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Flat-band engineering of quasi-one-dimensional systems via supersymmetric transformations
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We introduce a systematic method to spectrally design quasi-one-dimensional crystal models described by the
Dirac equation in the low-energy regime. The method is based on the supersymmetric transformation applied to
an initially known pseudo-spin-1/2 model. This allows one to extend the corresponding supersymmetric partner
so that the new model describes a pseudo-spin-1 system. The spectral design allows the introduction of a flat
band and discrete energies at will into the new model. The results are illustrated in three examples where the
Su-Schriefer-Heeger chain is locally converted into a stub lattice.
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I. INTRODUCTION

Recent developments in experimental techniques have fa-
cilitated the creation of artificial materials through molecular
manipulations [1–5], photonic lattices [6,7], and phononic
experiments [8,9]. The latter provide unprecedented con-
trol over physical properties and effective interactions in
the created systems. Particularly, it is possible to prepare
one-dimensional crystallic chains with diverse structure,
e.g., Su-Schriefer-Heeger, stub, diamond (rhombic), Creutz,
or fishbone lattices [7,10,11]. These systems attract at-
tention due to their simple structure yet rich properties,
e.g., existence of topological states [12–15], bulk-edge cor-
respondence [16], Aharonov-Bohm caging [17–20], and
superconductivity [21,22]. Many of these properties are re-
lated to the existence of a flat band in their spectra. The
flat band is associated with vanishing group velocity and
macroscopical degeneration of eigenstates. It was observed
experimentally in optical lattices [11,23–25].

Both experimental [10] and theoretical [26,27] efforts have
been made to provide useful tools and methods for engi-
neering flat-band systems. For instance, via repetition of
microarrays [26], utilizing polynomials of a tight-binding
Hamiltonian [27], through compact localized states classifica-
tion [28], and using graph theory [29,30]. The latter frequently
rely on the tight-binding approach. In this article, we resolve
to the Dirac approximation valid for low-energy systems,
where the dynamics is described by the Dirac equation with
pseudospin one. Our approach is based on supersymmetric
quantum mechanics so that the existence of a flat band is
granted by construction.

Supersymmetric (susy) transformations, equivalently
known in the literature as Darboux transformations, are
specific nonunitary mappings between evolution equations of
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two quantum systems. The latter can be used for the
construction of the new solvable models, where the potential
term of the initial system gets deformed, yet the knowledge of
the solutions is preserved. These transformations have been
broadly explored in nonrelativistic quantum mechanics [31]
and, in recent years, in the construction of solvable models
described by one- or two-dimensional Dirac equations.
Supersymmetric transformations for low-dimensional Dirac
operators was discussed in [32,33] and employed in a series
of works; see, e.g., [34–44]. Most of these works focus on
the analysis of pseudo-spin-1/2 quantum systems, but it was
recently applied in the context of pseudo-spin-1 flat-band
systems in [45].

The Su-Schriefer-Heeger (SSH) model is a one-
dimensional chain of dimerized atoms, used originally for the
analysis of solitonic effects in macromolecules [46,47] and
known for possessing nontrivial topological properties [48].
The low-energy approximation of its tight-binding
Hamiltonian corresponds to the one-dimensional Dirac
operator [47]. Interestingly, solitonic states emerge in SSH
ladders on domain walls, where the dimerization of atoms gets
inverted. Domain walls on SSH-type chains of coupled dimers
were experimentally realized on chlorine vacancies in the
c(2 × 2) adsorption layer on Cu(100) in [13]. The existence
of topological domain-wall states was discussed in [49,50],
whereas the supersymmetric transformation has been applied
to induce a topological gapped state in the SSH chain [51,52].
Furthermore, the transmission properties of pseudo-spin-1
Dirac equations described through decorated, “bearded,” SSH
chains have been discussed [53]. The spectral and symmetry
properties of a trimer SSH chain with next-nearest interaction
were considered in [54].

In this article, the supersymmetric transformation is ex-
ploited to connect known pseudo-spin-1/2 quantum models
with new unknown pseudo-spin-1 models. Particularly, the
transformation allows one to tune the emerging flat band
of the new model, while adding new bound state energies,
assuming that the proper boundary conditions are met. To
this end, a pseudo-spin-1/2 model is trivially extended into
a pseudo-spin-1 system by adding an isolated coupling term,
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FIG. 1. (a) Sketch of the periodic pseudo-one-dimensional stub lattice with three atoms A, B, and C per unitary cell (dashed rectangle). The
hopping parameters are denoted by t1, t2, and t3. (b) Dispersion relations (5) in terms of the hopping parameters and the on-site interactions μA

and μB = μC , where �± =
√

(t1 ± t2)2 + t2
3 + (μA−μC )2

4 .

such that the dispersion relations are kept invariant. The su-
persymmetric transformation of such an energy operator is
then matched with a new and nontrivially extended pseudo-
spin-1 Hamiltonian, where the added coupled term is no
longer isolated and now describes an interaction with the rest
of the elements in the system. Particularly, a graphenelike
system is used as the initial model in the transformation,
leading to explicit models that behave asymptotically as an
SSH chain with altered dimerization patterns resembling the
domain wall. Such an SSH chain gets locally decorated by
additional atoms, forming a stub lattice in the localized re-
gion. This allows for a systematic mechanism to spectrally
manufacture pseudo-spin-1 models based on relatively simple
pseudo-spin-1/2 counterparts.

The manuscript is structured as follows. Section II sum-
marizes the periodic structure and dispersion bands of the
generalized stub lattice, where the special case where a flat
band emerges is considered. In Sec. III, the general framework
of the Darboux transform for arbitrary pseudospin systems is
briefly introduced. Here, the transformation is implemented
for an extended pseudo-spin-1/2 so that the susy partner
renders a nontrivial pseudo-spin-1 model. Applications of the
latter are further exemplified in Secs. IV and V, where explicit
cases of quasi-one-dimensional pseudo-spin-1 systems are
derived and discussed. Further discussions and future perspec-
tives for future applications of the present results are detailed
in Sec. VI.

II. GENERALIZED STUB LATTICE

Let us consider the tight-binding model of the generalized
stub lattice, where the hopping amplitudes are considered real,
but general otherwise. The model here is such that it converges
to the SSH lattice or stub lattice for specific choices of the

hopping parameters. The tight-binding Hamiltonian Hgs of a
generalized stub lattice [see Fig. 1(a)] is

Hgs =
∞∑

n=−∞
(t1A†

nBn + t2A†
nBn−1 + t3A†

nCn + μAA†
nAn

+ μBB†
nBn + μCC†

nCn) + H.c., (1)

where A†
n, B†

n, and C†
n are fermionic creation operators for

electrons on site An, Bn, or Cn. The lattice is supposed to be
infinite, i.e., n acquires all integer values. The quantities t1, t2,
and t3 are the real hopping amplitudes, and μA,B,C correspond
to real on-site energies. The index n runs over all elementary
cells through an infinite periodic lattice. The primitive trans-
lation vector is (a, 0) so that the first Brillouin zone becomes
k ∈ [0, 2π

a ]. The Fourier transform of H1 provides us with the
following operator:

Hgs(k) =
⎛
⎝ μA t1 + t2e−ika t3

t1 + t2eika μB 0
t3 0 μC

⎞
⎠, (2)

together with the secular equation det[Hgs(k) − λ] = 0, which
reads as

(λ − μB)t2
3 + (λ − μC )

[
t2
1 + t2

2 − (λ − μA)(λ − μB)

+ 2t1t2 cos ak
] = 0. (3)

Although the latter can be solved for any λ (for more details,
see [55]), we are interested in the configuration where the flat

1This is equivalent to writing the operator in the basis of the states
with fixed quasimomentum |X 〉 = ∑

m eikam|X, m〉, X = A, B,C,
where |X, m〉 represents the occupation of position X in the mth
elementary cell, and m counts the elementary cells.
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band is present. Indeed, this occurs for

μB = μC, (4)

which, henceforth, is the case under consideration. This leads
to the dispersion relations of the form

E f b = μC,

E± = μA + μC

2

±
√

t2
1 + t2

2 + t2
3 + (μA − μC )2

4
+ 2t1t2 cos ka. (5)

From the latter, it is worth remarking that dispersion bands
never touch, i.e., the band structure is always gapped. This is a
stark difference with respect to other flat-band systems such as

the two-dimensional Lieb lattice [55], where vanishing next-
nearest neighbors close the band gap. Furthermore, the trimer
SSH model [16] does not hold a flat band in its spectrum.

Our model can be reduced to a couple of special cases
when the parameters are fixed correspondingly. That is, for
t3 = 0, the C atoms are effectively isolated from the linear
chain formed by A and B atoms. The C atoms host the flat-
band states with energy μC . These states are strongly localized
at the C atoms as there is no interaction with other atoms. In
turn, for t1 �= t2, the linear chain of A − B atoms coincides
with an infinite SSH model. The case t1 = t2 = t3 reproduces
the stub lattice. The band structure of the system is illustrated
in Fig. 1(b).

The energy band E+ (E−) has its minimum (maximum) at
K = π

a . Expanding E+ around this point, k = K + δk, we get

E± = μA + μC

2
±

√√√√ 3∑
j=1

t2
j + (μA − μC )2

4
− 2t1t2(1 − a2δk2 + a4δk4 + · · · ).

When the momentum k is considered in the range where the
quartic and higher terms in the expansion are negligible,

a2nδk2n ∼ 0, n � 2,

the dispersion relation turns into the expression known for
massive one-dimensional Dirac fermions. By expanding the
Hamiltonian (2) at K up to the first order in δk, we get the
Dirac-type operator for

Hgs(K + δk) ∼
⎛
⎝ μA t1 − t2 + iat2δk t3

t1 − t2 − iat2δk μC 0
t3 0 μC

⎞
⎠,

(6)
which acts, in general, on three-component wave functions
� ∈ C3. For the sake of simplicity, it is more conve-
nient to make the additional transformation (ψ1, ψ2, ψ3) →
(ψ1, i ψ2, i ψ3). The resulting operator in coordinate represen-
tation reads as

hgs =
⎛
⎝ μA −i(t1 − t2) − iat2∂x −i t3

i(t1 − t2) − iat2∂x μC 0
i t3 0 μC

⎞
⎠.

(7)
There are situations where the Dirac equation does not

provide a reasonable approximation of low-energy dynamics.
It can happen when the energy gap is so large that the ad-
missible energies are already out of the range where a linear
approximation of dispersion would be faithful. In our models,
we assume that a reasonable control over the parameters can
be reached, e.g., by performing the experiments on the optical
lattices, which makes it possible to stay within the range of
energies where the Dirac approximation works well.

In the next section, we will present the method that allows
one to construct (7) with possibly inhomogeneous hopping
t1 and t3 and facilitate the calculation of the associated
eigenstates.

III. COUPLING VIA DARBOUX TRANSFORMATION

Let us start the section with a brief review of the Dar-
boux transformation for Dirac-type operators of the form
H = −iγ ∂x + V , where γ and V can be generic N × N
matrices. The Darboux transformation for N = 2 was dis-
cussed in [32], while the general case was considered in [33].
In general, the Darboux transformation relates the initially
known stationary equation (H − ε)� = 0 with the new un-
known equation (H̃ − ε)�̃ = 0, where H̃ = −iγ ∂x + Ṽ is
also a Dirac-type operator with an altered potential term.
Furthermore, the transformation maps the solutions of the first
equation into the solutions of the second equation. The latter is
not necessarily a one-to-one mapping and is achieved through
a first-order and nonunitary differential operator L, the exact
form of which is shown below.

The transformation is based on N eigenstates �a, a =
1, 2, . . . , N , of H , (H − λa)�a = 0. The eigenstates are used
to compose an N × N matrix, U = (�1 �2 · · · �N ). There
holds

HU = U�, � = diag{λ1, λ2, . . . , λN }, (8)

so that we can define the new Dirac-type operator,

H̃ = −iγ ∂x + Ṽ = −iγ ∂x + V − δV, δV = i[γ ,UxU
−1],

(9)
with Ux ≡ ∂xU . The latter is related with H through the
intertwining relation LH = H̃L, where L is the first-order
differential operator,

L = iUPxU
−1 ≡ ∂x − UxU

−1, (10)

with Px ≡ −i∂x the momentum operator. Here, the operator
L effectively maps the eigenstates of H into the eigenstates
of H̃ , with the exception of the states �a, a = 1, . . . , N , that
belong to the kernel of L. Indeed, there holds

(H − ε)� = 0 	⇒ (H̃ − ε)�̃ = 0, �̃ = L�. (11)
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The Hamiltonian H̃ can have the new bound states of energies
λ1, λ2. H̃ (U †)−1 = (U †)−1�. The columns of (U †)−1 corre-
spond to formal eigenstates of H̃ . When the jth column of the
latter matrix is square integrable, it forms the bound state of
H̃ with energy λ j ; see [32].

Let us consider a generic, one-dimensional pseudo-spin-
1/2 Dirac system described by the following stationary
equation:

H1/2� =
(

m + v −i∂x − iA
−i∂x + iA −m + v

)(
i ψ
φ

)
= ε

(
i ψ
φ

)
, (12)

where m = m(x), v = v(x), and A = A(x) are real functions
so that H1/2 is Hermitian. We assume that it is possible to find
formal solutions of the equation for any real ε.

We trivially extend H1/2 by an additional degree of freedom
so that the new operator has the form

H1 =
⎛
⎝ m + v −i∂x − iA 0

−i∂x + iA −m + v 0
0 0 λ

⎞
⎠. (13)

This represents a system where two subsystems coexist with-
out any mutual interaction. In one of them, the dynamics
is driven by H1/2, while in the second one, the dynamics is
frozen as the energy operator is constant.

It is straightforward to find the eigenvectors of the extended
operator H1 from the eigenvectors of H1/2. We shall use them
to perform the supersymmetric (susy) transformation of H1. In
order to do so, we fix the matrix U [see (8)] in the following
manner:

U =
⎛
⎝iψ0 iψ1 iψ2

φ0 φ1 φ2

0 ξ1 ξ2

⎞
⎠, H1U = U

⎛
⎝ε 0 0

0 λ 0
0 0 λ

⎞
⎠,

ε, λ ∈ R. (14)

The columns of U are formed by the eigenvectors correspond-
ing to the eigenvalues ε or λ, respectively. The components
ψa, φa, a = 1, 2, 3, and ξ1 and ξ2 can be fixed as real-valued
functions. The functions ξ1 and ξ2 can be arbitrary, but they
should not be zero identically as the transformed Hamiltonian
with coupled subsystems could not be Hermitian in that case;
see the Appendix.

With the matrix U fixed, we can construct L and H̃1

through (10) and (13), such that the intertwining relation is
satisfied. The new potential Ṽ1 is not Hermitian in general.
Nevertheless, we can exploit the freedom in the choice of the
functions ξ1 and ξ2 in order to recover the Hermiticity of Ṽ1

in (13). To this end, it is sufficient to fix ξ1 in the following
manner:

ξ1 = ξ2

(
c1 −

∫
(ε − λ)(φ2ψ1 − φ1ψ2)

ξ 2
2

dx

)

= ξ2

(
c1 −

∫
(ε − λ)W0

ξ 2
2

dx

)
, (15)

with c1 a real integration constant. It is worth noticing that
W0 ≡ φ2ψ1 − φ1ψ2 is a real constant as well. Indeed, the re-
lation ∂xW0 = 0 can be derived when taking into account that
(ψ1, φ1)t and (ψ2, φ2)t are eigenvectors of H1/2 corresponding
to the same eigenvalue.

The new Hamiltonian H̃1 defined in (13) has the following
form:

H̃1 =
⎛
⎝ 0 −i∂x 0

−i∂x 0 0
0 0 0

⎞
⎠ + Ṽ ,

Ṽ =

⎛
⎜⎝Ṽ11 + v −i Ṽ12 −i Ṽ13

iṼ12 −Ṽ11 + v Ṽ23

i Ṽ13 Ṽ23 λ

⎞
⎟⎠, (16)

where

Ṽ12 = −A + (ε − λ)
ψ0 (ξ2ψ1 − ξ1ψ2) − φ0 (ξ2φ1 − ξ1φ2)

ψ0 (ξ2φ1 − ξ1φ2) − φ0 (ξ2ψ1 − ξ1ψ2)
,

Ṽ13 = (ε − λ) ψ0 (φ1ψ2 − φ2ψ1)

ψ0 (ξ2φ1 − ξ1φ2) − φ0 (ξ2ψ1 − ξ1ψ2)

= − (ε − λ) ψ0 W0

ψ0 (ξ2φ1 − ξ1φ2) − φ0 (ξ2ψ1 − ξ1ψ2)
,

Ṽ23 = − (ε − λ) φ0 (φ1ψ2 − φ2ψ1)

ψ0 (ξ2φ1 − ξ1φ2) − φ0 (ξ2ψ1 − ξ1ψ2)
,

Ṽ11 = −m + (ε − λ)
ψ0 (ξ2φ1 − ξ1φ2) + φ0 (ξ2ψ1 − ξ1ψ2)

ψ0(ξ2φ1 − ξ1φ2) − φ0(ξ2ψ1 − ξ1ψ2)
.

(17)

All the nonvanishing components (17) of the potential Ṽ1

share the same denominator, d (x) := ψ0 (ξ2φ1 − ξ1φ2) −
φ0 (ξ2ψ1 − ξ1ψ2), proportional to det U . The zeros of d intro-
duce additional singularities into Ṽ1. Such a situation would
be undesirable as it would be necessary to introduce addi-
tional boundary conditions at the singularities. The additional
boundary conditions could compromise the calculation of
physically relevant eigenstates of H̃1. Indeed, physical eigen-
states of H1 could be mapped into the formal eigenstates of
H̃1 that would not belong to its domain. Therefore, the ele-
ments of the matrix U should be set such that d is a nodeless
function.

The components U are not independent. Indeed, ξ1 is given
in terms of ξ2; see (15). The functions ψa can be expressed in
terms of φa, a = 0, 1, 2, respectively,

ψa = φ′
a + Aφa

m + v − λ
, φ′

a ≡ ∂xφa. (18)

Additionally, φ1 can be expressed via φ2 as they are two
linearly independent solutions of

−
[

(−∂x + A)
1

m + v − λ
(∂x + A)

]
φ1,2 + (v − m − λ)φ1,2

= 0. (19)

Therefore, d ≡ d (x) is determined by three functions only,
d = d (φ0, φ2, ξ2), where ξ2 is arbitrary in principle. The free-
dom in its choice can be exploited to keep Ṽ1 free of any
additional singularities. We discuss the explicit choice of ξ2

in the models presented in the next section.
The formulas (17) suggest that a major simplification of

the potential Ṽ1 occurs when either ψ0 = 0 or φ0 = 0. Then,
there holds Ṽ13 = 0 or Ṽ23 = 0, respectively. We are interested
in the latter as Ṽ1 acquires the form of the Dirac operator (7) in
this case. Although it is not possible to set φ0 = 0 for a generic
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Hamiltonian H1, it is possible for cases where H1 acquires the
specific form

H1 =
⎛
⎝ m −i∂x − iA(x) 0

−i∂x + iA(x) −m 0
0 0 λ

⎞
⎠, (20)

where m is a real constant. When we fix ε = m, we can find
the corresponding eigenstate (ψ0, φ0, 0), where φ0 = 0 and
ψ0 = exp[

∫
A(x)dx]. The matrix U then reads as

U =
⎛
⎝i exp

[ ∫
A(x)dx

]
iψ1 iψ2

0 φ1 φ2

0 ξ1 ξ2

⎞
⎠,

H1U = U

⎛
⎝m 0 0

0 λ 0
0 0 λ

⎞
⎠, λ ∈ R. (21)

The components of the simplified potential term Ṽ1

Ṽ1 =
⎛
⎝ −λ −i Ṽ12 −i Ṽ13

iṼ12 λ 0
i Ṽ13 0 λ

⎞
⎠ (22)

are as follows:

Ṽ12(x) = −A(x) + (m − λ)
ξ2ψ1 − ξ1ψ2

ξ2φ1 − ξ1φ2
,

Ṽ13(x) = − (m − λ)W0

ξ2φ1 − ξ1φ2
. (23)

Equation (19) reduces to a Schrödinger-type equation. As-
suming that φ2 is fixed, we get φ1 as follows:

φ1 = φ2

(
c0 −

∫
(m − λ)W0

φ2
2

dx

)
. (24)

After substituting (15) and (24) into (23), we obtain the po-
tential components,

Ṽ12(x) = −A(x) + (m − λ)
ψ2

φ2
+ Ṽ13

ξ2

φ2
, (25)

Ṽ13(x) = − (m − λ)W0

ξ2φ2
[
δc + W0(m − λ)

( ∫
1
ξ 2

2
dx + ∫

1
φ2

2
dx

)] ,

δc = c0 − c1. (26)

Comparing the potential terms in H̃1 with hgs in (7),⎛
⎜⎝ −λ −i Ṽ12 − i∂x −i Ṽ13

iṼ12 − i∂x λ 0

i Ṽ13 0 λ

⎞
⎟⎠

=

⎛
⎜⎝ μA −i(t1 − t2) − iat2∂x −i t3

i(t1 − t2) − iat2∂x μC 0
i t3 0 μC

⎞
⎟⎠,

(27)

we find that the two operators coincide, provided that

t2 = 1/a, μC ≡ λ, μA = −λ,

t1 ≡ 1/a + Ṽ12, t3 ≡ Ṽ13. (28)

The hopping amplitudes t1 and t3 in the effective Hamiltonian
H̃1 of the quasi-one-dimensional chain would be inhomoge-
neous. In this context, the operator H1 described two systems
without any mutual interaction. In contrast, the operator H̃1

corresponds to a qualitatively different physical reality; the
two subsystems are coupled by Ṽ13. In the next section, we
will apply the presented framework for the construction of
two explicit models that can be matched with a decorated
SSH model. We will discuss three explicit models where the
inhomogeneity makes it possible to convert the SSH chain to
a stub lattice locally.

IV. TUNABLE FLAT BAND IN THE GAP

Let us fix the Hamiltonian H1/2 in (12) as the energy
operator of a massive particle with pseudo-spin-1/2 under the
influence of a null external magnetic field with the gauge rule
A(x) = A0 ∈ R. The trivially extended operator H1 then reads
as

H1 =
⎛
⎝ m −i∂x − iA0 0

−i∂x + iA0 −m 0
0 0 λ

⎞
⎠, (29)

where m and λ are real constants, and the corresponding
eigenvectors can be found for any ε. In accordance with the
results of the previous section, we fix ε = m and

ψ0 = eA0x, φ0 = 0, (H1 − m)(iψ0, φ0, 0) = 0. (30)

As mentioned in (18) and (19), the components ψ1,2 and φ1

can be obtained in terms of φ2. We will assume that |λ| �= |m|.
Then we can write

ψ1,2 = φ′
1,2 + A0φ1

m − λ
, φ1 = φ2

(∫
W0(m − λ)

φ2
2

+ c0

)
,

(31)
where c0 is a real constant. We used the fact that φ1 and φ2

have to solve the same differential equation (19) of the second
order. We assume that they are linearly independent, i.e., the
Wronskian W0 of the two solutions is nonvanishing, W0 �= 0.
The component ξ1 is fixed as in (15).

The functions φ2 and ξ2 are to be selected such that the
components (17) of Ṽ1 are free of singularities. We make the
following choice:

φ2 = cosh κx, ξ2 = −ρ cosh κx,

κ =
√

m2 + A2
0 − λ2, ρ ∈ R. (32)

Here we assume that A, m, and λ are fixed such that κ is real.
The matrix U than satisfies (21). The Hamiltonian H̃1 and the
intertwining operator L have the following explicit forms:

H̃1 =

⎛
⎜⎝ 0 −i∂x 0

−i∂x 0 0
0 0 0

⎞
⎟⎠ +

⎛
⎜⎝ −λ −i Ṽ12 −i Ṽ13

i Ṽ12 λ 0

i Ṽ13 0 λ

⎞
⎟⎠,

(33)

L = ∂x −

⎛
⎜⎝

A i(m + λ) 0

0 Ṽ12 Ṽ13

0 Ṽ13 Ṽ12 + 1−ρ2

ρ
Ṽ13

⎞
⎟⎠, (34)
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FIG. 2. Matrix potential terms Ṽ12(x) (blue solid) and Ṽ13(x) (red dashed) obtained from (35). Here, the parameters have been fixed to
A = m = 0.8, ρ = 1, λ = 1

2

√
A2 + m2, combined with (a) ω = 2ωcrit , (b) ω = (1 + 10−2)ωcrit , (c) ω = −(1 + 10−6)ωcrit , and (d) ω = −(1 +

10−14)ωcrit .

where

Ṽ12 = κ tanh κx + ρ Ṽ13, Ṽ13 = κ ρ sech2κx

κ ρ2 ω + (1 + ρ2) tanh κx
.

(35)
Here we combined c0, c1, and W0 into a single parameter ω,

ω ≡ c0 − c1

W0(m − λ)
. (36)

It can be concluded from (35) that both Ṽ12 and Ṽ13 are regular,
provided that we fix ω such that

|ω| � ωcrit ≡ (1 + ρ2)

ρ2 κ
. (37)

For |ω| > ωcrit , the interaction Ṽ13 vanishes asymptoti-
cally. The potential term Ṽ12 is asymptotically constant, but
it changes its sign,

lim
x→±∞ Ṽ12 = ±κ. (38)

For most of the eligible values of either ω or λ, the term Ṽ13(x)
represents a rather narrow well or a bump, dependently on the
sign of ω, whereas Ṽ12(x) forms a smoothed potential step.
When |ω| approaches ωcrit , the magnitude of Ṽ13 increases.

Simultaneously, it gets wider so that it resembles a smoothed
rectangular well (for ω > 0) or barrier (for ω < 0). The po-
tential Ṽ12 turns into a smoothed two-step barrier with an
intermediate plateau. The width of the plateau is very sensitive
to the proximity of |ω| to ωcrit; see Fig. 2 for illustration.

When ω = ωcrit , Ṽ13 simplifies considerably. We have

Ṽ12 = κ
tanh κx + ρ2

1 + ρ2
, Ṽ13 = 2κ ρ

(1 + ρ2)(1 + e2κx )
. (39)

The asymptotic behavior of the interactions is different in this
case. We have

lim
x→+∞ Ṽ12 = κ, lim

x→−∞ Ṽ12 = κ
ρ2 − 1

1 + ρ2
, (40)

lim
x→+∞ Ṽ13 = 0, lim

x→−∞ Ṽ13 = κ ρ

1 + ρ2
. (41)

We can see that Ṽ12 is changing its sign asymptotically
again. The interaction Ṽ13 acquires a nonzero constant value
for large negative x.

The potential Ṽ1 can be matched with the interaction term
of the quasi-one-dimensional chain (27) where the general-
ized stub lattice gets converted into a SSH chain with a parallel
chain of noninteracting atoms. The interaction between the
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FIG. 3. Inhomogeneous hopping parameters t1 = t2 + Ṽ12 (red), t3 = Ṽ13 (orange), and t3 (gray dotted) for ω = ωc computed
from (37), (39), and (28). We fixed t2 = 1, m = 1, A = 1, λ = 1

2

√
A2 + m2, and ρ = 1 (left) and ρ = 0.5 (right). Insets: The quasi-one-

dimensional chain with the corresponding interactions (the thicker the line, the stronger the coupling), with t1 red, t2 black, and t3 the vertical
line.

two chains is localized in the case of (35), while in the case
of (39), it gets extended over the half axis. The dimerization
pattern on the SSH chain changes as the ratio of t1/t2 (where
t1 = Ṽ12 + t2) is inverted along the x axis. In this way, it
resembles the SSH chains with a domain wall. Figure 3 il-
lustrates the case ω = ωcrit , where a semi-infinite generalized
stub lattice decomposes at the origin into an SSH chain with
parallel noninteracting atoms.

As noted below (11), supersymmetric transformation can
generate bound states with discrete energies in the new sys-
tem. The candidates for the new bound states are formed by
the columns of the matrix (U †)−1 that satisfy

H̃1(U †)−1 = (U †)−1diag{m, λ, λ}. (42)

The eigenstate corresponding to the eigenvalue m is not nor-
malizable, while the other two columns are eigenvectors with
the eigenvalue λ. Their explicit form and square integrability
is not of our interest. The reason is that λ corresponds to the
flat-band energy and, therefore, it is infinitely degenerated
anyway. Indeed, we can find an infinite number of inde-
pendent normalizable eigenvectors of the form L[0, 0, ξ (x)]T

where ||ξ || < ∞, with T the transposition operation.
By construction, the spectrum of H̃1 is composed of two

energy bands of negative and positive energies. The energy λ

of the flat band can take any value within the energy gap,

σ (H̃1) = ( − ∞,−
√

m2 + A2
0

] ∪ [√
m2 + A2

0,∞
) ∪ {λ},

λ2 < m2 + A2
0. (43)

The barrier represented by Ṽ1 in (35) is perfectly trans-
parent. The quasiparticles tunnel through it without being
backscattered. It it reminiscent to the Klein tunneling of quasi-
particles in graphene through electrostatic barriers. Here, the
particles can pass through the barrier without reflection in-
dependently of their energy. It can be understood with the
use of the intertwining operator L that makes it possible to
map the eigenstates of H1 into those of H̃1. The Hamiltonian
H1 corresponds to the free-particle energy operator with a
constant potential. Let us suppose that its physical eigenstate
ψk (x) = eikx (a, b, c)t corresponds to the plane waves with a
fixed momentum k ∈ R. The intertwining operator L converts

these states into the scattering states of H̃1. We can write

Lψk (x) = (∂x − UxU
−1)eikx (a, b, c)t

= eikx (ik − UxU
−1)(a, b, c)t , (44)

where a, b, c are complex-valued constant components of the
three-component wave function. The matrix UxU −1 converges
to a constant matrix for large |x|. Therefore, Lψk (x), |x| →
∞, acquires the form of the plane wave whose momentum is
not altered by the potential barrier,

lim
x→±∞ Lψk (x) = eikx(ã±, b̃±, c̃±)t , ã±, b̃±, c̃± ∈ C, (45)

i.e., there is no backscattering.

V. COEXISTENCE OF DISCRETE AND FLAT-BAND
ENERGY LEVELS

The Hamiltonian H̃1 can inherit spectral properties of the
initial, uncoupled operator H1. The latter one, by construc-
tion, shares the spectrum of H1/2 except the flat-band energy.
Therefore, the spectral design of H̃1 starts with the proper
choice of H1/2. In this section, we present the models where
the flat band coexists with discrete energies. The models with
one and two discrete energies are introduced. We illustrate
how Darboux transformation can be used in two steps. In
the first one, 2 × 2 Darboux transformation can generate H1/2

with the requested structure of discrete energies. In the second
step, Darboux transformation applied on 3 × 3 operator H1

produces the Hamiltonian H̃1.

A. Two bound states and a flat band

In this section, we design a solvable model of a pseudo-
spin-1 system with two discrete energies and a flat band in
the energy spectrum. We will discuss in detail the role of the
Darboux transformation at different stages of the construction.

First, we shall construct a solvable model described by a
pseudo-spin-1/2 Hamiltonian that has two discrete energies in
its spectrum. Let us set the initial Hamiltonian as the energy
operator of a free-particle system as

H1/2 = −iσ1∂x + m0σ2, m0 > 0. (46)
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The spectrum of H1/2 consists of two bands divided by the
energy gap that stretches between ±m0. Darboux transforma-
tion can be used to convert H1/2 into the new pseudo-spin-1/2
Hamiltonian that would possess two discrete energies. We can
rely here on the existing results. Solvable systems constructed
from the free-particle model via Darboux transformation
were discussed in [41,43], where models with diverse con-
figurations of discrete energies within the energy gap were
presented.

We demand that there are two discrete real energies λ0

and −λ0 in the new system. In order to construct such a
Hamiltonian, we fix the matrix U1/2 in the following manner
(see [41] for more details):

H1/2U1/2 = U1/2

(
λ0 0
0 −λ0

)
, U1/2 =

(
u11 −iu11

iu21 −u21

)
,

(47)
where u11 = cosh k0x, u21 = cosh(k0x + a0), and

k0 =
√

m2
0 − λ2

0, a0 = 1

2
ln

m0 − k0

m0 + k0
,

|λ0| < |m0|, λ0, m0 ∈ R. (48)

The intertwining operator L1/2 and the new Hamiltonian H̃1/2

can be written as

H̃1/2 = −iσ1∂x + A(x) σ2,

L1/2 = ∂x − k0

(
tanh k0x 0

0 tanh(k0x + a0)

)
,

A(x) = [m0 − k0 tanh k0x + k0 tanh(k0x + a0)]. (49)

They satisfy

L1/2H1/2 = H̃1/2L1/2. (50)

The two linearly independent eigenstates of H1/2 correspond-
ing to the eigenvalue λ are

F (λ) = ( f1, f2)t = (−i(m0 cosh xk + k sinh kx), λ cosh kx)t ,

(51)

G(λ) = (g1, g2)t = (−i(m0 sinh xk + k cosh kx), λ sinh kx)t ,

k =
√

m2
0 − λ2. (52)

They satisfy

(H1/2 − λ)F (λ) = 0, (H1/2 − λ)G(λ) = 0, λ ∈ C.

(53)

The eigenstates F̃ (λ) and G̃(λ) of H̃1/2 for an eigenenergy
λ �= λ0 can be found with help of the intertwining operator
L1/2,

(H̃1/2 − λ)F̃ (λ) = 0, F̃ (λ) ≡ L1/2F (λ) = ( f̃1, f̃2)t , (54)

(H̃1/2 − λ)G̃(λ) = 0, G̃(λ) ≡ L1/2G(λ) = (̃g1, g̃2)t . (55)

The Hamiltonian H̃1/2 has two square integrable bound states
v± with energy ±λ0 that form the columns of the matrix
(U †

1/2)−1 [see (42)],

H̃1/2v
± = ±λ0v

±,

v± = (v±
1 , v±

2 )t = [sechk0x,±i sech(k0x + a0)]t . (56)

Therefore, we constructed the operator H̃1/2 with the two
discrete energies in the spectrum.

Now, we use the operator H̃1/2 to define the extended
operator H1 [see (20)],

H1 =
⎛
⎝ 0 −i∂x − iA(x) 0

−i∂x + iA(x) 0 0
0 0 λ

⎞
⎠, |λ| < λ0.

(57)
Darboux transformation L of the extended system is defined
in terms of 3 × 3 matrix U ; see (10) and (21). We fix the
components of U in terms of solutions F̃ (λ) and G̃(λ) for a
given λ, |λ| < λ0, in the following manner:

ψ0 = i e
∫

A(x)dx, ψ1 = −i g̃1, φ1 = g̃2, ψ2 = −i f̃1,

φ2 = f̃2, ξ1 =
λ2

√
m2

0 − λ2
(
λ2

0 − λ2
)

κ ρ
sinh κx,

ξ2 = ρ cosh κx, |λ| < |λ0|. (58)

Then it satisfies H1U = U

(
0 0 0
0 λ 0
0 0 λ

)
. The Hamiltonian H̃1

can be constructed as in (9). It inherits the discrete energies
±λ0 of H1. The corresponding bound states w̃± can be found
with the help of the intertwining operator L,

w̃± = L(v±
1 , v±

2 , 0)t , H̃1w̃
± = ±λw̃±. (59)

The parameters ρ and κ of the flat-band solution can be
arbitrary in principle. Substituting (58) into (23), the elements
Ṽ12 and Ṽ13 of the potential of the new Hamiltonian H̃1 are
represented by rather extensive formulas that we will not
explicitly present here. The numerical tests reveal the range
of ρ and κ where Ṽ12 and Ṽ13 are regular; see Fig. 4(a).

Nevertheless, the model gets remarkably simplified when
ρ and κ are fixed as follows:

κ =
√

m2
0 − λ2, ρ = λ

√
λ2

0 − λ2. (60)

Then the intertwining operators H̃1 and L acquire a particu-
larly simple form,

H̃1 =
⎛
⎝ 0 −i∂x 0

−i∂x 0 0
0 0 0

⎞
⎠ +

⎛
⎜⎝ −λ −i Ṽ12 −i Ṽ13

i Ṽ12 λ 0

i Ṽ13 0 λ

⎞
⎟⎠,

L = ∂x −

⎛
⎜⎝A(x) iλ 0

0 Ṽ12 Ṽ13

0 Ṽ13 −Ṽ12

⎞
⎟⎠, (61)

where

Ṽ12 = −k0 tanh(k0x + a0), Ṽ13 =
√

λ2
0 − λ2, (62)

and A(x) is defined in (49). We can see that the dimerization
pattern of the SSH chain undergoes the change at x = −a0/k0.
The SSH chain gets coupled with the parallel chain of atoms
by Ṽ13 that acquires a constant value. The components Ṽ12

and Ṽ13 are plotted in Fig. 4(b). The atomic chain with the
corresponding hopping parameters is illustrated in Fig. 5.
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FIG. 4. Matrix potential elements Ṽ12(x), Ṽ13(x), and the probability densities of the (normalized) bound states |w±|; see the insets for the
color scheme. The parameters have been fixed as (a) m0 = 1, λ0 = 0.5, λ = 0.499, κ = 0.04, ρ = 0.06, and (b) κ and ρ are fixed as in (60),
m0 = 1, λ0 = 0.7, λ = 0.1.

With the current choice (60) of κ and ρ, the bound
states (59) are

w̃± = L(v±
1 , v±

2 , 0) = [
w̃±

1 , 0,±i
√

λ2
0 − λ sech(a0 + k0x)

]
,

(63)
where

w̃±
1 = m0λ ∓ (

2k2
0 + λ2

)
cosh(a0) ∓ 2k0m0 sinh(a0)

2λ cosh k0x cosh2(k0x + a0)
(64)

+ λ(m0 cosh 2xk0− k0 sinh 2xk0)− λ2 cosh(2k0x+ a0)

2λ cosh k0x cosh2(k0x+ a0)
.

(65)

The other eigenstates of H̃1 for eigenvalues λ can be found
from those of H̃1/2 [see (55)],

F̃ = L( f̃1, f̃2, 0)t , G̃ = L (̃g1, g̃2, 0)t . (66)

Discussion of the scattering properties of the model with
the potential (75) can be conducted in close analogy with
the previous model. The matrix UxU −1 in the operator L =
∂x − UxU −1 tends asymptotically to a constant matrix and,
therefore, the operator L cannot change the momentum of
the plane wave that corresponds to the scattering state of H1.

FIG. 5. Inhomogeneous hopping parameters t1 = t2 + Ṽ12 (red),
t3 = Ṽ13 (orange), and t3 (gray dotted) as given by (61). The parame-
ters are fixed as λ0 = 0.7, m0 = 1, and λ = 0.1.

Therefore, the current setting described by H̃1 is also free of
backscattering.

In the construction, we used Darboux transformation at two
different occasions. First, it was used to derive pseudo-spin-
1/2 Hamiltonian H̃1/2 with the requested discrete energies.
In that case, the intertwining operator L1/2 was represented
by the 2 × 2 matrix operator (49). Then we applied another
Darboux transformation given in terms of the 3 × 3 operator
L. In the specific case (60), it acquired a compact form (61).
It provided us with the Hamiltonian H̃1. It is worth noticing
in this context that the two intertwining relations mediated
by L1/2 and L can be brought into a compatible form by
an extension of the operator L1/2. Indeed, the intertwining
relation (50) can be written as(

L1/2 0
0 1

)(
H1/2 0

0 λ

)
=

(
H̃1/2 0

0 λ

)(
L1/2 0

0 1

)
. (67)

Then it is possible to write a single intertwining relation that

connects the trivially extended initial Hamiltonian (
H1/2 0

0 λ
)

and the target Hamiltonian H̃1,

L
(

H1/2 0
0 λ

)
= H̃1L, L = L

(
L1/2 0

0 1

)
. (68)

B. Flat band and a single bound state

In this case, we shall consider the model with a single
discrete energy and a flat-band energy. Following the strategy
explained in the previous section, we shall select the Hamilto-
nian H1/2 such that it has one discrete energy in the energy
gap. Here we shall use the results of [43,56], where such
an operator was constructed via Darboux transformation and
possessed the vector potential A(x) = m tanh mx. The trivially
extended operator H1 then reads as

H1 =
⎛
⎝ M −i∂x − im tanh mx 0

−i∂x + im tanh mx −M 0
0 0 λ

⎞
⎠,

(69)
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where M, m, and λ are real constants. The stationary equa-
tion H1� = ε � is exactly solvable for any ε. Indeed, fixing
the wave function � = (ψ, φ, 0) and |ε| �= M, the station-
ary equation decouples into φ = −i ∂x−A

E+M ψ and (−∂2
x − ε2 +

M2 + m2)ψ = 0. Hence, the upper component is the eigen-
state of the Schrödinger Hamiltonian of the free particle. This
is due to the fact that the potential term in (69) is related to the
reflectionless Pöschl-Teller model2; see [43,56]. The operator
H1 has a square integrable bound state �−M with energy −M,

H1�−M = −M�−M , �−M = (0, sech mx, 0)t . (70)

The elements of the matrix U are fixed in the following
manner:

ψ0 = cosh mx, ψ1 = −μk
√

m2 − k2(cosh kx+ c0 sinh kx),

ψ2 = −μk
√

m2 − k2 sinh kx, (71)

together with

ξ2 = cosh kx. (72)

The parameter μ controls the reality of these functions, i.e.,
μ = 1 for k2 < m2 and μ = −i for k2 > m2. The components
φ1 and φ2 can be calculated from φa = −i ∂x−A

E+M ψa, with a =
1, 2. Furthermore, we fix the flat-band energy as

λ =
√

M2 + m2 − k2. (73)

The matrix U satisfies the relation

H1U = U

⎛
⎝M 0 0

0 λ 0
0 0 λ

⎞
⎠, (74)

so that Eq. (17) renders the potential components

Ṽ11 = −λ, (75)

Ṽ12 = −m tanh mx + (k2 − m2)

× 1 + tanh kx[δc − k2(M − λ)2μ2 tanh kx]

d (x)
, (76)

Ṽ13 = (M − λ)
μ

√
m2 − k2 k2 sech2kx

d (x)
, δc = c0 − c1,

(77)

where

d (x) = δc(k − m tanh kx tanh mx) + k tanh kx − m tanh mx
(78)

−k2μ2(M − λ)2 tanh kx (k − m tanh kx tanh mx). (79)

We shall fix the parameters such that d (x) is nonvanishing
for x ∈ R in order to keep the potential regular. The function
d (x) is linear in δc. The terms that do not depend on δc are
bounded. Let us fix

k > m > 0, μ = −i.

Then the coefficient of δc is strictly positive and we can
always fix δc such that the first term of d (x) is greater than

2The lower component φ of H1 has to satisfy the Schrödinger
equation for the Pöschl-Teller model.

the sum of the remaining terms. In this way, we can keep
d (x) > 0.

We are interested in the critical value of δc. We have

d (x) > 0 ⇔ δc >
m tanh mx − k tanh kx

(k − m tanh kx tanh mx)

+ k2 μ2 (M2 − λ2) tanh kx ≡: w(x).
(80)

We find that w(x) is an odd and strictly decreasing function,

∂xw(x)

= −k3sech2kx

[
k2 − m2

k2(k − m tanh kx tanh mx)2
+ (M − λ)2

]
.

(81)

We define the critical value δccrit as follows:

δccrit ≡ lim
x→−∞ w(x) = 1 + k2(M − λ)2. (82)

Then both Ṽ12 and Ṽ13 are regular for |δc| � |δccrit|. The po-
tential term Ṽ12 changes its sign asymptotically. In the limit of
large |x|, it has the following behavior:

lim
x→±∞ Ṽ12 = ±k. (83)

The explicit form of Ṽ12 and Ṽ13 for |δc| > |δccrit| is in (75).
When δc = −δccrit , we have

Ṽ12 = −m tanh mx

+ (k2− m2){1+ tanh kx[1+ k2(M− λ)2(1+ tanh kx)]}
dc(x)

,

(84)

Ṽ13 =
√

m2 − k2 k2 μ (M − λ) sech2kx

dc(x)
, (85)

where

dc(x) = k tanh kx − m tanh mx

+ [1 + k2(M2 − λ2)(1 − μ2 tanh kx)]

× (k − m tanh kx tanh mx). (86)

The components Ṽ12 and Ṽ13 are explicitly depicted in
Fig. 6. The behavior of both Ṽ12 and Ṽ13 is sensitive to the
proximity of |δc| to |δccrit|. The width of the plateau in the
two-step function and the width of the well increase as |δc|
tends to |δccrit|. This time, the plateau corresponds to a nonva-
nishing energy. In Fig. 6, we present the plots of Ṽ12 and Ṽ13

for δc that is very close to δccrit , but with varying m and M
such that M2 + m2 is kept constant. For small values of m, Ṽ12

forms a two-step function that resembles the potential from
the previous model; see Figs. 6(a) and 6(b). As m increases,
a potential well in Ṽ12 is formed; see Figs. 6(c) and 6(d). In
Fig. 7, there is a plot of the hopping amplitudes t1 = t2 + Ṽ12

and t3 = Ṽ13 for δc = δccrit of the generalized stub lattice.
In this figure, there is also the generalized stub lattice with
hopping amplitudes t1, t2, and t3, in correspondence with (27).

Like in the previous model, the intertwining operator L =
∂x − UxU −1 acquires a rather simple form asymptotically
as limx→±∞ UxU −1 = U±, where U± is a constant matrix.
Therefore, the action of the L does not alter the asymptotic
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FIG. 6. Matrix potential elements Ṽ12(x) (blue solid), Ṽ13(x) (red dashed), and the flat-band energy level λ (dot dashed). The rest of the
parameters have been fixed as k = 0.9, M = √

1 − m2, δc = 1 + k2(M − λ) + 10−6, together with (a) m = 0.1, (b) m = 0.2, (c) m = 0.5, and
(d) m = 0.8. The dark-shaded curve depicts the probability density of the bound state �̃−M .

behavior of the eigenstates. It maps scattering states and
bound states of H1 into qualitatively the same states of H̃1.
In particular, the Hamiltonian H̃1 inherits a bound state with
energy E = −M. Indeed, by construction, the system has a
nondegenerate energy level E = −M, with the corresponding
bound state

�̃−M = L (0, sechmx, 0)t , H̃1�̃−M = −M�̃−M . (87)

FIG. 7. t1 = t2 + Ṽ12 (red), t3 = Ṽ13 (orange), and t2 (black dot-
ted) for ω = ωc; see (37), (39), and (27). We fixed t2 = 1, k0 = 0.9,
m = 0.5, M = √

1 − m2, A = 1. Inset: The quasi-one-dimensional
chain with the corresponding interactions (the thicker the line, the
stronger the coupling).

The density of probability of the bound state �̃−M is plotted
in Fig. 6. The spectrum of this model has the form

σ (H̃1) = (−∞,−
√

M2 + m2] ∪ [
√

M2 + m2,∞)

∪ {
√

M2 + m2 − k2,−M}, (88)

where |M| > |k| > |m|, which is further illustrated in Fig. 8.

VI. DISCUSSION

We presented the method for the spectral design of
quasi-one-dimensional crystals with a flat band that can be
effectively described by the Dirac equation. Our approach
is based on the susy transformation of the trivially extended
pseudo-spin-one operator H1; see (13). The latter operator is
block diagonal with pseudo-spin-1/2 Hamiltonian H1/2 and
a constant on the diagonal. The operator H1/2 governs the
dynamics of a dimerized chain of atoms. The constant term
represents an additional, parallel chain of atoms that are not
interacting with their neighbors and host the flat-band states.
The susy transformation of H1 provides us with the operator
H̃1 that already possesses nontrivial interaction between the
two atomic chains; see (17) or (23). The susy transformation
of H1 is partially defined in terms of flat-band solutions. The
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FIG. 8. Spectrum of H̃1. For each fixed value k, the two shaded
bands represent the continuum. The thick black line corresponds to
the flat-band energy (73) and the thin black line is the energy of the
bound state L�−M . We fixed m = 0.5 and M = √

1 − m2.

latter functions can be selected such that H̃1 is Hermitian;
see (15).

The method was explained and explicitly illustrated in
three explicit models where a SSH chain interacts locally
with a parallel chain of otherwise noninteracting atoms. In
the models, the form of the interaction was tunable via
free parameters; see Figs. 2, 4, 6. We demonstrated that in
the limit where the parameters approach the critical values,
the interaction approximates the piecewise constant potential;
see Figs. 3, 5, 7.

The trivial extension of H1/2 to H1 by diagonal constant
λ fixes the energy of the flat band; see (13). The remaining
spectral characteristics of H1 (and H̃1) are inherited from
those of H1/2. The spectrum of H1/2 itself can also be ad-
justed by an appropriate susy transformation. The model
discussed in Sec. V A exemplifies such a situation. Indeed,
the block-diagonal operator in (57) can be obtained from the
free-particle Hamiltonian via susy transformation that gener-
ates two discrete energies E = ±λ0 in the spectrum of (49).
It is worth noticing that Darboux transformation applied on
a pseudo-spin-1/2 system can generate up to two new bound
states. When a greater number of bound states is needed, it
is possible to make a sequence of Darboux transformations to
get the target Hamiltonian H̃1/2 with the requested structure of
discrete energies. Pseudo-spin-1/2 Dirac operators obtained
via chains of Darboux transformations were discussed in the
context of non-Hermitian optics in [42].

The models described by H̃1 also inherit scattering charac-
teristics of H1. In both Sec. IV and Sec. V, H1 was fixed as
the reflectionless operator. The susy partners H̃1 shared this
property as they did not support any backscattering on the
potential barriers. This behavior resembles Klein tunneling

that occurs in an electrostatic field; see the recent analysis
in [53].

The work was inspired by [45] where a spin-one free-
particle Dirac operator was transformed by supersymmetric
transformation into the new ones with nontrivial potentials. In
one specific case, the susy transformation resulted in decou-
pling of the Hamiltonian, i.e., it acquired block-diagonal form
with a 2 × 2, spin-1/2 operator and a constant on the diagonal;
see [45] for more details. The inverse approach was followed
in the current article and exploited in the context of quasi-
one-dimensional atomic chains. The presented construction
based on susy transformation of the block-diagonal operators
shares the philosophy of [57], where the interaction between
uncoupled systems was induced via unitary transformations.

The presented approach to the spectral design of quasi-
one-dimensional systems with flat bands is very flexible. It
is straightforward to adjust it for the construction of quasi-
one-dimensional systems with a higher number of flat bands
and/or higher number of atoms in the elementary cell of the
dimerized chain. The number of flat bands as well as their
energies can be easily controlled by the addition of non-
interacting parallel atomic chains to the initial Hamiltonian
H1/2, i.e., via its trivial extension by a corresponding number
of diagonal constant terms. The susy transformation would
generate the coupling between the original SSH-type chain(s)
and the other, initially noninteracting, chains. It would also be
possible to consider the effects of a magnetic field that would
alter the phase of the hopping parameters. It is worth noticing
in this context that the generation of the synthetic magnetic
field for optical lattices was proposed in [17] and [23]. Anal-
ysis of boundary effects on a finite lattice with the use of the
supersymmetric transformation represents another interesting
research direction as the boundary effects can play a major
role, e.g., in topological properties of the atomic chains [48]. It
would also be interesting to apply this approach in the analysis
of the systems with quasibound states. Nevertheless, analysis
of these topics goes beyond the scope of the present work and
should be reported elsewhere.
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APPENDIX: ON THE STRUCTURE OF THE MATRIX U

Let us define the following set of 3 × 3 matrices:

M =
{

M =
(
B b
0 ξ

)
, B ∈ C2×2, b ∈ C1×2, ξ ∈ C, 0 = (0, 0)

}
. (A1)

The set M is closed with respect to matrix multiplication and
inverse operation, i.e., it forms a group,

M1, M2 ∈ M ⇒ M1.M2 ∈ M, M−1
a ∈ M, a = 1, 2. (A2)

Particularly, it is worth noticing that S1 ≡
(

0 1 0
1 0 0
0 0 0

)
belongs to M. If we select the matrix U such that U ∈ M,
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then Ux ∈ M, with Ux ≡ ∂xU , leads to the relation

δV = i[S1,UxU
−1] =

(
B b
0 0

)
∈ M, (A3)

which is manifestly non-Hermitian. The vector b can be nul-
lified by a specific choice of the seed solutions. Nevertheless,
the new potential δV becomes, again, block diagonal.

The latter reveals that to avoid non-Hermitian poten-
tial terms, we must work with at least two flat-band states

associated with the same flat-band level, rendering a transfor-
mation matrix with the structure

U =
(

b B
0 ξ

)
, ξ = (ξ1, ξ2). (A4)

This ensures that the new Hamiltonians constructed using
the supersymmetric transformation showcase all the desired
properties.

[1] D. Leykam, A. Andreanov, and S. Flach, Artificial flat band
systems: From lattice models to experiments, Adv. Phys. X 3,
1473052 (2018).

[2] R. Drost et al., Topological states in engineered atomic lattices,
Nat. Phys. 13, 668 (2017).

[3] M. R. Slot, S. N. Kempkes, E. J. Knol, W. M. J.
van Weerdenburg, J. J. van den Broeke, D. Wegner, D.
Vanmaekelbergh, A. A. Khajetoorians, C. Morais Smith, and I.
Swart, p-band engineering in artificial electronic lattices, Phys.
Rev. X 9, 011009 (2019).

[4] L. Yan and P. Liljeroth, Engineered electronic states in atomi-
cally precise artificial lattices and graphene nanoribbons, Adv.
Phys. X 4, 1651672 (2019).

[5] S. E. Freeney et al., Electronic quantum materials simulated
with articial model lattices, ACS Nanosci. Au 2, 198 (2022).

[6] R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B. Real,
C. Mejia-Cortes, S. Weimann, A. Szameit, and M. I. Molina,
Observation of localized states in Lieb photonic lattices, Phys.
Rev. Lett. 114, 245503 (2015).

[7] B. Real et al., Flat-band light dynamics in Stub photonic lat-
tices, Sci. Rep. 7, 15085 (2017).

[8] T.-X. Ma et al., Acoustic flat bands in phononic crystal defect
lattices, J. Appl. Phys. 129, 145104 (2021).

[9] P. Karki and J. Paulose, Nonsingular and singular flat bands
in tunable phononic metamaterials, Phys. Rev. Res. 5, 023036
(2023).

[10] M. N. Huda, S. Kezilebieke, and P. Liljeroth, Designer flat
bands in quasi-one-dimensional atomic lattices, Phys. Rev. Res.
2, 043426 (2020).

[11] E. Travkin, F. Diebel, and C. Denz, Compact flat band states
in optically induced flatland photonic lattices, Appl. Phys. Lett.
111, 011104 (2017).

[12] E. J. Meier, F. Alex An, and B. Gadway, Observation of the
topological soliton state in the Su-Schrieffer-Heeger model,
Nat. Commun. 7, 13986 (2016).

[13] M. N. Huda, S. Kezilebieke, R. Drost, T. Ojanen, and P.
Liljeroth, Tuneable topological domain wall states in engi-
neered atomic chains, npj Quantum Mater. 5, 17 (2020).

[14] J. Zurita, C. E. Creffield, and G. Platero, Topology and interac-
tions in the photonic Creutz and Creutz-Hubbard Ladders, Adv.
Quantum Technol. 3, 1900105 (2020).

[15] D. Bercioux, O. Dutta, and E. Rico, Solitons in one-dimensional
lattices with a flat band, Ann. Phys. (Berlin) 529, 1600262
(2017).

[16] A. Anastasiadis, G. Styliaris, R. Chaunsali, G. Theocharis, and
F. K. Diakonos, Bulk-edge correspondence in the trimer Su-
Schrieffer-Heeger model, Phys. Rev. B 106, 085109 (2022).

[17] S. Longhi, Aharonov-Bohm photonic cages in waveguide and
coupled resonator lattices by synthetic magnetic fields, Opt.
Lett. 39, 5892 (2014).

[18] S. Mukherjee, M. Di Liberto, P. Öhberg, R. R. Thomson,
and N. Goldman, Experimental observation of Aharonov-
Bohm cages in photonic lattices, Phys. Rev. Lett. 121, 075502
(2018).

[19] M. Kremer, I. Petrides, E. Meyer, M. Heinrich, O. Zilberberg,
and A. Szameit, A square-root topological insulator with
non-quantized indices realized with photonic Aharonov-Bohm
cages, Nat. Commun. 11, 907 (2020).

[20] A. Mukherjee, A. Nandy, S. Sil and A. Chakrabarti, Engineer-
ing topological phase transition and Aharonov-Bohm caging in
a flux-staggered lattice, J. Phys.: Condens. Matter 33, 035502
(2021).

[21] S. Shahbazi and M. V. Hosseini, Revival of superconductivity
in a one-dimensional dimerized diamond lattice, Sci. Rep. 13,
15725 (2023).

[22] M. Thumin and G. Bouzerar, Flat band superconductivity in a
system with a tunable quantum metric: the stub lattice, Phys.
Rev. B 107, 214508 (2023).

[23] S. Mukherjee and R. Thomson, Observation of localized flat-
band modes in a quasi-one-dimensional photonic rhombic
lattice, Opt. Lett. 40, 5443 (2015).

[24] S. Mukherjee and R. Thomson, Observation of robust flat-band
localization in driven photonic rhombic lattices, Opt. Lett. 42,
2243 (2017).

[25] F. Baboux et al., Bosonic condensation and disorder-induced
localization in a flat band, Phys. Rev. Lett. 116, 066402
(2016).

[26] L. Morales-Inostroza and R. A. Vicencio, Simple method to
construct flat-band lattices, Phys. Rev. A 94, 043831 (2016).

[27] T. Mizoguchi and M. Udagawa, Flat-band engineering in tight-
binding models: Beyond the nearest-neighbor hopping, Phys.
Rev. B 99, 235118 (2019).

[28] W. Maimaiti, A. Andreanov, H. C. Park, O. Gendelman, and S.
Flach, Compact localized states and flat-band generators in one
dimension, Phys. Rev. B 95, 115135 (2017).

[29] C.-C. Lee, A. Fleurence, Y. Yamada-Takamura, and T. Ozaki,
Hidden mechanism for embedding the flat bands of Lieb,
kagome, and checkerboard lattices in other structures, Phys.
Rev. B 100, 045150 (2019).

[30] T. Ogata, M. Kawamura, and T. Ozaki, Methods for construct-
ing parameter-dependent flat-band lattices, Phys. Rev. B 103,
205119 (2021).

[31] F. Cooper, A. Khare, and U. Sukhatme, Supersymmetry in
Quantum Mechanics (World Scientific, Singapore, 2001).

245406-13

https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1038/nphys4080
https://doi.org/10.1103/PhysRevX.9.011009
https://doi.org/10.1080/23746149.2019.1651672
https://doi.org/10.1021/acsnanoscienceau.1c00054
https://doi.org/10.1103/PhysRevLett.114.245503
https://doi.org/10.1038/s41598-017-15441-2
https://doi.org/10.1063/5.0040804
https://doi.org/10.1103/PhysRevResearch.5.023036
https://doi.org/10.1103/PhysRevResearch.2.043426
https://doi.org/10.1063/1.4990998
https://doi.org/10.1038/ncomms13986
https://doi.org/10.1038/s41535-020-0219-3
https://doi.org/10.1002/qute.201900105
https://doi.org/10.1002/andp.201600262
https://doi.org/10.1103/PhysRevB.106.085109
https://doi.org/10.1364/OL.39.005892
https://doi.org/10.1103/PhysRevLett.121.075502
https://doi.org/10.1038/s41467-020-14692-4
https://doi.org/10.1088/1361-648X/abbc9a
https://doi.org/10.1038/s41598-023-42940-2
https://doi.org/10.1103/PhysRevB.107.214508
https://doi.org/10.1364/OL.40.005443
https://doi.org/10.1364/OL.42.002243
https://doi.org/10.1103/PhysRevLett.116.066402
https://doi.org/10.1103/PhysRevA.94.043831
https://doi.org/10.1103/PhysRevB.99.235118
https://doi.org/10.1103/PhysRevB.95.115135
https://doi.org/10.1103/PhysRevB.100.045150
https://doi.org/10.1103/PhysRevB.103.205119


V. JAKUBSKÝ AND K. ZELAYA PHYSICAL REVIEW B 109, 245406 (2024)

[32] L. M. Nieto, A. A. Pecheritsin, and B. F. Samsonov, Inter-
twining technique for the one-dimensional stationary Dirac
equation, Ann. Phys. 305, 151 (2003).

[33] E. Pozdeeva and A. Schulze-Halberg, Darboux transformations
for a generalized Dirac equation in two dimensions, J. Math.
Phys. 51, 113501 (2010).

[34] S. Kuru, J. Negro, and L. M. Nieto, Exact analytic solutions
for a Dirac electron moving in graphene under magnetic fields,
J. Phys.: Condens. Matter 21, 455305 (2009).

[35] B. Midya and D. J. Fernández, Dirac electron in graphene under
supersymmetry generated magnetic fields, J. Phys. A: Math.
Theor. 47, 285302 (2014).

[36] A.-L. Phan, D.-N. Le, V.-H. Le, and P. Roy, Electronic spectrum
of spherical fullerene molecules in the presence of generalized
magnetic fields, Eur. Phys. J. Plus 135, 6 (2020).

[37] M. Castillo-Celeita and D. J. Fernández, Dirac electron in
graphene with magnetic fields arising from first-order intertwin-
ing operators, J. Phys. A: Math. Theor. 53, 035302 (2020).

[38] D. J. Fernández, C. J. García, and D. O-Campa, Bilayer
graphene in magnetic fields generated by supersymmetry,
J. Phys. A: Math. Theor. 54, 245302 (2021).

[39] A. Schulze-Halberg and P. Roy, Dirac systems with magnetic
field and position-dependent mass: Darboux transformations
and equivalence with generalized Dirac oscillators, Ann. Phys.
431, 168534 (2021).

[40] M. Castillo-Celeita, A. Contreras-Astorga, and D. J. Fernández
C., Complex supersymmetry in graphene, Eur. Phys. J. Plus
137, 904 (2022).

[41] V. Jakubský and M. S. Plyushchay, Supersymmetric twisting of
carbon nanotubes, Phys. Rev. D 85, 045035 (2012).

[42] F. Correa and V. Jakubský, Confluent Crum-Darboux trans-
formations in Dirac Hamiltonians with PT -symmetric Bragg
gratings, Phys. Rev. A 95, 033807 (2017).

[43] F. Correa and V. Jakubský, Twisted kinks, Dirac transparent
systems and Darboux transformations, Phys. Rev. D 90, 125003
(2014).

[44] A. Contreras-Astorga, F. Correa, and V. Jakubský, Super-Klein
tunneling of Dirac fermions through electrostatic gratings in
graphene, Phys. Rev. B 102, 115429 (2020).

[45] V. Jakubský and K. Zelaya, Reflectionless pseudospin-1 Dirac
systems via Darboux transformation and flat band solutions,
Phys. Scr. 99, 035220 (2024).

[46] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in poly-
acetylene, Phys. Rev. Lett. 42, 1698 (1979).

[47] A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W.-P. Su,
Solitons in conducting polymers, Rev. Mod. Phys. 60, 781
(1988).

[48] J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course on
Topological Insulators, Band Structure and Edge States in One
and Two Dimensions (Springer, Cham, 2016), Vol. 919.

[49] S.-G. Jeong and T.-H. Kim, Topological and trivial domain wall
states in engineered atomic chains, npj Quantum Mater. 7, 22
(2022).

[50] S.-G. Jeong, S.-H. Han, T.-H. Kim, and S. Cheon, Revealing
inverted chirality of hidden domain wall states in multiband
systems without topological transition, Commun. Phys. 6, 262
(2023).

[51] G. Queraltó, M. Kremer, L. J. Maczewsky, M. Heinrich, J.
Mompart, V. Ahufinger, and A. Szameit, Topological state en-
gineering via supersymmetric transformations, Commun. Phys.
3, 49 (2020).

[52] D. Viedma, G. Queraltó, J. Mompart, and V. Ahufinger, High-
efficiency topological pumping with discrete supersymmetry
transformations, Opt. Express 30, 23531 (2022).

[53] Y. Betancur-Ocampo, and G. Monsivais, Identifying Klein tun-
neling signatures in bearded SSH lattices from bent flat bands,
arXiv:2312.10621.

[54] S. Verma and T. K. Ghosh, Emergent SU(3) topological system
in a trimer SSH model, arXiv:2401.11695.

[55] V. Jakubský and K. Zelaya, Landau levels and snake states
of pseudo-spin-1 Dirac-like electrons in gapped Lieb lattices,
J. Phys.: Condens. Matter 35, 025302 (2023).

[56] V. Jakubský, Spectrally isomorphic Dirac systems: Graphene
in an electromagnetic field, Phys. Rev. D 91, 045039
(2015).

[57] M. Castillo-Celeita and V. Jakubský, Reduction scheme for
coupled Dirac systems, J. Phys. A: Math. Theor. 54, 455301
(2021).

245406-14

https://doi.org/10.1016/S0003-4916(03)00071-X
https://doi.org/10.1063/1.3505127
https://doi.org/10.1088/0953-8984/21/45/455305
https://doi.org/10.1088/1751-8113/47/28/285302
https://doi.org/10.1140/epjp/s13360-019-00009-y
https://doi.org/10.1088/1751-8121/ab3f40
https://doi.org/10.1088/1751-8121/abf870
https://doi.org/10.1016/j.aop.2021.168534
https://doi.org/10.1140/epjp/s13360-022-03077-9
https://doi.org/10.1103/PhysRevD.85.045035
https://doi.org/10.1103/PhysRevA.95.033807
https://doi.org/10.1103/PhysRevD.90.125003
https://doi.org/10.1103/PhysRevB.102.115429
https://doi.org/10.1088/1402-4896/ad224a
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/RevModPhys.60.781
https://doi.org/10.1038/s41535-022-00424-y
https://doi.org/10.1038/s42005-023-01367-x
https://doi.org/10.1038/s42005-020-0316-4
https://doi.org/10.1364/OE.460192
https://arxiv.org/abs/2312.10621
https://arxiv.org/abs/2401.11695
https://doi.org/10.1088/1361-648X/ac9e84
https://doi.org/10.1103/PhysRevD.91.045039
https://doi.org/10.1088/1751-8121/ac2a06

