature of the system reflected by
the IGP. In this example, the second line of Eq. (56) shows
that θG(C) may become singular if β =

√
5π sin θ

4 . To examine
the IGP of PTQM, we visualize our findings in Figs. 1–3.

In Fig. 1, we present the contour plot of θG(C) as a function
of β and θ . On the arc β =

√
5π sin θ

4 , there are two singular
points A and B satisfying θA,B = arccos(± 1

3 ), at which[
e−2β+

√
5π
2 sin θeiθ2

+(C) + e2β−
√

5π
2 sin θeiθ2

−(C)
]∣∣

θ=θA,B
= 0.

Thus, the IGP changes rapidly near A and B according to
Eq. (56), indicating discrete jumps of θG(C) across those
singular points. In stark contrast, a jump of the IGP at finite
temperature has been ruled out in any two-level model of
Hermitian quantum systems [76].

A

B

0 1 2 3 4 5
0

1

2

3

0

2

4

6

FIG. 1. Contour plot of θG(C) as a function of β and θ ∈ [0, π ],
where the range of θG(C) is within [0, 2π ]. The black curve shows
the arc β =

√
5π sin θ

4 , and the value of θG(C) jumps at the singular
points A and B.

To grasp the physical significance of the arc β =
√

5π sin θ
4 ,

we revisit the corresponding Hermitian quantum system,
where the thermal weight of each level is proportional to e∓2β

at temperature T = 1
β

. As T → 0, the relative weight between

FIG. 2. Top: θG(C) as a function of θ at fixed T = 1
βc

.

When crossing the singular points θA = arccos( 1
3 )

.= 1.23 and θB =
arccos(− 1

3 )
.= 1.92, there is a ±π -jump in θG(C). Bottom: θG(C) as

a function of β for the evolution along the circle of latitude with
θA

.= 1.23. As the system crosses the critical inverse temperature
βc = 1.66, θG(C) exhibits a π -jump.
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FIG. 3. θG(C) as a function of ln β when the system evolves
along the circle of latitude θ = 1.7, corresponding to the dashed line
in Fig. 1. In this case, the imaginary part of θ1

± has a significant effect
on the thermal weights.

the excited and ground states becomes limβ→+∞ e−2β

e2β = 0,
leading the IGP to converge to the geometric phase of the
ground state. In the infinite temperature limit (β → 0), the
relative weight becomes limβ→0

e−2β

e2β = 1. In this case, the
Hermitian density matrix corresponds to the maximally mixed
state, where each level has equal thermal weight, and the IGP
loses its resemblance to the ground-state geometric phase.
Turning to PT -symmetric systems, the parallel-transport con-
dition eliminates the dynamic phase from the total phase,
leaving a complex θ1

±. The imaginary part of θ1
± modifies the

thermal weights of the two levels to exp[∓(2β −
√

5π sin θ
2 )],

which will be referred to as the “effective thermal weights.”
Notably, in the low-temperature limit, the behavior of the
IGP can still mirror that of the corresponding Hermitian sys-
tem. In Fig. 1, the domain where β >

√
5π sin θ

4 corresponds
to the phase at “effective” positive temperatures for the non-
Hermitian quantum system. The arc β =

√
5π sin θ

4 signifies
the “effective” infinite-temperature threshold. Conversely, the
regime where β <

√
5π sin θ

4 corresponds to the phase at “ef-
fective” negative temperatures. In this scenario, the original
temperature T along with the imaginary part of θ1

± deter-
mines the relative thermal distribution between the excited
and ground states.

At the singular points A and B, the corresponding criti-

cal inverse temperature is βc =
√

5π sin θA,B

4 = 1.66. Moreover,
Eq. (55) implies

θ2
+(θA) − θ2

−(θA) = π, θ2
+(θB) − θ2

−(θB) = −π. (57)

When the system is at temperature Tc = 1
βc

and evolves along
a circle of latitude θ < θA, the system resides in the “effec-
tive” positive-temperature region, as it is situated below point
A in Fig. 1. In this scenario, the effective thermal weight of
the ground state exceeds that of the excited state. Thus, θG re-
sembles the geometric phase of the ground state, θ2

−(θ ). Upon
crossing θA from below, the system with θ > θA enters the
“effective” negative-temperature regime, causing the relative
effective thermal weights of the ground and excited states to
reverse. The IGP then begins to resemble the geometric phase
of the excited state, θ2

+(θ ). According to Eq. (57), the IGP

undergoes a π -jump, indicating that the geometric nature of
the evolution along the circle of θ < θA is essentially different
from that of the evolution along the circle of θ > θA at Tc.
Similar phenomena occur when crossing θB at Tc as well. The
IGP experiences a −π -jump according to Eq. (57). To better
visualize the phenomena, we plot the IGP versus the latitude
θ at βc = 1.66 in the top panel of Fig. 2. The behavior of the
IGP totally agrees with the above analysis.

Similarly, the geometric nature of the evolution along a cir-
cle of fixed latitude θ = θA changes as the inverse temperature
crosses βc. This transition is clearly depicted in the bottom
panel of Fig. 2. We refer to this nonanalytical behavior of the
IGP as signaling a geometric phase transition. Explicitly, the
system at point A is in the “effective” positive-temperature
phase when β > βc and the IGP resembles θ2

−(C) = π
2 , the

real-valued geometric phase of the ground state. After cross-
ing βc, the system enters the “effective” negative-temperature
phase with β < βc, and the IGP changes to resemble θ2

+(C) =
−π

2 ≡ 3π
2 mod 2π , the real-valued geometric phase of the

excited state.
When θ �= θA,B, the IGP represents a continuous interpo-

lation between the θ2 of the excited and ground states as
temperature varies. If θ = π

2 , Eq. (55) implies θ2
− = θ2

+ = π

and indicates that the IGP is a trivial interpolation. To present
a nontrivial interpolation, we choose θ = 1.70, which leads to
θ2
− ≈ 3.75 and θ2

+ ≈ 2.53. The behavior of θG(C) is illustrated
in Fig. 3, where β transitions from 0 (the infinite-temperature
limit) to +∞ (the low-temperature limit) displayed on a log-
arithmic scale. In the scenario in which β → +∞, θG(C) →
θ2
−(C). Conversely, when β approaches 0, θG(C) approximates

θ2
+(C).

B. 1D PT -symmetric Su-Schrieffer-Heeger model

Our second example investigates a spatially periodic sys-
tem, namely the bipartite dissipative model with staggered
imaginary on-site potentials and alternating hopping param-
eters [86] inspired by the Su-Schrieffer-Heeger (SSH) model
[87]. The Hamiltonian can be written as

H =
∑

m

[εAc†
mcm + εBd†

mdm + v(c†
mdm + d†

mcm)

+ v′(c†
mdm+1 + d†

m+1cm)]. (58)

Here, A and B are the two sites of the mth cell, εA and εB =
εA − 2i� are the associated on-site energies with � denoting
the imaginary potential, and v and v′ are the intracell and
intercell hopping coefficients, respectively. The Hamiltonian
with a periodic boundary condition can be cast into the Bloch
form

H =
∑

k

(c†
k , d†

k )

[
εA vk

v∗
k εB

](
ck

dk

)
, (59)

where vk = v + v′eik . We will set εA = −εB = i� to sym-
metrize the on-site potentials. Introducing cos φk ≡ i�√

|vk |2−�2
,

which is a complex trigonometric function, the eigenvalues
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and eigenstates of H and H† are given as follows:

E±(k) = ±
√

|vk|2 − �2,

|�+〉 =
(

vk
|vk | cos φk

2

sin φk

2

)
, |�−〉 =

(
− vk

|vk | sin φk

2

cos φk

2

)
,

|�+〉 =
(

vk
|vk | cos∗ φk

2

sin∗ φk

2

)
, |�−〉 =

(
− vk

|vk | sin∗ φk

2

cos∗ φk

2

)
. (60)

If |vk|2 > �2, the model is in PT -symmetric phase and E±(k)
is real-valued. Using Eq. (22), the Berry phase for each energy
level associated with the first Brillouin zone is

θ1
±(BZ) = i

∫
BZ

〈�±| ∂

∂k
|�±〉dk. (61)

Introducing the parameters q = v′
v

, η = �
v

, x = 4q
(q+1)2 , and

y = 4q
(q+1)2−η2 and following Ref. [83], the expression of θ1

±
becomes

θ1
±(BZ) = π�(q − 1)

± iη√
(q + 1)2 − η2

[
K (y) + q − 1

q + 1
�(x, y)

]
.

(62)

Here �(q − 1) is the step function, and

K (y) =
∫ π

2

0

dk√
1 − y sin2 k

,

�(x, y) =
∫ π

2

0

dk

(1 − x sin2 k)
√

1 − y sin2 k
(63)

are elliptic integrals. The presence of those integrals makes it
difficult to derive an analytic expression for Sproper. Neverthe-
less, θ2

± can still be obtained by extracting the real part of θ1
±,

as previously mentioned. When q changes from 1− to 1+, the
value of θ2

± experiences a π -jump due to the step function,
which is similar to the well-known result of the Hermitian
SSH model [88], as the topological structure of the energy
bands changes.

If |vk|2 < �2, the system is in the broken PT -symmetry
regime, rendering the previous formalism inapplicable. Uti-
lizing the previously introduced parameters, the condition for
preserving PT -symmetry can be expressed as 1 + 2q cos k +
q2 > η2, implying

(q + 1)2 − η2 > 2q(1 − cos k) � 4q, (64)

which is equivalent to 0 < y < 1 (note that q > 0). In this
case, the elliptic integrals in Eq. (63) are both real-valued.
Accordingly, Eq. (62) indicates that θ2

±(BZ) = Reθ1
±(BZ) =

π�(q − 1). Solving the inequality y > 1, we get the broken
PT -symmetry regime on the (q, η)-plane determined by 1 <

q < η + 1 or 1 − η < q < 1. In this case, the elliptic integrals
in Eq. (63) become singular since 1 − y sin2 k has zero points.

FIG. 4. Top: Plot of the IGP in the (q, η)-plane. The gray region
represents the PT -broken symmetry phase. In the PT -symmetric
regions where q + η < 1 and q > η + 1, the value of θG(BZ) is 0 and
π , respectively. At the point (q, η) = (1, 0), the IGP experiences a π -
jump. Bottom: Plot of the IGP in the (q, T )-plane with η = 0.3. The
region where 0.7 < q < 1.3 represents the PT -broken symmetry
phase, which crosses the q = 1 line. Similarly, in the two PT -
symmetric regions where q < 0.7 = 1 − η and q > 1.3 = 1 + η, the
value of the IGP is 0 and π , respectively.

According to Eq. (43), the IGP of the PT -symmetric SSH
model is

θG(BZ) = arg

[
e−βE+(0)eiθ1

+(BZ) + e−βE−(0)eiθ1
−(BZ)

e−βE+(0) + e−βE−(0)

]

= arg
[
e−βE+(0)−Imθ1

+eiθ2
+ + e−βE−(0)−Imθ1

−eiθ2
−
]

= arg
[(

eβE−(0)+Imθ1
− + e−βE−(0)−Imθ1

−
)
eiθ2

−
]

= θ2
−, (65)

where the label “BZ” is suppressed after the second line
for simplicity, and E+ = −E−, Imθ1

+ = −Imθ1
−, and θ2

+ = θ2
−

(since π = −π mod 2π ) have been applied. Unlike the first
example, in the PT -symmetric phase, the IGP of the SSH
model is equal to the real-valued geometric phase θ2 of the
ground state and independent of temperature. Consequently,
the IGP in this model cannot probe any geometric phase tran-
sition induced by temperature. However, it inherits the same
topological properties as the geometric phase for pure states,
meaning it can detect the same geometric phase transition
induced by q and η as θ2 does.

Figure 4 illustrates the behavior of θG on the (q, η)- and
(q, T )-planes, respectively. In the top panel, the IGP is plotted
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in the PT -symmetric regions with q + η < 1 and q > η + 1.
The point (q, η) = (1, 0) is the gapless point where the ge-
ometric phase jumps. The IGP in the two PT -symmetric
regions takes the values 0 and π , respectively. Therefore,
the IGP is constant within the same PT -symmetric region
but differs from the IGP on the other region. In the bottom
panel, we plot the IGP in the (q, T )-plane when η = 0.3. At
finite temperatures, the IGP exhibits the same features of the
geometric phase for pure states: Its values are, respectively, 0
and π in the two PT -symmetric regions. However, the broken
PT -symmetry region separates the two regions. Thus, the
IGP from the PT -symmetric formalism is disrupted. Never-
theless, the IGP reveals the different geometric phases as q and
η vary. For the PT -symmetric SSH model studied here, the
independence of the IGP with respect to temperature allows
the determination of θ2 at zero temperature even when the
system is at finite temperature.

C. Implications

On the one hand, PTQM may be realized in driven sys-
tems. For example, Ref. [89] demonstrated a PT -symmetric
quantum system with two coupled optical waveguides se-
lectively pumped. By modulating the refractive index along
the waveguides, the Hamiltonian may be engineered to the
desired form. On the other hand, the IGP of mixed states
in Hermitian systems has been measured by using a Mach-
Zehnder interferometer setup demonstrated in Refs. [62,65],
where mixed states were generated through two methods: De-
cohering pure states with birefringent elements, and creating
a non-maximally-entangled state of two photons followed by
tracing out one photon.

As shown in this work, the IGP of PTQM is in general
complex-valued, where the real part represents a phase factor
while the imaginary part adjusts the distribution. By applying
the phase measurement [62,65] to extract the IGP of mixed
states in PT -symmetric systems, it is likely we will extract
only the thermal average of the IGPs of individual states. Nev-
ertheless, one may compare the population distribution of the
evolved system with that of a corresponding system without
the accumulation of the IGP. The difference in the distribution
is due to the imaginary part of the IGP of the PTQM system.
Therefore, the real and imaginary parts of the IGP of PTQM
systems seem to be measurable, even though the procedure is
more complicated due to the lack of Hermiticity.

V. CONCLUSION

The concept of the geometric phase has been generalized
to PTQM via the introduction of parallel-transport. For pure-
states, the parallel-transport conditions for the eigenstates of
H and H0 lead to distinct generalizations of the geometric
phases, θ1 and θ2, as obtained by conventional methods. In
general, θ1 is complex and θ2 is its real part. As θ1 arises from
the non-Hermitian Hamiltonian, it is generalized to mixed
states in PTQM. Moreover, the discussion of the IGP of
mixed states is meaningful after the dynamic phase has been
removed by the parallel-transport condition. The imaginary
part of the IGP of PTQM affects the thermal weights and
introduces effective temperatures. Consequently, even in a

simple two-level system, the IGP of PTQM can display in-
teresting behaviors unavailable in conventional QM, such as
the geometric phase transition of a two-level system at finite
temperature. For more complicated non-Hermitian quantum
systems, the generalized IGP may serve as a probe to uncover
intriguing characteristics due to geometry and topology.
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APPENDIX A: DYNAMIC EQUATION OF |�0〉
Recalling that H = SH0S−1 and |�0〉 = S−1|�〉, we sub-

stitute them into Eq. (5) and get

i
d

dt
(S|�0〉) = iṠ|�0〉 + iS

d

dt
|�0〉

= H − i

2
SS†[(Ṡ−1)†S−1 + (S−1)†Ṡ−1]S|�0〉

=
{

HS − i

2
[SS†(Ṡ−1)† + SṠ−1S]

}
|�0〉. (A1)

After moving the first term iṠ|�0〉 to the right-hand side and
left-multiplying S−1 on both sides, we obtain the dynamic
equation of |�0〉:

i
d

dt
|�0〉 =

{
H0 + i

2
[Ṡ−1S − S†(Ṡ−1)†]

}
|�0〉. (A2)

If S is a proper mapping satisfying

Ṡ−1
properSproper = (

Ṡ−1
properSproper

)†
, (A3)

the dynamic equation |�0〉 reduces to Eq. (7), the ordinary
Schödinger equation. Thus, the time-dependent PTQM is
“mapped to” the conventional QM by Sproper.

APPENDIX B: DETAILS OF THE GEOMETRIC PHASE OF
PURE STATES

To derive the geometric phase shown in Eq. (22), the ex-
pansion (20) is plugged into Eq. (6), yielding

i|�̇〉 =
∑

m

[(iċm + cmẼm)eiθ1
Dm |�m〉 + cmeiθ1

Dm |�̇m〉], (B1)

where Ẽm = Em + i〈�0
m|S−1Ṡ|�0

m〉. Applying Eq. (6), the left-
hand side becomes

i|�̇〉 =
∑

m

cmeiθ1
Dm (Em − iSṠ−1)|�m〉. (B2)

Multiplying the above equations by 〈�n| from the left and
applying the relation [45]

〈�n|�̇m〉 = 〈�n|Ḣ |�m〉
En − Em

for m �= n, (B3)
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we get

ċn = icn〈�n|�̇n〉

+ i
∑
m �=n

cmei(θ1
Dm−θ1

Dn )〈�n|
(

Ḣ

En − Em
+ iSṠ−1

)
|�m〉.

(B4)

As in conventional quantum mechanics, the adiabatic approx-
imation is employed, so level-crossing terms (i.e., terms with
m �= n) are dropped. We finally get

ċn(t )
.= icn(t )〈�n| d

dt
|�n〉, (B5)

whose solution is

cn(t ) ≈ cn(0)e− ∫ t
0 dt ′〈�n(t ′ )| d

dt ′ |�n(t ′ )〉. (B6)

Next, we verify that

θ2
n (τ ) = i

∮
C

dt
〈
�0

n (t )
∣∣ d

dt

∣∣�0
n (t )

〉
= i

∮
C

dR ·
[
〈�n|W ∇|�n〉 + 1

2
〈�n|(∇W )|�n〉

]

= θB
n (B7)

subject to Ṡ−1S = (Ṡ−1S)†. Using |�n(t )〉 = W (t )|�n(t )〉 and
W † = W , the first term on the right-hand side of Eq. (18) is
simply θ1

n , which can be further expressed as

θ1
n = i

∮
dt〈�n(t )| d

dt
|�n(t )〉

= i
∮

dt
〈
�0

n (t )
∣∣S−1Ṡ

∣∣�0
n (t )

〉+ i
∮

dt
〈
�0

n (t )
∣∣ d

dt

∣∣�0
n (t )

〉
= i

∮
dt
〈
�0

n (t )
∣∣S−1Ṡ

∣∣�0
n (t )

〉+ θ2
n . (B8)

The second term on the right-hand side of Eq. (18) is

i

2

∮
C
〈�n(t )|Ẇ |�n(t )〉dt,

= i

2

∮
C
〈�n(t )|(Ṡ−1)†S−1 + (S−1)†Ṡ−1|�n(t )〉dt,

= i

2

∮
C

〈
�0

n (t )
∣∣[S†(Ṡ−1)† + Ṡ−1S]

∣∣�0
n (t )

〉
dt,

= −i
∮

C

〈
�0

n (t )
∣∣S−1Ṡ

∣∣�0
n (t )

〉
dt, (B9)

where we have applied S†(Ṡ−1)† = Ṡ−1S from the proper
mapping condition. Along with Eq. (B8), we conclude that
θB

n = θ2
n .

APPENDIX C: DETAILS OF GEOMETRIC PHASE OF
THERMAL STATES

To verify that U (t ) in Eq. (35) satisfies the
parallel-transport condition (33), we need the following

identities:

U̇ (t ) = −
∑

n

〈�n(t )| d

dt
|�n(t )〉U (t )

+
∑

n

e− ∫ 〈�n(t ′ )| d
dt ′ |�n(t ′ )〉dt ′

(
d

dt
|�n(t )〉

)
〈�n(0)|,

U −1(t ) =
∑

n

e
∫ 〈�n(t ′ )| d

dt ′ |�n(t ′ )〉dt ′ |�n(0)〉〈�n(t )|.

They lead to Eq. (33):

〈�n(t )|U̇ (t )U −1(t )|�n(t )〉

= 〈�n(t )|
[
−〈�n(t )| d

dt
|�n(t )〉

+
(

d

dt
|�n(t )〉

)
〈�n(t )|

]
|�n(t )〉

= −〈�n(t )| d

dt
|�n(t )〉 + 〈�n(t )| d

dt
|�n(t )〉

= 0. (C1)

Note that
∫ 〈�n(t ′)| d

dt ′ |�n(t ′)〉dt ′ is complex in general, so
U −1 �= U † in general. Thus, U does not necessarily represent
a unitary evolution.

APPENDIX D: PROPER MAPPING OF THE
TWO-LEVEL SYSTEM

To search for a proper mapping S of our example in the
main text, we first notice that W = (S−1)†S−1, which is in-
variant under a U (N ) transformation u: S′−1 = uS−1 → W =
(S′−1)†S′−1. We can use this degree of freedom to obtain a
proper S. For convenience, we initially take W = (S−1)2 or
conversely S−1 = √

W since W is already given by Eq. (47).
Since W is Hermitian, this kind of S has at least two solutions:

S−1
± =

(√
a2 − b2 ± a ibe−iπ

−ibeiπ
√

a2 − b2 ± a

)
√

2a(
√

a2−b2±a)
. (D1)

Take a = 3 and b = √
5 and choose S = S+ without loss of

generality. Then

S =

⎛
⎜⎝

√
15
2

2 − 1
2 i
√

3
2 e−iφ

1
2 i
√

3
2 eiφ

√
15
2

2

⎞
⎟⎠ (D2)

and the original Hamiltonian is converted to

H0 = S−1HS =
(

ε + 2 cos θ 2e−iφ sin θ

2eiφ sin θ ε − 2 cos θ

)
. (D3)

The eigenvector of H0 associated with E+ = ε + 2 is

|�0
+(θ, φ)〉 =

⎛
⎝ e−iφ (cot θ+csc θ )√

(cot θ+csc θ )2+1
1√

(cot θ+csc θ )2+1

⎞
⎠, (D4)
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which leads to

〈�0
+|S−1dS|�0

+〉 = −1

4
(
√

5 sin θ + i cos θ )dφ,

i
∮

C
〈�0

+|S−1dS|�0
+〉dt = π

2
(cos θ − i

√
5 sin θ ). (D5)

Apparently, the second term of θ1
+ is complex in this case.

To make it purely imaginary, we impose a unitary transfor-
mation S−1 = uS−1

proper , where u can be fixed by the condition
of a proper mapping Ṡ−1

proper Sproper = (Ṡ−1
proper Sproper )†. This is

equivalent to solving the equation

u̇ = 1
2 [Ṡ−1S − (Ṡ−1S)†]u (D6)

subject to the initial condition u(0) = 12×2. The general solu-
tion is quite involved. Fortunately, if the system evolves along
a circle of latitude such that dθ = 0, an analytical expression
of u can be found as

u(φ) =
(

e
iφ
4 0

0 e− iφ
4

)
. (D7)

Accordingly, the proper mapping S is

Sproper = Su =
⎛
⎝ 1

2

√
15
2 e

iφ
4 − 1

2 i
√

3
2 e− 5iφ

4

1
2 i
√

3
2 e

5iφ
4

1
2

√
15
2 e− iφ

4

⎞
⎠. (D8)
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