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Control of the local photonic density of states above magneto-optical metamaterials
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The local density of states (LDOS) of electromagnetic field drives many basic processes associated with
light-matter interaction such as the thermal emission of objects, the spontaneous emission of quantum systems,
or the fluctuation-induced electromagnetic forces on molecules. Here, we study the LDOS in the close vicinity
of magneto-optical metamaterials under the influence of an external magnetic field and demonstrate that it can
be efficiently altered in a narrow or a broad spectral range simply by changing the spatial orientation or the
magnitude of this field. This result paves the way for an active control of the photonic density of states at deep
subwavelength scale.
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I. INTRODUCTION

Tailoring the photonic density of states in the environment
of a textured solid at the subwavelength scale is of prime
importance for controlling the thermal emission of solids,
the spontaneous emission, and the decay rate (fluorescence)
of quantum emitters placed in the neighborhood of these
structures. This tuning can also be used to modify the force
mediated by the vacuum fluctuations on neutral objects such
as atoms or molecules. Since the pioneering work of Purcell
[1] on the modification of the spontaneous emission of an
object by changing its surrounding environment many strate-
gies have been proposed to sculpt the local density of states
(LDOS) at a length scale smaller than the wavelength of
electromagnetic field. Hence, nanophotonic structures such as
photonic crystals [2,3], surface gratings [4], two dimensional
systems [5,6], or complex nanostructures [7,8] were used
to efficiently enhance or inhibit the spontaneous emission
[9,10] and the decay rates of molecules [11,12]. In this paper,
we explore the possibility of tuning the photonic states in
the close vicinity of nonreciprocal metamaterials made with
magneto-optical materials using an external magnetic field.
We show that the LDOS can be efficiently controlled simply
by changing the spatial orientation or the magnitude of this
field.

II. THEORY

A. Geometry and optical properties

To start, let us consider a nonreciprocal metamaterial made
with a network of magneto-optical nanostructures of permit-
tivity ¯̄ε j , deposited on an isotropic substrate of permittivity
εsub as sketched in Fig. 1. We assume this system is at equilib-
rium at temperature T with its surrounding environment and
it is uniformly exposed to an external magnetic field Hext in
an arbitrary direction. When Hext is parallel to the normal z
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of the substrate, the permittivity tensor associated with each
magneto-optical nanostructure takes the following form in the
canonical basis [13]:

¯̄ε j (Hext ) =

⎛
⎜⎝

ε j1 −iε j2 0

iε j2 ε j1 0

0 0 ε j3

⎞
⎟⎠, (1)

where ε j1, ε j2, and ε j3 generally depend on the magnitude
Hext of magnetic field. When the spatial orientation of Hext

is changed by rotations in the canonical basis (x, y, z) as il-
lustrated in Fig. 1, the permittivity tensor associated with each
nanostructure is readily derived from expression (2) by simple
composition rules with the corresponding rotation matrices.
In the case where Hext is in the (x, z) plane making an angle
θ with the normal z to the surface the permittivity tensor of
magneto-optical material reads

¯̄ε j =
⎛
⎝ε j1 cos2 θ + ε j3 sin2 θ −iε j2 cos θ 1

2 sin(2θ )(ε j1 − ε j3)
iε j2 cos θ ε j1 iε j2 sin θ

1
2 sin(2θ )(ε j1 − ε j3) −iε j2 sin θ ε j1 sin2 θ + ε j3 cos2 θ

⎞
⎠.

(2)

B. Local density of states of electromagnetic field

The LDOS ρ(r, ω) of electromagnetic field at a given point
r = (x, y, z) and frequency ω can be calculated from the
density of energy of electromagnetic field

u(r, ω) = ε0 <| E(r, ω) |2> +μ0 <| H(r, ω) |2>, (3)

associated with the average value of local electric field E and
magnetic field H using the general relation

u(r, ω) = ρ(r, ω)�(ω, T ) (4)

between this density and the LDOS. Here, �(T, ω) =
h̄ω/[e

h̄ω
kBT − 1] denotes the mean energy of a harmonic os-

cillator at temperature T . When the size of nanostructures is
much smaller than the thermal wavelength λth = h̄c/kBT and
the separation distance between these nanostructures is suf-
ficiently large they behave as simple dipoles [14–16]. In this
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FIG. 1. Sketch of a nonreciprocal metamaterial made with
magneto-optical nanostructures of permittivity ¯̄ε j deposited on an
isotropic substrate of permittivity εsub. The structure is assumed at
equilibrium at temperature T with its surrounding environment and
is submitted to a uniform external magnetic field Hext in an arbitrary
angular orientation.

case, the electric field can be related to the dipolar moments
pi of nanostructures as follows:

E(r) = ω2μ0

N∑
i=1

G EE (r, ri)pi, (5)

with μ0 the vacuum permeability and G EE (r, r′) the dyadic
Green tensor between the point r and r′ inside the set of N
nanostructures. On the other hand, each dipolar moment can
be decomposed into the form

pi = pfluc
i + pind

i (6)

where the first term on the right-hand side is its fluctuating
part while the second term is the part induced by all others
dipolar and it reads

pind
i = k2

0
¯̄αi

∑
j �=i

G EE (ri, rj)p j (7)

¯̄αi being the nanostructure polarizability, k0 = ω
c the

wavenumber in vacuum, and ε0 is the vacuum permittivity. In-
serting expression (7) into relation (6) it immediately follows
the relation between the dipolar moments and their fluctuating
part

pi =
N∑

j=1

T−1
EE ,i jp

fluc
j (8)

where TEE is a block matrix of component

TEE ,i j = δi j1 − (1 − δi j )k
2
0

¯̄αiG
EE (ri, rj). (9)

It follows that the local electric field can be written in terms
of the fluctuating dipolar moments as [17,18]

E(r) = ω2μ0

N∑
j=1

GEE (r, rj)pfluc
j , (10)

where the full electric-electric Green’s tensor takes the form

GEE (r, rj) =
N∑

i=1

G EE (r, ri)T
−1
EE ,i j . (11)

FIG. 2. Coordinates of the system associated with the Green’s
tensor between a source S (dipole) located at point r and an observa-
tion point O at r′ above a substrate.

For an ensemble of dipoles in free space the propagator reads

G EE (r′, r′′) ≡ G EE
0 (r′, r′′)

= exp(ik0r)

4πr

[(
1 + ik0r − 1

k2
0r2

)
1

+ 3 − 3ik0r − k2
0r2

k2
0r2

r̂ ⊗ r̂
]
, (12)

where r̂ ≡ r/r, r = r′ − r′′, and r =| r | and 1 stands for the
unit dyadic tensor. When the dipoles are located in vacuum
above a solid material the propagator reads

G EE (r′, r′′) ≡ G EE
0 (r′, r′′) + G EE ,sc(r′, r′′), (13)

where the second term on the right-hand side describes the
scattering by the interface between the vacuum and material.

C. Electric-electric dyadic Green’s tensor for the reflected field

When the dipoles are located in vacuum above a solid
material, the propagator reads

G EE (r′, r′′) ≡ G EE
0 (r′, r′′) + G EE ,sc(r′, r′′), (14)

where the second term on the right-hand side describes the
scattering by the interface between the vacuum and material.
This scattering term can be written as an integral with respect
to the modulus κ of the modulus of the parallel component
κ = (kx, ky) of wavevector (i.e., parallel to the x − y plane)
(see Fig. 2) as [19]

G EE ,sc(r′, r′′) =
∫ ∞

0

dκ

2π
κ

i

2kz
exp(ikz | z + z′ |)

× [rsSEE + rpPEE ] (15)

where kz =
√

k2
0 − κ2 is the normal component of the

wavevector in vacuum while rs = kz−kz2

kz+kz2
and rp = ε2kz−kz2

ε2kz+kz2
are

the ordinary Fresnel coefficients of the interface associated to
waves of polarization s and p, respectively, kz2 =

√
ε2k2

0 − κ2

being the normal component of wavevector inside the sub-
strate. In this expression the scattering matrix S and P can be
readily calculated using the Sipe formalism [20] and they read

SEE =

⎛
⎜⎝

A −C 0

−C B 0

0 0 0

⎞
⎟⎠, (16)
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PEE = 1

k2
0

⎛
⎜⎝

−k2
z B −k2

xC −kzκE

−k2
xC −k2

z A −kzκD

kzκE kzκD κ2F

⎞
⎟⎠, (17)

with

A = 1
2 [J0(κd ) + J2(κd ) cos(2φ)], (18)

B = 1
2 [J0(κd ) − J2(κd ) cos(2φ)], (19)

C = 1
2 J2(κd ) sin(2φ), (20)

D = iJ1(κd ) sin(φ), (21)

E = iJ1(κd ) cos(φ), (22)

F = J0(κd ), (23)

Ji denoting the Bessel function of order i, d =√
(x′ − x′′)2 + (y′ − y′′)2 the distance between the projection

of two points r′ and r′′ on the x − y plane and φ is the angle
of this projected vector and the x axis (Fig. 2).

D. Magnetic-electric dyadic Green’s tensor for the reflected field

Let us start by considering the case of a set of dipoles in
vacuum. The local magnetic field H is related to the electric
field E by the Faraday relation

H = i

ωμ0
∇ × E. (24)

With a single electric dipole the electric field reads

E = ω2μ0G
EE
0 p (25)

so that

H = iω∇ × G EE
0 p. (26)

Thus it immediately follows

G HE
0 = ∇ × G EE

0 . (27)

After a straightforward calculation we get

G HE
0 (r′, r′′) = exp(ik0r)

4πr
k0

r̂ ⊗ 1

r

(
i − 1

k0r

)
, (28)

where r ⊗ 1 denotes the cross product of r with each column
of the unit dyadic tensor. Following the same reasoning as for
the electric-electric Green’s tensor, the full magnetic-electric
Green’s tensor reads

GHE (r, rj) =
N∑

i=1

G HE (r, ri)T
−1
HE ,i j, (29)

where THE is obtained by substituting G EE → G HE into
TEE . It follows that the local magnetic fields reads in terms
of fluctuating electric dipoles

H(r) = iω
N∑

j=1

GHE (r, rj)pfluc
j . (30)

Above an interface we must add the scattering part of Green’s
tensor to the propagator in vacuum, which is given by

G HE ,sc(r′, r′′) = ∇ × G EE ,sc(r′, r′′)

=
∫ ∞

0

dκ

2π
κ

i

2kz
exp(ikz | z + z′ |)

× [rsSHE + rpPHE ]. (31)

In this expression

SHE =

⎛
⎜⎝

ikzC −ikzB 0

ikzA −ikzC 0

0 0 0

⎞
⎟⎠ (32)

and

PHE =

⎛
⎜⎝

ik3
z C ik3

z A ik2
z κD

−ik3
z B −ik3

z C −ik2
z κE

0 0 0

⎞
⎟⎠. (33)

E. Correlations functions of fields

It follows from expressions (10) and (30) that the correla-
tion functions of electric and magnetic fields read

<| E(r, ω) |2>= ω4μ2
0

∑
i, j

∑
l,k,n

GEE
lk (r, ri)

× GEE∗
ln (r, rj)

〈
pf

i,k pf ∗
j,n

〉
, (34)

<| H(r, ω) |2>= − ω2
∑
i, j

∑
l,k,n

GHE
lk (r, ri)

× GHE∗
ln (r, rj)

〈
pf

i,k pf ∗
j,n

〉
, (35)

where GAB
lk denotes the lk component of Green tensor and pf

i,k
is the kth component of ith fluctuating dipole. But according
to the fluctuation dissipation theorem [21], the correlation
functions of dipolar moments read〈

pf
i,l p f ∗

j,n

〉 = ε0

iω
( ¯̄αi,ln − ¯̄α∗

i,nl )�(ω, Ti )δi jδln, (36)

where �(T, ω) = h̄ω/[e
h̄ω

kBT − 1] denotes the mean energy of
a harmonic oscillator at temperature T , ¯̄αi is the polarizability
associated to the ith dipole and δαβ is the usual Kronecker
symbol. As, the polarizability tensor is concerned, it can be
described by taking into account the radiative corrections,
using the following expression [22]:

¯̄αi(ω) =
(

¯̄1 − i
k3

6π
¯̄α0i

)−1

¯̄α0i, (37)

where ¯̄α0i denotes the quasistatic polarizability of the ith par-
ticle and k = ω/c, c being the speed of light in vacuum. For
spherical particles in vacuum, the quasistatic polarizability
takes the simple form

¯̄α0i(ω) = 4πR3(¯̄εi − ¯̄1)( ¯̄εi + 2¯̄1)−1, (38)

where R is the radius of particles. Of course other shapes
can be considered without changing the general formalism
previously introduced.
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F. Resonance frequencies of a small magneto-optical particle

Let us consider a simple particle of permittivity ¯̄ε under the
action of an external magnetic field Hext, which is in the (x, z)
plane and makes an angle θ with the z axis. The resonance
frequencies of the particle are the frequencies where the po-
larizability diverges without loss. But, according to expression
(38), the quasistatic polarizability is resonant in vacuum when
the matrix (¯̄ε + 2¯̄1)

−1
diverges that is when det ( ¯̄ε + 2¯̄1) = 0.

It is easy to show, after a straightforward calculation that

det
(
¯̄ε + 2¯̄1

) = adf + ae2 + b2 f − 2bce − c2d, (39)

with

a = ε1 cos2 θ + ε3 sin2 θ + 2, (40)

b = iε2 cos θ, (41)

c = 1
2 sin(2θ )(ε1 − ε3), (42)

d = ε1 + 2, (43)

e = iε2 sin θ, (44)

f = ε1 sin2 θ + ε3 cos2 θ + 2, (45)

When θ = 0 (i.e., Hext is parallel to z) then c = e = 0 and
the resonant modes frequencies are the roots of the following
equation:

f (ad + b2) = 0. (46)

Written in term of components of permittivity tensor, this
equation decomposes into

ε3(ω) + 2 = 0 (47)

and

[ε1(ω, Hext ) + 2]2 − ε2
2 (ω, Hext ) = 0. (48)

The first equation is independent on the magnetic field (it
corresponds to the vertical bright branch in Fig. 3) and it cor-
responds to the classical resonance condition for a reciprocal
spherical particle of permittivity ε3 in vacuum. On the other
hand, Eq. (48) can be decomposed into two distinct equations,

ε1(ω, Hext ) − ε2(ω, Hext ) + 2 = 0, (49)

ε1(ω, Hext ) + ε2(ω, Hext ) + 2 = 0, (50)

which both depend on the magnitude of external magnetic
field as shown in Fig. 3 for the two oblique branches. This
spectral splitting is similar to the Zeeman splitting of the
electron levels inside a magnetic field. When θ = π

2 (i.e.,
Hext is parallel to x) then b = c = 0 and the resonant modes
frequencies are the roots of the following equation:

a(df + e2) = 0, (51)

FIG. 3. Resonances frequencies of an InSb particle in the
(ω, Hext ) plane. The plot shows the function f (ω, Hext ) = ln(|(ε3 +
2)[(ε1 + 2)2 − ε2

2]|−1).

which gives exactly the same roots as Eqs. (49) and
(50) confirming that the resonance frequencies of a single
magneto-optical particle does not obviously depend on the
orientation of external magnetic field. Of course, this is not
true anymore in the presence of other particles where these
resonances closely depend on the interplay between the dif-
ferent particles and therefore on their spatial distribution.

III. TAILORING THE LDOS

To show the potential of nonreciprocal metamaterials for
controlling the photonic states we calculate the LDOS in the
neighborhood of simple networks. Here the goal is not to
make an exhaustive study of the LDOS tailoring but to simply
highlight the potential of magneto-optical metamaterials to
control it. To this end we study networks made with magneto-
optical nanoparticles of indium antimoniure (InSb). In this
case [23]

ε1(Hext )=ε∞

(
1 + ω2

L − ω2
T

ω2
T − ω2 − i�ω

+ ω2
p(ω + iγ )

ω
[
ω2

c − (ω + iγ )2
])

,

ε2(Hext )=
ε∞ω2

pωc

ω
[
(ω + iγ )2 − ω2

c

] ,

ε3 =ε∞

(
1 + ω2

L − ω2
T

ω2
T − ω2 − i�ω

− ω2
p

ω(ω + iγ )

)
. (52)

For the numerical applications we assume that the dielectric
constant at infinite frequency is ε∞ = 15.7, the longitudi-
nal optical phonon frequency is ωL = 3.62 × 1013 rad s−1,
the transverse optical phonon frequency is ωT = 3.39 ×
1013 rad s−1, the plasma frequency of free carriers of density
ωp = ( ne2

m∗ε0ε∞
)1/2 with the density n = 1.36 × 1019 cm−3. The

effective mass is m∗ = 7.29 × 10−32 kg, ε0 being the vacuum
permittivity, � = 5.65 × 1011 rad s−1 is the phonon damping
constant, γ = 3.39 × 1012 rad s−1 is the free carrier damping
constant, and ωc = eHext/m∗ is the cyclotron frequency with
e the electron charge.
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FIG. 4. LDOS of electromagnetic field at z = 3R in vacuum
above a InSb spherical particle of radius R = 50 nm placed on a
substrate for an external magnetic field Hext (magnitude Hext = 5 T)
oriented along the x and z axis. The substrate is a semi-infinite trans-
parent substrate (εsub = 4). The double-dashed curve corresponds to
the LDOS above the InSb particle without substrate. The system is at
equilibrium at temperature T = 300 K. The LDOS ρ is normalized
by the LDOS ρvac = ω2

π2c3 in vacuum.

A. Single particle

We first consider the simplest case shown in Fig. 4 where
a single InSb nanoparticle is deposited on a transparent
substrate (εsub = 4) and we calculate the LDOS above this
particle when the external magnetic field is rotated from
the direction normal to the substrate surface to the direction
parallel to it. We observe that the LDOS is mainly pro-
nounced at the resonance frequencies solutions of Eqs. (49)
and (50). Moreover the presence of a substrate significantly
enhances the LDOS. This result is well known since the pi-
oneering studies of Drexhage et al. [11] and Chance et al.
[12] on the molecular fluorescence emission of excited atoms
or molecules, which strongly depends on their close envi-
ronment. On the other hand, the LDOS above the particle is
qualitatively independent on the orientation of applied mag-
netic field (Fig. 4). Indeed, in a single particle system there is
no configurational resonance [24], so that the LDOS spectrum
keeps the same shape when the magnetic field is rotated. But
the situation radically changes in more complex networks
where the interplay between the different particles (i.e., col-
lective modes) start to play a role.

B. Dimer of particles

To illustrate these changes we consider a simple dimer of
InSb particles in vacuum and above substrate and we inves-
tigate its behavior under a change in the orientation of the
applied magnetic field. The LDOS at z = 3R between the two
particles plotted in Fig. 5(a) shows the presence of a peak at
the resonance frequency where ε3 = −2 when the magnetic
field is tilted with respect to the z axis while the LDOS
remains elsewhere invariant with this rotation. To analyze the
origin of this singular behavior we calculate the electromag-
netic field radiated by permanent dipoles in given orientations
under the action of external magnetic field. The corresponding

FIG. 5. (a) LDOS at z = 3R of electromagnetic field above a
dimer of InSb particles (radius R = 50 nm) in vacuum separated by
a distance d = 6R under the action of an external magnetic field Hext

making an angle θ with the z axis in the (x, z) plane. (b) Magnitude
of electric field radiated between the two particles at z = 3R by two
permanent (normalized) dipoles oriented in opposite direction along
the x axis. (c) Magnitude of magnetic field in the same conditions.
The magnitude of applied magnetic field is Hext = 5 T.

electric and magnetic fields are calculated from expressions
(10) and (30) using (unitary) permanent dipoles rather than
fluctuating dipoles. The results are plotted in Figs. 5(b) and
5(c) when the dimer is in vacuum and the dipoles are oriented
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FIG. 6. (a) LDOS in the same system as in Fig. 5 (Hext = 5 T) in
the presence of a substrate (εsub = 4). [(b)–(d)] Magnitude of electric
field radiated by two permanent (normalized) dipoles oriented in
opposite directions along the x, y, and z axis, respectively.

along the dimer axis. This calculation shows that both the
electric and the magnetic fields are enhanced in the central

FIG. 7. Resonance frequency for a dimer of InSb particles (ra-
dius R = 50 nm) separated by a distance 6 = 6R (a) in vacuum
and (b) on a transparent substrate (εsub = 4) under the action of an
external magnetic field of magnitude Hext = 5 T making an angle θ

with the z axis.

region where we observe a drastic enhancement of the LDOS
under a tilting of applied magnetic field. It is worthwhile to
note that although the magnetic field presents a resonance
peak its magnitude is insufficient to contribute to the LDOS in
the infrared, the latter being mainly driven by the electric field.
Also, we observed (not shown here) that the fields radiated by
the permanent dipoles oriented in all other directions in the
canonical basis present similar features but these fields are less
prominent and therefore do not contribute significantly to the
LDOS. In the presence of a substrate [see Fig. 6(a)] the LDOS
is overall enhanced and the central peak [Fig. 6(a)] hybridizes
into two peaks at lower and higher frequency when Hext is
tilted with respect to the normal of the surface while the peak
at the low frequency is almost imperceptible under normal
incidence. Once again this behavior can be linked to the field
radiated by the permanent dipoles oriented in all possible
directions. These fields are plotted in Figs. 6(b)–6(d) and they
reveal that the peak at the high frequency is mainly related
to the permanent dipole oriented in the direction normal to
the surface [Fig. 6(d)], while the peak at the low frequency
results from the dipoles oriented both in the z and x directions
[see Figs. 6(b) and 6(d)]. As shown in Fig. 7 these peaks
correspond to the resonance frequencies of the system, which
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(a)

(b)

FIG. 8. LDOS of electromagnetic field above a regular network
of InSb particles under the action of an external magnetic field Hext

making an angle θ with the z axis in the (x, z) plane. (a) Particles
network, regularly arranged, in vacuum, on an equilateral triangle
inscribed inside a circle of radius 3R (i.e., triangle side of length
d = 9R/

√
3). (b) LDOS at h = 3R above the center of triangular net-

work for two different orientation of magnetic field. The magnitude
of magnetic field is Hext = 5T .

are solution of the transcendental equation

| TEE (ω) |−1= 0. (53)

The comparison of resonances spectrum without substrate
[Fig. 7(a)] to the one in the presence of a substrate [Fig. 7(b)]
shows, on one hand, that the substrate is responsible for a
hybridization of the central resonances into two resonances
at higher and lower frequency and is also responsible for
an enhancement of resonance peaks in the LDOS as in the
case of a single particle (dipole). It is worthwhile to note
that a change in the orientation of external magnetic field
mainly impacts the magnitude of resonance peaks and not the
resonance frequencies themselves.

C. Triangular network of particles

To finish we consider a regular triangular network of InSb
particles [see Fig. 8(a)] both in vacuum or on a transparent
substrate (εsub = 4) and we show that the LDOS above this
system can be efficiently tuned [see Fig. 8(b)] simply by
changing the orientation or the magnitude of Hext. When
the set of particle is in vacuum [Figs. 8(b) and 9(a)] we see
that a tiny change in the orientation of external magnetic field

θ=0°
θ=1°
θ=2°
θ=5°

× 1014

(a)

× 1014

(b)Hext=0.1 T
Hext=1 T
Hext=3 T
Hext=5 T

Hext=0.1 T
Hext=1 T
Hext=3 T
Hext=5 T

× 1014

(c)

FIG. 9. LDOS of electromagnetic field at z = 3R in vacuum
above the same triangular network as in Fig. 5 under the action
of an external magnetic field Hext (a) vs its orientation angle θ .
The magnitude of magnetic field is Hext = 5T . (b) LDOS vs the
magnitude of Hext when θ = 50. (c) Zoom of Fig. 6(b) in the central
spectral region.

allows for a drastic variation of the LDOS. Hence a rotation of
Hext by only �θ = 10 with respect to the normal of triangular
network increases the value of the LDOS by almost two orders
of magnitude. This increase rises up to more than four orders
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× 1014

(a)

× 1014

(b)|
|-
1

FIG. 10. (a) LDOS of electromagnetic field above the same net-
work of InSb particles as in Fig. 9 but the network is placed on a
transparent substrate (εsub = 16). The magnitude of magnetic field is
Hext = 5T . (b) Resonance frequencies of network.

of magnitude with a rotation of �θ = 50 and even rises up to
five orders of magnitude when θ = 450. In Figs. 9(b) and 9(c),
we see also that, due to the change of the location of resonance
frequencies of particles with the magnitude of Hext, the LDOS
can be modified over a broad spectral range by tuning this
magnitude. When the network is on a transparent substrate,
we see in Fig. 10(a) that, as for a dimer, the interface enhances
the LDOS over all the spectral range. More interestingly we
see that the LDOS can be modulated by a factor of almost
three over a broad spectral range simply by tilting the applied
magnetic field by 45 degrees. For the highest frequency of
hybridized modes [Fig. 10(b)], this modulation can even be
increased by one order of magnitude with this angular vari-
ation and by a factor of 5 [Fig. 11(a)] with a tilting of Hext

by only 5 degrees. As for the case where the network was
in vacuum, the LDOS can be modulated by several orders of
magnitude over a broad spectral range simply by changing the
magnitude of the applied magnetic field [Fig. 11(b)].

IV. CONCLUSIONS

In conclusion, we have investigated the photonic density
of states near magneto-optical metamaterials in the presence

× 1014

(a)

× 1014

(b)

FIG. 11. LDOS of electromagnetic field above a regular trian-
gular network of InSb particles placed on a substrate as in Fig. 10.
(a) LDOS at h = 3R above the center of network for different orienta-
tions of magnetic field when Hext = 5 T. (b) LDOS vs the magnitude
of Hext when θ = 50.

of an external magnetic field and demonstrated that it can
be significantly modified at subwavelength scale by chang-
ing the spatial orientation or the magnitude of this control
parameter. We have shown that the contribution of different
resonant modes supported by the structure can be selected
by an ad hoc tuning of the external magnetic field. These
results provide a pathway for an active control of the LDOS
and it could find broad applications ranging from the control
of the spontaneous emission of quantum dots or atoms to the
manipulation of molecules placed in the close vicinity of these
media. By combining nonconvex optimization techniques [25]
and knowledge in the areas of many-body interactions, a
computational design of nonreciprocal metamaterials could be
performed in order to make an ad hoc sculpting of the LDOS.

ACKNOWLEDGMENT

This work was supported by the French Agence Nationale
de la Recherche (ANR), under Grant No. ANR-21-CE30-
0030 (NBODHEAT).

245409-8



CONTROL OF THE LOCAL PHOTONIC DENSITY OF … PHYSICAL REVIEW B 109, 245409 (2024)

[1] E. M. Purcell, Phys. Rev. 69, 37 (1946).
[2] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[3] S. John, Phys. Rev. Lett. 58, 2486 (1987).
[4] P. J. Hesketh, J. N. Zemel, and B. Gebhart, Phys. Rev. B 37,

10803 (1988).
[5] F. Koppens, D. E. Change, and F. J. Garcia de Abajo, Nano Lett.

11, 3370 (2011).
[6] R. Messina, J.-P. Hugonin, J.-J. Greffet, F. Marquier, Y. De

Wilde, A. Belarouci, L. Frechette, Y. Cordier, and P. Ben-
Abdallah, Phys. Rev. B 87, 085421 (2013).

[7] S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A.
Arbouet, and E. Dujardin, Nat. Mater. 12, 426 (2013).

[8] P. R. Wiecha, A. Arbouet, A. Cuche, V. Paillard, and C. Girard,
Phys. Rev. B 97, 085411 (2018).

[9] P. Lodahl, A. Floris van Driel, I. S. Nikolaev, A. Irman, K.
Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature (London)
430, 654 (2004).

[10] M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk,
Phys. Rev. Lett. 105, 013904 (2010).

[11] K. H. Drexhage, Prog. Opt. 12, 163 (1974).
[12] R. R. Chance, A. Prock, and R. Silbey, in Advances in Chemical

Physics, edited by I. Prigogine and S. A. Rice, Vol. 37 (John
Wiley, Hoboken, NJ, 1978), pp. 1–65.

[13] E. M.-Villa, V. F.-Hurtado, F. J. G.-Vidal, A. G.-Martín, and
J. C. Cuevas, Phys. Rev. B 92, 125418 (2015).

[14] P. Ben-Abdallah, K. Joulain, J. Drevillon, and C. Le Goff, Phys.
Rev. B 77, 075417 (2008).

[15] A. Pérez-Madrid, J. M. Rubi, and L. C. Lapas, Phys. Rev. B 77,
155417 (2008).

[16] D. Becerril and C. Noguez, Phys. Rev. B 99, 045418 (2019).
[17] P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, Phys. Rev. Lett.

107, 114301 (2011).
[18] S.-A. Biehs, R. Messina, P. S. Venkataram, A. W. Rodriguez,

J. C. Cuevas, and P. Ben-Abdallah, Rev. Mod. Phys. 93, 025009
(2021).

[19] L. Novotny and B. Hecht, Principles of Nano-Optics (Cam-
bridge University Press, Cambridge, 2006).

[20] J. E. Sipe, J. Opt. Soc. Am. B 4, 481 (1987).
[21] H. B. Callen and T. A. Welton, Phys. Rev. 83, 34

(1951).
[22] S. Albaladejo, R. Gómez-Medina, L. S. Froufe-Pérez, H.

Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A.
García-Martín, and J. J. Sáenz, Opt. Express 18, 3556
(2010).

[23] E. D. Palik, R. Kaplan, R. W. Gammon, H. Kaplan, R. F. Wallis,
and J. J. Quinn, Phys. Rev. B 13, 2497 (1976).

[24] O. Keller, M. Xiao, and S. Bozhevolnyi, Surf. Sci. 280, 217
(1993).

[25] P. Chao, B. Strekha, R. Kuate Defo, S. Molesky, and A. W.
Rodriguez, Nat. Rev. Phys. 4, 543 (2022).

245409-9

https://doi.org/10.1103/PhysRev.69.37
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1103/PhysRevB.37.10803
https://doi.org/10.1021/nl201771h
https://doi.org/10.1103/PhysRevB.87.085421
https://doi.org/10.1038/nmat3581
https://doi.org/10.1103/PhysRevB.97.085411
https://doi.org/10.1038/nature02772
https://doi.org/10.1103/PhysRevLett.105.013904
https://doi.org/10.1016/S0079-6638(08)70266-X
https://doi.org/10.1103/PhysRevB.92.125418
https://doi.org/10.1103/PhysRevB.77.075417
https://doi.org/10.1103/PhysRevB.77.155417
https://doi.org/10.1103/PhysRevB.99.045418
https://doi.org/10.1103/PhysRevLett.107.114301
https://doi.org/10.1103/RevModPhys.93.025009
https://doi.org/10.1364/JOSAB.4.000481
https://doi.org/10.1103/PhysRev.83.34
https://doi.org/10.1364/OE.18.003556
https://doi.org/10.1103/PhysRevB.13.2497
https://doi.org/10.1016/0039-6028(93)90370-Y
https://doi.org/10.1038/s42254-022-00468-w

