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Flat bands and extreme pseudomagnetic fields in monolayer graphene
by topography strain engineering
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Realizing flat bands via strong pseudomagnetic fields has recently inspired new opportunities for studying
strong correlations in monolayer graphene, where a feasible idea is to utilize substrate topography to create
strained graphene superlattices. Nevertheless, the effect from topography-induced strain relaxation on these
isolated flat bands in monolayer graphene is unknown, posing challenges for rational design on flat bands and
pseudomagnetic fields by strain engineering. In this work, we reveal analytical displacement fields due to strain
relaxation in monolayer graphene conforming to substrate topography, allowing quantum mechanical design on
flat band structures and strong pseudomagnetic fields in monolayer graphene with strain energy minimized. We
find that the strong pseudomagnetic fields as well as flat band structures in monolayer graphene are highly
sensitive to strain relaxation and substrate topography. The tunability of flat bands in monolayer graphene
coupled to several topography designs is demonstrated. Our results contribute to the understanding of flat bands
and strong pseudomagnetic fields in monolayer graphene enabled by topography strain engineering.
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I. INTRODUCTION

Recent years have witnessed considerable efforts to induce
band flattening in graphene systems, given that flat bands fa-
cilitate the emergence of strongly correlated electronic phases
and topological properties [1–10]. A well-known method
is applying interlayer rotation between graphene layers
[1,11–14], where a flat, narrow band appears near the Fermi
level when the interlayer rotation angles approach several
particular angles (also known as magic angles). The key chal-
lenge is to provide fine control over moiré patterns due to
interlayer twisting, which may not be a straightforward task
[15]. On the other hand, emerging evidence of flat bands and
correlated states in buckled monolayer graphene [2,16–18]
has inspired opportunities of realizing narrow bands towards
strong correlations in monolayer graphene [19], even with
the advantages of larger interaction-induced gaps, smaller
quasiparticle dispersion, and enhanced tunability compared
to the moiré system [19]. Importantly, the band flattening
in monolayer graphene correlates with periodic arrays of
strain-induced pseudomagnetic fields [2,16,20]. With such
understanding, the concept of strain engineering [21–28] in
monolayer graphene for tuning isolated flat bands has at-
tracted growing attention [19], where a feasible idea is to
utilize profiled surfaces to host strained graphene superlat-
tices [21]. Strain relaxation is essential for strain engineering.
Earlier tight-binding studies have shown that strain relax-
ation strongly affects pseudomagnetic fields in the triaxially
stretched graphene hexagon [21,29].

*Corresponding author: shuzezhu@zju.edu.cn

Recently, monolayer graphene conforming to profiled sub-
strate topography [20,30] has been proposed to controllably
realize flat bands that resemble those found in buckled
monolayer graphene [2,16–18]. Nevertheless, the effect of
topography-induced strain relaxation on these isolated flat
bands has remained unknown. In most available tight-binding
calculations for these flat bands of monolayer graphene [2,16–
18,20], the strain-coupled hopping energies are extracted from
the presumed profile of periodic pseudomagnetic fields so
that how the strain relaxation affects flat bands and asso-
ciated pseudomagnetic fields remains elusive. In a recent
study employing substrate engineering and optical control to
tune the flat bands [30], the in-plane relaxation of graphene
conforming to the substrate topography is discussed using
an indeterminate dimensionless fitting parameter, unable to
quantify the role of strain relaxation for different substrate
topographies. Because the relaxed displacement fields cou-
pled to substrate topography are not available [2,16], the
fundamental roles of strain relaxation towards flat bands in
strained monolayer graphene have not been addressed in ex-
isting quantum mechanical calculations [17,18,20,30], posing
challenges for rational design on flat bands and associated
pseudomagnetic fields in monolayer graphene.

To address the above issues, this work reveals analyt-
ical displacement fields due to strain relaxation in mono-
layer graphene conforming to substrate topography, allowing
quantum mechanical design on electronic states directly
from substrate topography with relaxation fully considered.
Although strain relaxation is often treated as a higher order
correction [30], our quantified calculations show that strain
relaxation can significantly affect band structure in monolayer
graphene containing flat bands, as well as the emergence
of strong pseudomagnetic fields. We reveal several substrate
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FIG. 1. (a) Schematic of monolayer graphene conforming to substrate topography with strain relaxation. (b)–(e) Results for substrate 1,
where superlattice constant as = 20a0 ≈ 4.9 nm (a0 is the graphene lattice constant). The height parameter (h0) is 0.2 nm and the phase (θ ) is
π/4. (f)–(i) Results for substrate 2, where as = 40a0 ≈ 9.8 nm. The height parameter (h0) is 0.2 nm and phases (θa, θb) are both π/4. (b),(f)
Out-of-plane deflection (h), areal strain, and pseudomagnetic field (Bps). (c),(g) Band structure for unstrained (h0 = 0, gray curve) and strained
(h0 = 0.2 nm, red curve) graphene. The flat band region near Fermi level is shaded in gray, the width of which is denoted as �E . (d),(h) LDOS
for the central region of the unit cell [circled area in (e) and (i)] for unstrained (h0 = 0, blue curve) and strained (h0 = 0.2 nm, red curve)
graphene. Insets show the scaling of pseudo-Landau levels for the strained graphene. (e),(i) Map of interatomic currents, marked by black
arrows, within superlattice unit cell for the energy at the edge of shaded flat band [E/t0 ≈ −0.1 in (c) and E/t0 ≈ −0.04 in (g)] at the Ks point.

designs in which the flat bands of monolayer graphene can be
realized and tuned.

Our study is focused on relaxed monolayer graphene
conforming to substrate topography featuring superlattices
[Fig. 1(a)]. Due to strain relaxation, the conformation to
substrate topography not only imposes the out-of-plane defor-
mations, but also generates in-plane atomistic displacements.
Analysis on several representative substrate topographies
reveals that substrate-dependent strain relaxation strongly
affects flat band structures and associated pseudomagnetic
fields. Our approaches are based on continuum theory of
elasticity, which requires a suitable model length scale so
that the continuum treatment is reasonable [31], and tight-
binding assumptions. It is reported that substrate interaction
can then be ignored given the model length scale [30,31] so
that the substrate is not explicitly modeled by assuming that
the graphene membrane completely conforms to the substrate
[31]. Also, the tight-binding calculation is based on nearest-
neighbor hopping using π electrons. While first-principles
calculations can produce more accurate results, they can be
computationally prohibitive given the model length scales.
Our analytical approach can access larger model length scales
(i.e., larger substrate height modulation and superlattice peri-
odicity) for theoretical guidance.

II. TOPOGRAPHY-DEPENDENT FLAT BANDS
AND GIANT PSEUDOMAGNETIC FIELDS

The first substrate topography (substrate 1) is

h = h0

3∑
i=1

cos (Gi · r + θi ). (1)

The second substrate topography (substrate 2) is

h = h0

[
3∑

i=1

cos(Gi · r + θi
′
) +

3∑
i=1

cos(2Gi · r + θi
′′
)

]
. (2)

Substrate 1 [Figs. 1(b)–1(e)] represents a typical peri-
odic system that generates flat bands in monolayer graphene
[2,16–18], while substrate 2 [Figs. 1(f)–1(i)] results from ad-
ditional periodic perturbations that would produce additional
relaxation behaviors. The results for substrate 3, which cap-
tures the gradual transition from substrate 1 to substrate 2,
and the results for substrate 4, featuring square superlattice,
can be found in the Supplemental Material (SM) [32].

In the above expressions, G1 = 2π
as

(0, 2√
3

), G2 = 2π
as

(−1,

− 1√
3

), and G3 = −(G1 + G2) are reciprocal lattice vectors
of the graphene superlattice unit cell with side length as
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[Figs. 1(b) and 1(f)]. Note that as should be an integer multiple
of the graphene lattice constant (a0 = √

3aCC, where aCC is
the carbon-carbon bond length) in real space. The θi, θi

′
, θi

′′

are three tunable phase angles.
In continuum mechanics, the elastic energy of the graphene

membrane in a superlattice unit cell can be calculated as

Eelas = Et

2(1 − v2)
∫ [

u2
xx +u2

yy + 2vuxxuyy+2(1 − v)u2
xy

]
d2r,

(3)

where graphene is modeled [33–35] with Young’s modulus
(E ) of 1 TPa, Poisson’s ratio (v) of 0.17, and thickness (t) of
0.34 nm.

The strain tensor is computed as

ui j = 1

2

(
∂ui

∂ j
+ ∂u j

∂i

)
+ 1

2

(
∂h

∂i

∂h

∂ j

)
, (4)

where {i, j} = {x, y}.
The analytical expressions for periodic in-plane displace-

ments are obtained by extremizing the elastic energy function
[31] (see more details in the SM [32]).

The in-plane displacements for substrate 1 are derived as

ux = h2
0π

4as
[− sin(2G2 · r + 2θ ) + sin(2G3 · r + 2θ )]

+ h2
0π (−1 + 3v)

4as
[sin(G2 · r − 2θ ) − sin(G3 · r − 2θ )]

+ h2
0π (3 − v)

12as
[sin((G1 − G2) · r)

− sin((G1 − G3) · r)−2 sin((G2 − G3) · r)], (5)

uy = h2
0π

4
√

3as

[2 sin(2G1 · r + 2θ ) − sin(2G2 · r + 2θ )

− sin(2G3 · r + 2θ )]

+ h2
0π (−1 + 3v)

4
√

3as

[−2 sin(G1 · r − 2θ )

+ sin(G2 · r − 2θ )+ sin(G3 · r − 2θ )]

+ h2
0π (3 − v)

4
√

3as

[sin((G1−G2) · r)+sin((G1 − G3) · r)].

(6)

The associated pseudomagnetic field for substrate 1 is then

Bps = −6t0βh2
0π

3(1 + v)√
3evF a3

s

3∑
i=1

sin (Gi · r − 2θ ). (7)

In the above equations, θ = (θ1 + θ2 + θ3)/3, t0 is the
equilibrium hopping energy between nearest carbon atoms in
graphene, β is a dimensionless constant, e is the elementary
charge, and vF (= 3t0aCC

2h̄ ) is the Fermi velocity. These pa-
rameters originate from the Dirac Hamiltonian of graphene
[16,21,24,26,36] and the bond-strain dependent hopping en-
ergies (ti j), which can be described as

ti j = t0e−β(
ri j
acc

−1), (8)

where acc = 0.142 nm is the equilibrium bond length in
graphene, and ri j = |ri − r j | is the length of the strained bond
between atoms i and j. We use t0 = 2.7 eV, β = 3.37 in our
calculations.

The pseudomagnetic field for substrate 2 is

Bps = − 6t0βh2
0π

3(1 + v)√
3evF a3

s

3∑
i=1

sin(Gi · r − 2θa)

− 48t0βh2
0π

3(1 + v)√
3evF a3

s

3∑
i=1

sin(2Gi · r − 2θb)

− 240t0βh2
0π

3(1 + v)

49
√

3evF a3
s

[sin((2G1−G3) · r − (θa − θb))

+ sin((2G1 − G2) · r − (θa − θb))

+ sin((2G2 − G3) · r − (θa − θb))

+ sin((2G3 − G2) · r − (θa − θb))

+ sin((2G2 − G1) · r − (θa − θb))

+ sin((2G3 − G1) · r − (θa − θb))], (9)

where θa = (θ1
′ + θ2

′ + θ3
′
)/3, θb = (θ1

′′ + θ2
′′ + θ3

′′
)/3,

while the analytical expressions for in-plane displacements
are documented in the SM [32].

The above analytical expressions serve as foundations for
the subsequent quantum mechanical calculations on electronic
band structures. Figures 1(b) and 1(f) show the height profile,
areal strain (=uxx + uyy + uxxuyy) and the resultant pseudo-
magnetic field after relaxation using representative examples
for substrate 1 and 2, respectively. In an example for substrate
1 [Fig. 1(b)], as = 20a0 ≈ 4.9 nm, h0 = 0.2 nm, and θ = π/4.
In an example for substrate 2 [Fig. 1(f)], as = 40a0 ≈ 9.8 nm,
h0 = 0.2 nm, and θa = θb = π/4. The detailed morphologies
of the substrate height profile and the distribution of strain
components are found in Fig. S1 of the SM [32].

For substrate 1, the pseudomagnetic field distribution re-
sembles those found in experimental and theoretical studies
for buckled monolayer graphene [2,16–18]. The isolated
quasiuniform circular field regions, whose intensity reaches
1000 T, are embedded in field regions with opposite signs with
intensity reaching 500 T [Fig. 1(b)]. These isolated quasiu-
niform field regions are arranged in a triangular lattice. The
maximum areal strain reaches about 0.16, corresponding to
the maximum strain (i.e., uxx or uyy) about 0.08, which is a
reasonable strain where graphene is treated as linear elastic.
It is also interesting to see that the isolated quasiuniform
circular field regions are not correlated with the region with
the maximum areal strain, but with areal strain of about 0.09
(at the center of the superlattice unit cell) which also has the
maximum height. Compared with substrate 1, the topography
of substrate 2 has an additional perturbation term, leading to
drastic differences in the distribution of areal strain and pseu-
domagnetic fields. As shown later, the superlattice unit cell
as shown for substrate 2 contains many isolated quasiuniform
field regions arranged in a similar triangular lattice. Never-
theless, for both substrates, the isolated regions correspond to
locations with relatively small areal strain.
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We use the nearest-neighbor tight-binding model on the
relaxed configuration given by

H = ∑
i, j

ti jc
†
i c j, (10)

where c†
i (ci ) is the creation (annihilation) operator for an elec-

tron at site i, and the bond-strain dependent hopping energies
(ti j) are calculated by the derived analytical displacements.

Figures 1(c) and 1(g) are the calculated band structures for
two substrates. The band structures of undeformed flat pristine
graphene are used for contrast. Flat bands emerge near the
Fermi level (marked by shading area) with similar energy dis-
persion relationship for both substrates. Other flat bands away
from Fermi level are also visible. This is attributed to the pe-
riodic pseudomagnetic field that is strong enough to influence
the motion of electrons and generate band gaps. Nevertheless,
the distinct features in energy dispersion in other flat bands
suggest that the electron dynamics are strongly dependent on
designs of substrate topographies.

To quantify and validate the strong pseudomagnetic fields,
we calculate the local density of states [LDOS, in Figs. 1(d)
and 1(h)] for isolated quasiuniform field regions [the circled
areas in Figs. 1(e) and 1(i)] at the center of the superlattice
unit cell in order to identify the pseudo-Landau levels (pLLs)
originating from pseudomagnetic fields [21,22]. The LDOS
for the flat pristine graphene is to highlight the emergence of
pLLs. Specifically, the energy peaks of pLLs should follow
the linear scaling with respect to the square root of quantum
number labeling the pLLs [21,22],

En = sgn(n)vF

√
2eh̄B|n|. (11)

From our tight-binding calculations for both substrates, the
quantum numbers labeling the pLLs can be feasibly identified
and the linear scaling relationships can be satisfied [insets in
Figs. 1(d) and 1(h)], which correspond to pseudomagnetic
field intensities of about 1000 and 1100 T, consistent with
the analytical derivation as shown in Figs. 1(e) and 1(i),
respectively. Such giant intensities are promising given exper-
imental evidence of giant pseudomagnetic fields near 1000 T
in strained monolayer graphene [28,37]. The maximum strain
after relaxation in our study does not exceed 10%, which
is experimentally feasible given that tensile strains ranging
1.32–25% have been proposed in a variety of experimental
settings [37–39]. Figure S2 of the SM shows the evolution
of pLLs as the substrate topography changes [32], as well as
the appearance of double peak at zeroth pLL that is consistent
with computational findings on periodically buckled mono-
layer graphene [2].

Although the isolated quasiuniform pseudomagnetic fields
are arranged in triangular lattices for both substrate topogra-
phies, they have different influences on the electronic states
at the flat bands. For demonstration, we calculate the inter-
atomic currents for the energy at the edge of the flat band
(E/t0 ≈ ±0.1 for substrate 1 and E/t0 ≈ ±0.04 for substrate
2) on several representative points in reciprocal space.

The current is calculated using

Jk,i(E ) = 4e

h

3∑
j=1

Im〈�k,i(E )|Hi j |�k, j (E )〉ei j, (12)

where Jk,i(E ) is the current vector at atom i calculated as a
sum of currents flowing between atom i and its three nearest
neighbors at energy E due to an electron in state k, h is the
Planck constant, |�k,i〉 is the wave function of the k state at
atom i, Hi j is the Hamiltonian matrix element between atoms
i and j, and ei j is the unit vector in the direction of the bond
between atoms i and j.

Figure 1(e) shows that for substrate 1, most of the electrons
at the flat band energy (E/t0 ≈ −0.1) at the Ks point per-
form closed-loop circular motion (clockwise) with radius of
atomic scale under the influence of the isolated quasiuniform
pseudomagnetic field. This provides an intuitive illustration of
the strong confinement effect from the strong pseudomagnetic
field reaching 1000 T. Nevertheless, Fig. 1(i) shows that for
substrate 2, only the isolated quasiuniform field region, which
corresponds to the largest out-of-plane deformation (at the
central region of the superlattice unit cell with intensity about
1100 T), is the vortex center of the counterclockwise atomic
currents at the flat band energy (E/t0 ≈ −0.04) at the Ks
point. At other isolated quasiuniform field regions (at the edge
of superlattice unit cell with weaker intensity about 1000 T),
the atomic currents pass through and turn in a clockwise direc-
tion [Fig. 1(i)]. The circular-motion interatomic current may
appear at other electronic states (Fig. S3 [32]), while being
affected by the negative field. The calculations in substrate 3
where the gradual transition from substrate 1 to substrate 2 can
be programmed show similar conclusions (Fig. S4 [32]). The
above discussions show that different substrate topographies
can lead to a diverse mechanism of electron confinement that
gives rise to the band flattening, although the distributions of
pseudomagnetic fields can be similar. Note that the pseudo-
magnetic fields in the current work originate from static strain
gradient field [2,21,22,24]. The pseudoelectric field due to
dynamic strain gradient [40,41] is beyond the scope of the
current work. The pseudomagnetic fields in the current work
in combination with scalar fields [42] due to the strain gradient
can also be used to explore valley scattering behaviors [43].

III. EFFECT OF TOPOGRAPHY-DEPENDENT
STRAIN RELAXATION

A particular focus of this work is to quantify the effect of
strain relaxation on producing strong pseudomagnetic fields
and flat bands. In a recent study [30], the in-plane relaxation
is discussed using an indeterminate dimensionless fitting pa-
rameter, which reports that the strain relaxations for a few
substrates serve as higher order corrections. Nevertheless, our
current work, based on analytical displacement fields due to
relaxation, shows that the effects of strain relaxation on flat
bands highly depend on substrate topography, and can be very
strong. The comparisons are made with unrelaxed models
whose atoms only have out-of-plane displacements to fit the
substrate topography. Without strain relaxation, the in-plane
atomistic displacements are zero so that all the in-plane strain
components as well as pseudomagnetic fields are completely
determined by the out-of-plane displacements. The analytical
expressions for pseudomagnetic fields for unrelaxed models
are listed in the SM [32]. For both substrate topographies,
we consider the situations where uxx and uyy after relaxation
do not exceed 0.1 and phases (θ or θa and θb) remain π/4.
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FIG. 2. Pseudomagnetic fields and band structures of relaxed and unrelaxed graphene conforming to substrate topography. Phases (θ or θa

and θb) are uniformly π/4. Each panel is labeled with corresponding superlattice constant (as), height parameters (h0), and maximum strain
in uxx or uyy. (a)–(d) Results for substrate 1, showing that relaxation induces larger energy gaps. (e)–(h) Results for substrate 2, showing that
relaxation strongly modifies band structures.

The complete geometric parameters describing a series of
substrate topographies are labeled in each panel of Fig. 2. See
Figs. S5 and S6 for a smaller strain regime and the connection
to the maximum curvature of topography [32]. Contrasting
among these results reveals a topography-dependent relax-
ation effect.

Figures 2(a)–2(d) show the effect of relaxation on pseu-
domagnetic fields as well as flat band structures using four
models of substrate 1. Each model can be characterized by
the maximum strain after relaxation and the geometric spac-
ing between the periodic modulations (i.e., the superlattice
constant as) on substrate 1. For all unrelaxed models, the
field region at the center of the superlattice unit cell carries
a hexagon shape. The field intensities at the central region
reduce to zero because without strain relaxation the strain
gradients in the central region vanish. In addition, the intensity
of the field with opposite sign is much stronger compared with
that of the relaxed case. For the same superlattice constant
as [comparing Fig. 2(a) with 2(b), or Fig 2(c) with 2(d)],
larger maximum strain increases the overall field intensities.
For the same maximum strain [comparing Fig. 2(a) with

2(c), or Fig. 2(b) with 2(d)], larger superlattice constant as

reduces the overall field intensities. More insight regarding
the effect of relaxation can be read from band structures.
We find that for models of substrate 1, the strain relaxation
has limited influence on the flat band near the Fermi level.
Nevertheless, other flat bands away from the Fermi level
begin to exhibit considerable differences in terms of energy
values and the width of bands. Particularly, for the same
superlattice constant as [comparing Fig. 2(a) with 2(b), or
Fig. 2(c) with 2(d)], the relaxation increases the energy gap
between the flat band near the Fermi level and the next flat
band. For the same maximum strain [comparing Fig. 2(a)
with 2(c), or Fig. 2(b) with 2(d)], the larger superlattice con-
stant as enhances the relaxation-induced discrepancies in flat
energy bands away from the Fermi level. For example, in
Fig. 2(d), except for the flat band near Fermi level, the other
flat bands as shown for relaxed and unrelaxed models have no
overlap in energy. For substrate 1, relaxation induces larger
energy gaps.

Nevertheless, more a pronounced effect from relaxation is
found for the case of substrate 2, as shown in Figs. 2(e)–2(h)
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FIG. 3. (a)–(f) Map of the width (�E ) of flat band near Fermi level and the maximum pseudomagnetic field intensity (max. Bps) in the
space of superlattice constant (as), height parameter (h0), and phases (θ, θa, θb). (a)–(c) Results for substrate 1. The phase θ in (a) and (b) is
π/4. The superlattice constant (as) in (c) is 4.9 nm. (d)–(f) Results for substrate 2. The phases θa and θb in (d) and (e) are π/4. The superlattice
constant (as) and the height parameter (h0) in (f) are 9.8 and 0.2 nm, respectively. (g)–(j) Out-of-plane deflection (h), pseudomagnetic field
(Bps), and flat band structures of different substrate designs. Each column is labeled with superlattice constant (as), height parameters (h0), and
phases. (g) Result for substrate 1. (h)–(j) Results for substrate 2.

again using four models from combinations of two maximum
strains after relaxation and two superlattice constants. In terms
of the pseudomagnetic field, the unrelaxed model gives rise
to a much more complicated distribution pattern as compared
with the relaxed model, whose isolated quasiuniform field
regions are arranged in a triangular lattice. While the effect
of relaxation on intensities of pseudomagnetic fields are sim-
ilar as in the preceding discussion of substrate 1, the strain
relaxation for substrate 2 has strong influence on all flat bands,
in sharp contrast with the observation for substrate 1. The
discrepancies in energy dispersion of flat bands as well as the
gaps between flat bands are significantly dependent on strain

relaxation for substrate 2. Particularly, for the same superlat-
tice constant as [comparing Fig. 2(e) with 2(f), or Fig. 2(g)
with 2(h)], the relaxation strongly affects the energy disper-
sion of the first flat band near the Fermi level, and increases
the energy gap between the flat bands. For the same maximum
strain [comparing Fig. 2(e) with 2(g), or Fig. 2(f) with 2(h)],
the larger superlattice constant (as) enhances the relaxation-
induced discrepancies in flat bands. For example, in Fig. 2(h),
the energy range of the single flat band near the Fermi level for
the relaxed model almost covers five neighboring flat bands
for the unrelaxed model. For substrate 2, the band structures
are strongly modified by strain relaxation. Similar conclusions
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are found for substrate 3 (Fig. S4) highlighting the transition
between substrate 1 and substrate 2 [32].

The above discussion shows that not knowing or neglecting
the structural relaxation can lead to significant errors. While
for certain topography (e.g., substrate 1) the flat band near the
Fermi level is not sensitive to strain relaxation, relaxation can
induce larger energy gaps between flat bands. For other types
of topography (e.g., substrates 2 and 3), the strain relaxation
strongly affects the flat band near the Fermi level.

IV. DESIGNING FLAT BANDS AND STRONG
PSEUDOMAGNETIC FIELDS BY TOPOGRAPHY

Our preceding analysis shows that the strong pseudomag-
netic fields as well as flat bands of monolayer graphene
are highly sensitive to substrate-dependent strain relaxation,
which may not be simply neglected. With the analytical
expressions of relaxed atomistic displacements coupled to
substrate topography, large-scale quantum mechanical calcu-
lations respecting the effect of relaxation can be carried out for
rational design on electronic properties. For demonstration,
we reveal diagrams correlating the geometric parameters of
substrate topography to the flat band structure and pseudo-
magnetic field. We show a variety of flat band structures
that can be realized by relaxing on topography of substrate 1
[Figs. 3(a)–3(c)], substrate 2 [Figs. 3(d)–3(f)], and substrate 3
(Fig. S4), along with several particular examples [Figs. 3(g)–
3(j), Figs. S7–S13 [32]]. The variation of phases can lead to
diverse geometries.

Figures 3(a) and 3(b) present effects of the superlattice
constant (as) and the height parameter (h0) on the flat band
width (�E ) near the Fermi level (as illustrated in Fig. 1) and
the maximum pseudomagnetic intensity for substrate 1. The
smaller the �E , the stronger the kinetic energy of electrons
is quenched near the Fermi level. The phase (θ ) is uniformly
π/4. At the same superlattice constant (as), the larger the

height parameter (h0), the smaller the flat band width (�E )
and the higher the maximum field intensity (max. Bps). On
the other hand, at the same height parameter (h0), the larger
the superlattice constant (as), the smaller the flat band width
(�E ), and the smaller the maximum field intensity (max. Bps).
Figure 3(c) illustrates effects of the phase (θ ) and the height
parameter (h0) on the flat band width (�E ) when the super-
lattice constant (as) is 4.9 nm. When θ changes from 0 to
π/6 and from π/6 to π/3, the flat band width (�E ) first

decreases and then increases. Local minima are located at
π/12 and π/4. Figure 3(g) plots the substrate topography

and pseudomagnetic field when the phase (θ ) is π/12. Com-
pared with the case where the phase (θ ) is π/4 (e.g., see
Figs. 1 and 2), the central field intensity changes the sign and
the band structure features are totally consistent.

Figures 3(d) and 3(e) present effects of superlattice con-
stant (as) and the height parameter (h0) on the flat band
width (�E ) and the maximum pseudomagnetic field intensity
(max. Bps) for substrate 2, where the phases (θa, θb) are uni-
formly π/4. Both diagrams are visually consistent with the
case of substrate 1. Nevertheless, Fig. 3(f) renders the diagram
of the flat band width (�E ) under different combinations of
θa and θb, where the superlattice constant (as) and the height
parameter (h0) are kept at 9.8 and 0.2 nm, respectively. The
pseudomagnetic fields and flat band structures from three
combinations of θa and θb, corresponding to local minimum
of the flat band width (�E ), are shown in Figs. 3(h) and 3(j).
The pseudomagnetic fields in Fig. 3(h) and 3(j) both possess
isolated circular quasiuniform field regions, while the pseu-
domagnetic field in Fig. 3(i) has triangular quasiuniform field
regions with alternative signs. These results demonstrate rich
designing opportunities towards flat bands from monolayer
graphene.

Our theoretical approach can be used to explore other
periodic topography as well. For example, we find that
for substrate featuring square superlattices (Fig. S14 [32]),
relaxation-dependent band flattening is observed in particular
regions in the Brillouin zone.

V. CONCLUSIONS

With topography-dependent strain relaxation fully consid-
ered, large-scale tight-binding calculations based on analytical
displacement fields are carried out to achieve rational de-
sign on flat band structures and strong pseudomagnetic fields
in monolayer graphene. We find that quantitatively the flat
band structures as well as strong pseudomagnetic fields are
highly sensitive to strain relaxation and substrate topography.
A collection of topography designs to realize flat bands in
monolayer graphene is proposed. Our study contributes to
the understanding of flat band structures and strong pseudo-
magnetic fields in monolayer graphene via topography strain
engineering.
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