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Boundary flat bands with topological spin textures protected by subchiral symmetry
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Chiral symmetry plays an indispensable role in topological classifications as well as in the understanding of
the origin of bulk or boundary flat bands. The conventional definition of chiral symmetry refers to the existence
of a constant unitary matrix anticommuting with the Hamiltonian. Since a constant unitary matrix has constant
eigenvectors, boundary flat bands enforced by chiral symmetry, which share the same eigenvectors with the chiral
symmetry operator, are dictated to carry fixed (pseudo)spin polarizations and be featureless in quantum geometry.
In this paper, we generalize the chiral symmetry and introduce a concept termed subchiral symmetry. Unlike the
conventional chiral symmetry operator defined as constant matrix, the subchiral symmetry operator depends on
partial components of the momentum vector, as do its eigenvectors. We show that topological gapped or gapless
systems without chiral symmetry, but with subchiral symmetry, can support boundary flat bands, which exhibit
topological spin textures and quantized Berry phases. We expect that such intriguing boundary flat bands could
give rise to a variety of exotic physics in the presence of interactions or disorders.

DOI: 10.1103/PhysRevB.109.245402

I. INTRODUCTION

The band theory is fundamental and powerful in the de-
scription of both quantum and classical periodic systems.
Being an exotic type of band structure, flat bands have
triggered enduring and tremendous research interest in a
diversity of disciplines [1–14]. Due to the quench of ki-
netic energy, even weak interactions or disorders may have
profound effects on a flat-band system, and this raises the
possibility of the emergence of exotic correlated phases or
peculiar transport phenomena. Well-known examples include
interaction-driven ferromagnetism [15–17], high-temperature
superconductivity [18,19], and disorder-driven inverse Ander-
son transition [20–22], to name a few. When the flat bands
carry nontrivial topology, it has been predicted that even more
exotic correlated phases like fractional topological insulators
with long-range entanglement can arise [23–25].

Flat bands generally imply the confined motion of elec-
trons in real space, which may be induced by a confining
potential or destructive interference effects associated with
special lattice structures [26–42]. A textbook example of ideal
flat bands is the Landau levels induced by a perpendicular
magnetic field in two dimensions (2D) [43]. In this case,
the magnetic field provides a potential to confine the motion
of electrons. For translation-invariant systems, to have per-
fectly flat bands, in general, requires the existence of special
symmetries to constrain the Hamiltonian. The chiral symme-
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try is one such symmetry. Notably, the chiral symmetry can
enable the realization of both bulk and boundary flat bands.
For instance, a bipartite lattice system with chiral symmetry
and sublattice imbalance will have ideal bulk flat bands [44],
with the number of flat bands precisely equal to the sublat-
tice imbalance [45]. Quite differently, the connection between
chiral symmetry and boundary flat bands is through the
bulk-boundary correspondence, a central property of topolog-
ical phases [46]. In chiral symmetric systems, a topological
invariant known as winding number can be defined along
1D noncontractible loops in the Brillouin zone [47]. In di-
mensions d � 2, a nonzero momentum-dependent winding
number W (k‖) dictates the existence of W branches of
zero-energy flat bands on each boundary with normal vec-
tor perpendicular to k‖. The 1D flat bands on the boundary
of 2D Dirac semimetals/superconductors [48–54], like the
electronic flat bands on the zigzag edges in graphene [55,56]
and the Andreev flat bands in d-wave high-temperature su-
perconductors [57], and the 2D flat bands in 3D nodal-line
semimetals/superconductors [58–67] are celebrated examples
of this class.

Despite being a generic guiding principle to realize bound-
ary flat bands, the chiral symmetry to the boundary bands is
like a double-edged sword. On the one hand, it ensures the
flatness and stability of the boundary bands. On the other
hand, it rules out the possibility of the presence of nontrivial
quantum geometry and topology in the boundary bands. The
latter is because the zero-energy boundary states are also
the eigenstates of the chiral symmetry operator [49], which
itself is a constant unitary matrix. As the chiral symmetry is
an internal symmetry, this fact implies that the cell-periodic
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part of the wave functions of the boundary states are mo-
mentum independent, so their derivatives, which determine
the quantum geometry [68,69], always vanish. The constant
cell-periodic part also implies that the zero-energy states on
a given boundary carry fixed (pseudo)spin polarizations. In
this paper, we generalize the chiral symmetry and introduce
a concept termed subchiral symmetry. A fundamental differ-
ence between the two is that the symmetry operator of the
subchiral symmetry is momentum dependent and itself allows
a topological characterization by the winding number like the
Hamiltonian. Due to this difference, the subchiral symmetry
not only ensures the flatness and stability of the boundary-
state bands but also allows the presence of nontrivial quantum
geometry and topology in them. Intriguingly, when the wind-
ing number characterizing the subchiral symmetry operator
is nonzero, we find that the boundary flat bands carry both
topological spin textures and quantized Berry phases.

The structure of the paper is as follows. In Sec. II, we
establish the generic theory for the subchiral symmetry. In
Sec. III, we consider a two-band insulator model with sub-
chiral symmetry and show that the boundary flat bands carry
topological spin textures and are characterized by a quantized
π Berry phase. In Sec. IV, we show that similar physics can
also appear in 3D and in topological semimetals. We provide
more discussions on the experimental realization of systems
with subchiral symmetry and conclude the paper in Sec. V.
Some calculation details are relegated to Appendices.

II. GENERIC THEORY

For a chiral symmetric Hamiltonian, there exists an oper-
ator C anticommuting with the Hamiltonian, i.e., {C,H} = 0.
The chiral symmetry is an internal symmetry, so the chiral
symmetry operator has no momentum dependence in any
momentum-space basis [46]. Besides the anticommutation
relation with the Hamiltonian and the momentum indepen-
dence, the chiral symmetry operator needs to satisfy two more
constraints, i.e., unitary and C2 = 1 (here 1 denotes an iden-
tity matrix with dimension determined by the basis). In this
paper, we generalize the chiral symmetry by only releasing
the constraint of momentum independence. As we will show
below, such a generalization is justified and rather useful in
understanding the properties of topological boundary states.

To be specific, when there exists a momentum-dependent
unitary matrix satisfying

C(k‖)H(k⊥, k‖)C−1(k‖) = −H(k⊥, k‖), (1)

and C2(k‖) = 1, we claim that the Hamiltonian H(k⊥, k‖) has
a subchiral symmetry. The prefix “sub” describes the fact that
the operator C(k‖) only depends on partial components of the
momentum vector. Here we have decomposed the momentum
vector into two parts, i.e., k = (k⊥, k‖). The component k⊥
refers to the momentum perpendicular to the edge or surface
considered to be cut open, and k‖ refers to the momentum
components parallel to the edge or surface. Why the subchiral
symmetry can still be interpreted as a chiral symmetry is
because when one focuses on the topological boundary states
on a given boundary, the momenta along directions with pe-
riodic boundary conditions are good quantum numbers, and
can be viewed as parameters of a 1D Hamiltonian. When

C(k‖) has no momentum dependence, it just goes back to the
conventional chiral symmetry.

When the Hamiltonian has such a subchiral symmetry, a
momentum-dependent winding number can accordingly be
defined [49],

W (k‖) = 1

4π i

∮
dk⊥Tr[C(k‖)H−1(k)∂k⊥H(k)]. (2)

This topological invariant counts the number of zero-energy
states on a boundary and at the boundary momentum k‖.

Notably, if the Hamiltonian satisfies Eq. (1), there must ex-
ist a unitary operator S satisfying S2 = 1 and anticommuting
with the subchiral symmetry operator (see Appendix B), i.e.,

SC(k‖)S−1 = −C(k‖). (3)

The above equation indicates that the subchiral symmetry
operator itself has chiral symmetry, thereby one can further
introduce a winding number to characterize the subchiral sym-
metry operator,

Wc = 1

4π i

∮
c

dkl Tr
[
SC−1(k‖)∂klC(k‖)

]
, (4)

where the integral is performed along a noncontractible or
contractible loop in the boundary Brillouin zone. A non-
contractible loop refers to a momentum line traversing the
boundary Brillouin zone. As will be shown below, when Wc

is a nonzero integer, the spin textures of boundary flat bands
are also characterized by a winding number with its value
equal to Wc. Furthermore, when Wc is an odd integer, we find
that the boundary flat bands are characterized by a π Berry
phase. Below we consider two explicit models in 2D and 3D
to demonstrate the above generic physics.

III. 1D EDGE FLAT BANDS WITH TOPOLOGICAL SPIN
TEXTURES

We first consider a tight-binding model in 2D,

H(k) = (m − tx cos kx − ty cos ky)σz + λ2 sin kx sin kyσy

+λ1(cos ky + δ) sin kxσx, (5)

where σx,y,z are Pauli matrices, and m, tx,y, λ1,2, and δ are real
parameters. Depending on the concrete physical realization,
the Pauli matrices may act on either real spin or pseudo spin
(e.g., orbitals). To simplify the discussion, however, we do not
emphasize their difference and always use spin to represent
the two internal degrees of freedom. In addition, all lattice
constants are set to unity throughout for notational simplicity.

For the Hamiltonian in Eq. (5), it is easy to see that the
chiral symmetry is absent as one cannot find a constant unitary
operator to be anticommuting with the Hamiltonian. Accord-
ing to the tenfold way classification, this Hamiltonian belongs
to the symmetry class AI as it only has the time-reversal
symmetry, i.e., T H(k)T −1 = H(−k), whereT = σzK with K
being the complex conjugation operator, and T 2 = 1. In 2D,
this symmetry class does not support any strong topological
insulator phase [70,71]. Nevertheless, this Hamiltonian turns
out to have rather interesting bulk topology and boundary
states.

Despite the absence of chiral symmetry, this Hamilto-
nian has the subchiral symmetry defined in Eq. (1), with the
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FIG. 1. (a) The solid red line of double degeneracy in the middle
of the energy spectrum indicates the existence of one zero-energy flat
band on each x-normal edge. (b) Spin textures for the zero-energy
flat band on the left x-normal edge. Here the 1D boundary Brillouin
zone is plotted as a cycle to show the winding of the spin textures
better. Parameters are m = 0.2, tx = 0.6, ty = 0.2, λ1 = 1, λ2 = 1,
and δ = 0.5.

symmetry operator of the form

C(ky) = − sin θ (ky)σx + cos θ (ky)σy, (6)

where θ (ky) = arg[λ1(cos ky + δ) + iλ2 sin ky]. Based on
Eq. (2), a winding number can be defined,

W (ky) = 1

4π i

∫ π

−π

dkxTr
[
C(ky)H−1(k)∂kxH(k)

]
. (7)

For the convenience of discussion, we assume tx,y and λ1,2

to be positive. We consider tx > |m − ty cos ky| for arbitrary
ky and δ �= ±1 so that the Hamiltonian in Eq. (5) describes
an insulator, then a straightforward calculation gives W (ky) =
−1 for arbitrary ky. For the subchiral symmetry operator given
in Eq. (6), obviously, it anticommutes with σz, so its chiral
symmetry operator is S = σz. Using the formula in Eq. (4),
one can find

Wc = 1

4π i

∫ π

−π

dkyTr
[
σzC−1(ky)∂kyC(ky)

]

= 1

2π

∫ π

−π

dky
∂θ (ky)

∂ky
=

{
1, |δ| < 1,

0, |δ| > 1.
(8)

The result indicates that the subchiral symmetry operator has
a nontrivial winding in the regime |δ| < 1.

To show that a nonzero W (ky) ensures the existence of
zero-energy flat bands, we choose a set of parameters lead-
ing to W (ky) = −1 and consider a cylindrical sample with
open (periodic) boundary conditions in the x (y) direction. As
shown in Fig. 1(a), the numerical result confirms the existence
of one zero-energy flat band on each x-normal edge, verifying
the correspondence with the winding number W (ky).

While a zero-energy flat band protected by chiral symmetry
is dictated to carry a fixed spin polarization, below, we will
show that the situation drastically changes for the zero-energy
flat bands protected by subchiral symmetry. To show this, we
analytically extract the spin textures of the zero-energy edge
flat bands exemplified in Fig. 1(a). Here a key observation
is that the cell-periodic part of the wave functions of the
zero-energy flat bands at a given boundary momentum must
also be the eigenvector of the subchiral symmetry operator at
the same momentum (see Appendix A), which is reminiscent

of the relation between zero-energy bound states and chiral
symmetry operator. The explicit steps are as follows.

First, according to Eq. (6), it is easy to find that the two
eigenvectors of C(ky) are given by

|C(ky) = ±1〉 = 1√
2

(
1

±ieiθ (ky )

)
. (9)

Second, consider open boundary conditions in the x direction.
Without loss of generality, we assume the lattice-site number
in the x direction to be N . Accordingly, the Hamiltonian
becomes a 2N × 2N matrix, and the form of the subchiral
symmetry operator is expanded as

C̃(ky) = IN ⊗ C(ky), (10)

where IN stands for the N-by-N identity matrix. The wave
functions of the zero-energy states at the x-normal edges will
take the following general form (explicit expressions can be
found in Appendix A)

|�α (ky)〉 = (ξ1, ξ2, ..., ξN−1, ξN )T ⊗ |C(ky) = β〉, (11)

where α labels left or right x-normal edge, and β = −1 (left
edge) or 1 (right edge). ξi characterizes the weight of the wave
function at the ith column of unit cells in the x direction, and
the normalization condition requires

∑
i |ξi|2 = 1. Based on

|�α〉, one can determine the spin textures of the zero-energy
edge flat bands by using the formula σ̄ α

i (ky) = 〈�α (ky)|IN ⊗
σi|�α (ky)〉, which gives

σ̄ α
x (ky) = −β sin θ (ky), σ̄ α

y (ky) = β cos θ (ky),

σ̄ α
z (ky) = 0. (12)

Apparently, the spin textures will wind n times around the
origin if the argument θ (ky) changes 2nπ when ky varies from
−π to π . In addition, the factor β indicates that the spin
textures on the two edges are just the opposite. In Fig. 1(b), we
show the spin textures for one zero-energy edge flat band. A
complete cycle of winding in the spin polarizations is evident.

As the result in Eq. (12) reveals that the spin polarizations
always lie in the xy plane, a winding number can be further
introduced to characterize the spin textures. Its form is

Wα
s = 1

2π

∫ π

−π

dky
(
σ̄ α

x ∂ky σ̄
α
y − σ̄ α

y ∂ky σ̄
α
x

) = Wc. (13)

The above equation suggests that the nontrivial winding of
the spin textures originates from the nontrivial winding of the
subchiral symmetry operator.

Next, let us analyze the quantum geometry property of the
zero-energy edge flat bands. For zero-energy boundary flat
bands protected by chiral symmetry, their Berry connections
can always be made identically vanishing as the cell-periodic
part of the wave functions has no momentum dependence.
Hence, their Berry phases always take the trivial value, i.e.,
φ = 0 mod 2π . In the current case, again the situation is
drastically different. Based on the cell-periodic part of the
wave function in Eq. (11), namely, |C(ky) = β〉, the Berry
connections for the zero-energy edge flat bands are given by

Aα (ky) = −i〈C(ky) = β|∂ky |C(ky) = β〉

= 1

2

∂θ (ky)

∂ky
. (14)
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Immediately, one finds that the Berry phases associated with
the two edge flat bands are [69,72]

φL = φR =
∫ π

−π

AL/R(ky)dky = Wcπ (mod 2π ). (15)

The result indicates that, in the regime Wc = 1, the flat edge
bands are characterized by a quantized π Berry phase.

IV. 2D SURFACE FLAT BANDS WITH TOPOLOGICAL
SPIN TEXTURES

Let us generalize the study to 3D and consider a topolog-
ical semimetal to illustrate the generality of the physics. We
consider the following simple model:

H(k) =
⎛
⎝m − t

∑
i=x,y,z

cos ki

⎞
⎠σz + λ sin kz sin kx sin kyσy

+λ sin kz(cos kx − cos ky)σx. (16)

This Hamiltonian is the tight-binding counterpart of the
low-energy continuum Hamiltonian developed by Xu et al.
to describe the low-energy physics of a magnetic Weyl
semimetal candidate HgCr2Se4 [73]. For the convenience of
discussion, we again consider the parameters t and λ to be
positive. Due to the existence of a mirror symmetry Mz = iσz,
this Hamiltonian can support not only Weyl points but also
nodal rings. Let us consider t < m < 3t , which leads to the
presence of two Weyl points at kw = ±(0, 0, arccos ((m −
2t )/t )) and a nodal ring in the kz = 0 plane. The nodal ring
corresponds to the momentum contour satisfying t (cos kx +
cos ky) = m − t . While the Weyl points and the concomitant
Fermi arcs are of central interest in previous studies of this
Hamiltonian [73,74], here we will focus on the zero-energy
surface flat bands associated with the nodal ring.

It is easy to see that this Hamiltonian also does not have
chiral symmetry, but has a subchiral symmetry with the sym-
metry operator of the form

C(kx, ky) = − sin θ (kx, ky)σx + cos θ (kx, ky)σy, (17)

where θ (kx, ky) = arg[(cos kx − cos ky) + i sin kx sin ky]. Sim-
ilarly, following Eq. (2), one obtains

W (kx, ky ) =
{

−1, (kx, ky) inside the nodal ring,

0, (kx, ky) outside the nodal ring.
(18)

This indicates that when the z direction is cut open, zero-
energy surface states exist only when the surface momentum
(kx, ky) falls inside the z-directional projection of the nodal
ring. In Fig. 2(a), the numerical result confirms that the zero-
energy surface bands do exist only in the mentioned region,
verifying the bulk-boundary correspondence.

Next, let us again first explore the topological property of
the subchiral symmetry operator. According to Eq. (17), it is
easy to find that its chiral symmetry operator S is also given
by σz. Applying Eq. (4), one obtains

Wc = 1

4π i

∮
c

dklTr
[
σzC−1(kx, ky)∂klC(kx, ky)

] = −2, (19)

where the integral contour is a loop enclosing the origin of the
surface Brillouin zone and falls inside the projection of the

FIG. 2. (a) Energy spectrum for a system with open (periodic)
boundary conditions in the z (x and y) direction. The solid-red line of
double degeneracy indicates the existence of one zero-energy surface
flat band on each z-normal surface.  = (0, 0), X = (π, 0), and Y =
(0, π ). (b) Spin textures for the zero-energy flat band on the bottom z-
normal surface. Within the projection of the bulk nodal ring (dashed
line), the in-plane spin polarizations on a circle wind two complete
cycles. Parameters are m = 2, t = 1, λ = 1.

nodal ring. Here Wc = −2 is simply because the argument
θ (kx, ky) will change 4π when the polar angle of the momen-
tum changes 2π .

Following the same analysis applied in 2D, one can find
that the spin textures of the two zero-energy surface flat bands
are given by

σ̄ α
x (kx, ky) = −β sin θ (kx, ky),

σ̄ α
y (kx, ky) = β cos θ (kx, ky),

σ̄ α
z (kx, ky) = 0. (20)

Here α labels the top and bottom z-normal surfaces, and β = 1
(−1) for the top (bottom) surface, revealing that the spin tex-
tures on the top and bottom surfaces are opposite. Compared
to θ (ky) in the two-dimensional model, here θ (kx, ky) varies
twice faster along a loop around the origin, corresponding to
a faster variation of the spin textures, as shown in Fig. 2(b).
Using the formula for Wα

s in Eq. (13), it is easy to find
Wα

s = Wc, confirming again the one-to-one correspondence
between the winding of the spin textures and the winding of
the subchiral symmetry operator. For this specific model, as
Wc = −2, the Berry phase along a closed curve around the
origin is thus trivial (mod 2π ).

V. DISCUSSIONS AND CONCLUSIONS

The generic theory and the two exemplary models above
reveal that the subchiral symmetry is another generic sym-
metry principle to realize boundary flat bands. As boundary
flat bands protected by subchiral symmetry, unlike those pro-
tected by chiral symmetry, can carry topological spin textures
and quantized Berry phases, they provide a more appealing
basis to explore exotic phases driven by interaction or disor-
der effects. About the experimental implementation of such
boundary flat bands, we have exemplified that they can appear
in some topological quantum materials, like 3D nodal-line
semimetals. Unconventional superconductors with appropri-
ate pairings can also support such topological boundary flat
bands [75] (see more discussions in Appendix C). Of course,
they can also be easily implemented in artificial systems with
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even higher flexibility [76–80]. In a follow-up work, we have
implemented the 2D Hamiltonian in a circuit system and
observed the predicted boundary flat bands and concomitant
topological spin textures as a proof of principle [81].

In conclusion, we introduce the subchiral symmetry and re-
veal a class of boundary flat bands with fascinating properties.
Our study enriches the types of flat bands and hence opens a
direction for the study of flat-band-related physics.
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APPENDIX A: SPIN TEXTURES AND QUANTIZED BERRY
PHASES OF THE ZERO-ENERGY EDGE FLAT BANDS

IN THE TWO-DIMENSIONAL MODEL

The two-dimensional model is given by

H(k) = (m − tx cos kx − ty cos ky)σz + λ2 sin kx sin kyσy

+λ1(cos ky + δ) sin kxσx. (A1)

To determine the spin textures and Berry phases of the zero-
energy edge flat bands, we need to first determine the wave
functions of the zero-energy boundary states. Consider open
boundary conditions in the x direction and periodic bound-
ary conditions in the y direction. Choosing the basis � =
(c1,↑,ky , c1,↓,ky , ..., cN,↑,ky , cN,↓,ky )T , the Hamiltonian is accord-
ingly given by

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m(ky) 0 − tx
2 −i �(ky )e−iθ (ky )

2 0 0 · · ·
0 −m(ky) −i �(ky )eiθ (ky )

2
tx
2 0 0 · · ·

− tx
2 i �(ky )e−iθ (ky )

2 m(ky) 0 − tx
2 −i �(ky )e−iθ (ky )

2 · · ·
i �(ky )eiθ (ky )

2
tx
2 0 −m(ky) −i �(ky )eiθ (ky )

2
tx
2 · · ·

0 0 − tx
2 i �(ky )e−iθ (ky )

2 m(ky) 0 · · ·
0 0 i �(ky )eiθ (ky )

2
tx
2 0 −m(ky) · · ·

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

where m(ky) = m − ty cos ky, �(ky) =
√

λ2
1(cos ky + δ)2 + λ2

2 sin2 ky, and θ (ky) = arg[λ1(cos ky + δ) + iλ2 sin ky].
Solving the eigenvalue equation

H |�〉 = E |�〉, (A3)

where

|�〉 = (ψ1↑, ψ1↓, ..., ψN↑, ψN↓)T . (A4)

For zero-energy eigenstates, one can find that they satisfy the following iterative equations,

m(ky)ψ1↑ − tx
2

ψ2↑ − i
�(ky)e−iθ (ky )

2
ψ2↓ = 0, −m(ky)ψ1↓ − i

�(ky)eiθ (ky )

2
ψ2↑ + tx

2
ψ2↓ = 0,

− tx
2

ψ1↑ + i
�(ky)e−iθ (ky )

2
ψ1↓ + m(ky)ψ2↑ − tx

2
ψ3↑ − i

�(ky)e−iθ (ky )

2
ψ3↓ = 0,

i
�(ky)eiθ (ky )

2
ψ1↑ + tx

2
ψ1↓ − m(ky)ψ2↓ − i

�(ky)eiθ (ky )

2
ψ3↑ + tx

2
ψ3↓ = 0, ...

− tx
2

ψn−1↑ + i
�(ky)e−iθ (ky )

2
ψn−1↓ + m(ky)ψn↑ − tx

2
ψn+1↑ − i

�(ky)e−iθ (ky )

2
ψn+1↓ = 0,

i
�(ky)eiθ (ky )

2
ψn−1↑ + tx

2
ψn−1↓ − m(ky)ψn↓ − i

�(ky)eiθ (ky )

2
ψn+1↑ + tx

2
ψn+1↓ = 0, .... (A5)

Since the Hamiltonian has the subchiral symmetry, the zero-
energy states on the boundary must be the eigenstates of
the subchiral symmetry operator. This fact can simply be
inferred by noting that if |�〉 is the eigen wave function of a

zero-energy state, i.e., H |�〉 = 0, then as

HC(ky)|�〉 = −C(ky)H |�〉 = 0, (A6)
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and C(ky) is an on-site operator for a given ky (the good quan-
tum number ky can be treated as a parameter when considering
the boundary states on the x-normal edges), C(ky)|�〉 must be
equal to |�〉 up to a phase factor. On the other hand, since
C(ky)2 = 1, one obtains

C(ky)|�〉 = |�〉, or C(ky)|�〉 = −|�〉, (A7)

confirming that the eigen wave function of a zero-energy state
is also the eigen wave function of the subchiral symmetry
operator.

As the subchiral symmetry operator takes the form C(ky) =
− sin θ (ky)σx + cos θ (ky)σy, its two eigenvectors read

|C(ky) = 1〉 = 1√
2

(
1

ieiθ (ky )

)
,

|C(ky) = −1〉 = 1√
2

(
1

−ieiθ (ky )

)
, (A8)

where |C(ky) = ±1〉 satisfy C(ky)|C(ky) = ±1〉 = ±|C(ky) =
±1〉. Accordingly, for the zero-energy states, the spinor
(ψ j↑, ψ j↓)T for each unit cell must be proportional to either
|C(ky) = 1〉 or |C(ky) = −1〉. Let us focus on the zero-energy
states on the left x-normal edge. If one considers the special
limit m(ky) = 0 and �(ky) = tx, it is easy to see that the wave
function for the zero-energy state is of the simple form

|�L〉 = 1√
2

(1,−ieiθ (ky ), 0, 0, 0, 0, ...)T . (A9)

Based on this special case, one knows that for the zero-energy
state on the left x-normal edge, the spinor (ψ j↑, ψ j↓)T is
proportional to |C(ky) = −1〉. With this observation, for the
more generic case, we can assume that the wave function takes
the following trial form:

ψ j =
(

ψ j↑
ψ j↓

)
= Cξ j

(
1

−ieiθ (ky )

)
/
√

2, (A10)

where |ξ | < 1 must be enforced to ensure the decaying nature
of the wave function of the zero-energy bound state, and C is a
constant for later normalization. Taking the above expression
into the series of iterative equations, one can find that they
become(

− tx
2

+ �(ky)

2

)
ξ j−1 + m(ky)ξ j −

(
tx
2

+ �(ky)

2

)
ξ j+1 = 0

(A11)

for j � 2, which can be further reduced to the following
equation:

(tx + �(ky))ξ 2 − 2m(ky)ξ + (tx − �(ky)) = 0. (A12)

The solutions are

ξ± = m(ky) ± √
m2(ky) + �2(ky) − t2

x

tx + �(ky)
. (A13)

As �(ky) > 0, one can verify |ξ±| < 1 as long as |m(ky)| < tx,
which is consistent with the bulk-boundary correspondence,
which says that when the bulk topological invariant W (ky) =
−1, each x-normal edge will harbor one zero-energy bound
state.

Because of the existence of two solutions for ξ , the wave
function for the zero-energy state will take the form(

ψ j↑
ψ j↓

)
= N (C+ξ

j
+ + C−ξ

j
−)

(
1

−ieiθ (ky )

)
/
√

2, (A14)

where N stands for the normalization constant. Enforcing the
physical boundary condition ψ j↑ = ψ j↓ = 0 for j = 0, one
obtains C+ = −C− = C. Bringing the above expression into
the first two equations in the series shown in Eq. (A5), one
gets

C(ξ+ − ξ−)m(ky) − (tx + �(ky))
2

C(ξ 2
+ − ξ 2

−) = 0. (A15)

It is easy to find that the equation is naturally satisfied re-
gardless of the value of C. Therefore, we can set C = 1.
Accordingly, we obtain(

ψ j↑
ψ j↓

)
= N (ξ j

+ − ξ
j
−)

(
1

−ieiθ (ky )

)
/
√

2. (A16)

Before proceeding, it is worth pointing out that ξ+ and ξ− are
either both real or complex conjugate to each other. This fact
implies that the spatial part of the wave function can always
be made real, a property that will be used to derive the Berry
connection and Berry phase.

Using the normalization condition,

∞∑
j=0

(|ψ j↑|2 + |ψ j↓|2)

= N 2[|ξ+ − ξ−|2 + |ξ 2
+ − ξ 2

−|2 + ... + |ξ n
+ − ξ n

−|2 + ...]

= N 2

[∑
n=1

|ξ+|2n −
∑
n=1

(ξ ∗
+ξ−)n −

∑
n=1

(ξ+ξ ∗
−)n +

∑
n=1

|ξ−|2n

]

= N 2

[ |ξ+|2
1 − |ξ+|2 + |ξ−|2

1 − |ξ−|2 − ξ ∗
+ξ−

1 − ξ ∗+ξ−
− ξ+ξ ∗

−
1 − ξ+ξ ∗−

]
= 1, (A17)

one determines

N = 1√[ |ξ+|2
1−|ξ+|2 + |ξ−|2

1−|ξ−|2 − ξ∗+ξ−
1−ξ∗+ξ−

− ξ+ξ∗−
1−ξ+ξ∗−

] . (A18)

Let us now move to calculate the Berry connection and
Berry phase. As is known, for Bloch states, the Berry connec-
tion is determined by the cell-periodic part of the Bloch wave
functions. For here the boundary states, their wave functions
can also be interpreted as Bloch states, but the associated mo-
menta in the plane-wave part are complex rather than real due
to the decaying nature of the wave functions of the boundary
states. Based on this perspective, the Berry connection for
the boundary flat bands should also be determined by the
cell-periodic part. Accordingly, we have

AL(ky) = −i〈C(ky) = −1|∂ky |C(ky) = −1〉 = 1

2

∂θ (ky)

∂ky
.

(A19)

This is one perspective. We can also adopt another differ-
ent perspective to define the Berry connection. That is, we
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can view that all lattice sites in the open boundary direction
(here the x direction, which is the decaying direction of the
boundary states) as sublattice degrees of freedom of a big
unit cell. Under this perspective, the two-dimensional Hamil-
tonian effectively reduces to a one-dimensional Hamiltonian.
Now that all lattice sites in the x direction become internal
degrees of freedom, the cell-periodic part of these zero-energy
states become |�L(ky)〉. Accordingly, the Berry connection is

defined as

AL(ky) = −i
〈
�L(ky)

∣∣∂ky�L(ky)
〉
. (A20)

The above two definitions of the Berry connection are in fact
equivalent. To see this, note that a direct calculation of the
above formula gives

AL(ky) = −i
〈
�L(ky)

∣∣∂ky�L(ky)
〉 = 1

2

∂θ (ky)

∂ky
− i

(
N 2

∑
n=1

(ξ n∗
+ − ξ n∗

− )n

(
ξ n−1
+

∂ξ+
∂ky

− ξ n−1
−

∂ξ−
∂ky

)
+ N ∂N

∂ky

∑
n=1

|ξ n
+ − ξ n

−|2
)

.

(A21)

The next step is to show that, in the second line of the above
equation, the terms in the bracket must cancel with each other.
This fact can easily be inferred by recalling that ξ+ and ξ− are
either both real or complex conjugate to each other. When ξ+
and ξ− are real [when �(ky) > tx for arbitrary ky, the realness
of ξ+ and ξ− is ensured], the terms in the bracket must cancel
with each other as the intraband Berry connection is a real
quantity. The other situation is that ξ+ and ξ− are complex
and conjugated to each other, i.e., ξ ∗

+ = ξ−. It is easy to see
that, for this situation, the two terms in the bracket are also
real, so they also have to cancel with each other due to the
same reason.

Now we are going to show that the zero-energy flat band
on the left x-normal edge is characterized by a quantized
Berry phase. In terms of the defined Berry connection, it is
straightforward to find

φL =
∫ π

−π

AL(ky)dky = 1

2
[θ (π ) − θ (−π )]

=
{
π mod 2π, |δ| < 1,

0 mod 2π, |δ| > 1.
(A22)

Similar analysis reveals that the zero-energy flat band on the
right x-normal edge is also characterized by a quantized Berry
phase, and

φR =
∫ π

−π

AR(ky)dky = −i
∫ π

−π

〈
C(ky) = 1

∣∣∂kyC(ky) = 1
〉
dky

= 1

2

∫ π

−π

∂θ (ky)

∂ky
dky

= 1

2
[θ (π ) − θ (−π )] = φL. (A23)

For the spin textures of the zero-energy flat band on the left
x-normal edge, it is easy to find out that

σ̄x,L =
∑
j=1

ψ
†
j σxψ j = sin θ (ky),

σ̄y,L =
∑
j=1

ψ
†
j σyψ j = − cos θ (ky),

σ̄z,L =
∑
j=1

ψ
†
j σzψ j = 0. (A24)

Similar analysis shows that the spin textures of the zero-
energy flat band on the right x-normal edge are just opposite,
i.e.,

σ̄x,R = − sin θ (ky),

σ̄y,R = cos θ (ky),

σ̄z,R = 0. (A25)

The derivation for the three-dimensional model is similar,
and hence we do not repeat the details.

APPENDIX B: CHIRAL SYMMETRY OF THE SUBCHIRAL
SYMMETRY OPERATOR

In the main text, we have stated that when the Hamiltonian
has subchiral symmetry, the subchiral symmetry operator it-
self has chiral symmetry. In this section, we demonstrate this
fact explicitly.

As we consider Hamiltonians without chiral symmetry but
with subchiral symmetry, the general forms of the Hamiltoni-
ans can be expressed as

H(k) =
2n+1∑
i=1

di(k)γi, (B1)

where the Hamiltonian is a 2n × 2n matrix with n a nonzero
positive integer, di(k) are real functions of the momentum, and
γi are matrices satisfying the Clifford algebra, i.e., {γi, γ j} =
2δi jI2n with I2n the 2n × 2n identity matrix. It is noteworthy
that, as the number of 2n × 2n matrices satisfying the Clifford
algebra is just 2n + 1, one cannot find an additional constant
matrix to identically anticommute with the Hamiltonian if
none of the di(k) is identically zero and no more than one
is a constant (if two or more of them are a momentum-
independent constant, one can just rotate the basis and remove
at least one of the γ matrices, and the removed one will
anticommute with the Hamiltonian, which is in contradiction
with the absence of chiral symmetry). Here we consider that
all di(k) are dispersive functions of the momentum, so that the
chiral symmetry is dictated to be absent.

Let us now discuss the subchiral symmetry operator. As
this operator anticommutes with the Hamiltonian and satisfies
C2(k‖) = I2n (here k‖ denotes the set of momentum compo-
nents that can be treated as good quantum numbers for the
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concerned problem), its form can also be expressed in terms
of the γ matrices, i.e.,

C(k‖) =
2n+1∑
i=1

ci(k‖)γi, with
2n+1∑
i=1

c2
i (k‖) = 1. (B2)

Now we are going to show that if the Hamiltonian has sub-
chiral symmetry, then at least one of the γ matrices can
be removed from the above generic form of the subchiral
symmetry operator. To see this, it is instructive to show
that the existence of subchiral symmetry, which requires
{C(k‖),H(k)} = 0, leads to the following equation:

2n+1∑
i=1

ci(k‖)di(k) = 0. (B3)

With the additional normalization condition shown in
Eq. (B2), the existence of subchiral symmetry thus only needs
to satisfy two conditions under the constraint that the subchiral
symmetry operator only depends on partial components of the
momentum. Apparently, the condition in Eq. (B3) can always
be fulfilled if the ratio of some (at least two) of the di(k) only
depends on k‖. Without loss of generality, let us assume that
the ratio between d1(k) and d2(k), η(k) = d1(k)/d2(k), is a
function of k‖ only, i.e., η(k) = η(k‖). Then apparently the
subchiral symmetry operator can be chosen as the form,

C(k‖) = 1√
1 + η2(k‖)

[−γ1 + η(k‖)γ2]. (B4)

Since the number of γ matrices is 2n + 1 with n � 1, there
always exist at least one γ matrix to anticommute with
the subchiral symmetry operator, verifying that the subchiral
symmetry operator itself has chiral symmetry. It is worth
mentioning that, for a given set of partial components of the
momentum, if there are only two d functions whose ratio de-
pends on these momentum components, then the form of the
subchiral symmetry operator is definite up to an unimportant
sign [multiply a minus sign to C(k‖) does not affect the an-
ticommutation relation {C(k‖),H(k)} = 0]. The two models
studied in the paper belong to such a case.

When there exists more than two d (k) functions whose mu-
tual ratios depend on the same set of momentum components,
then the form of the subchiral symmetry operator is not unique
and in fact has infinitely many choices. To illustrate this fact
intuitively, let us consider a concrete example. Without loss of
generality, let us consider the simplest case for which the mu-
tual ratios among d1(k), d2(k), and d3(k) all only depend on
the same set of momentum components, say k‖. To be specific,
let us define η1(k‖) = d1(k)/d2(k) and η2(k‖) = d1(k)/d3(k).
It is easy to check that the following two choices:

C1(k‖) = 1√
1 + η2

1(k‖)
[−γ1 + η1(k‖)γ2],

C2(k‖) = 1√
1 + η2

2(k‖)
[−γ1 + η2(k‖)γ3], (B5)

both satisfy the anticommutation relation with the
Hamiltonian, i.e., {C1(k‖),H(k)} = {C2(k‖),H(k)} = 0. As

{γi, γ j} = 2δi jI2n, one can view C1(k‖) and C2(k‖) as two
unit vectors in the (2n + 1)-dimensional space spanned by
the (2n + 1) γ matrices. Using this geometric perspective,
it is easy to know that any unit vector in the plane spanned
by the two unit vectors represented by C1(k‖) and C2(k‖)
satisfies the anticommutation relation with the Hamiltonian.
This fact suggests that the subchiral symmetry operator has
infinitely many choices. The existence of infinitely many
choices just suggests that we have infinitely many ways to
understand the properties of the boundary states for such
cases. This is quite different from the conventional chiral
symmetry whose operator has a definite form for a given
Hamiltonian. This big difference suggests that, compared to
chiral-symmetric systems, subchiral symmetric systems can
have much richer topological properties. This big difference
is worthy of in-depth studies, and we leave them to future.

To conclude, from the detailed discussions above, it is clear
that we can always choose a form for the subchiral symmetry
operator with only two γ matrices. This is equivalent to the
statement that we can always choose the subchiral symmetry
operator to have chiral symmetry.

APPENDIX C: QUANTUM-MATERIAL
AND METAMATERIAL REALIZATION OF SUBCHIRAL

SYMMETRIC SYSTEMS

In the last section, we have elucidated that, if the ratio of
two (or even more) terms of a Dirac Hamiltonian only depends
on partial components of the momentum, then the Hamilto-
nian has subchiral symmetry even though the Hamiltonian
does not have chiral symmetry. This is in fact a quite loose
condition. As we will illustrate below, there are many systems
in which such a condition can be fulfilled.

In condensed matter systems, the chiral symmetry can
be a sublattice symmetry or a relatively more abstract one
which corresponds to the product of time-reversal symmetry
and particle-hole symmetry. Generally speaking, the sublat-
tice symmetry is an approximate symmetry in real quantum
materials since the couplings within the same set of sublattices
have no reason to vanish exactly. In contrast, the abstract one
can be an exact symmetry in the context of superconductors.
This is because a superconductor, as long as its description
falls inside the Bogoliubov-de Gennes framework, naturally
has particle-hole symmetry. Then as long as the time-reversal
symmetry is conserved, the chiral symmetry is present.

Let us first consider the nonsuperconducting case. We are
going to show that when the orbitals of the energy bands are
appropriately chosen, the aforementioned condition can be
fulfilled. There are many choices for the orbitals to satisfy our
purpose. As a concrete example for illustration, let us assume
that there are only two energy bands near the Fermi energy,
with the orbital nature of one band to be an s orbital, and
the orbital nature of the other band to be a dxz − idyz orbital
(the two orbitals play the role as a pseudospin). Let us further
assume that a band inversion occurs between the two bands.
According to the symmetry properties of the orbitals, the
effective tight-binding Hamiltonian needs to take the generic
form
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H(k) =
(

m − ts cos kx − ts cos ky − ts cos kz λ sin kz(sin kx − i sin ky)

λ sin kz(sin kx + i sin ky) −m + td cos kx + td cos ky + tdz cos kz

)
(C1)

Rewrite the Hamiltonian via the identity matrix and Pauli matrices,

H(k) =
[
δt

2
(cos kx + cos ky) + δtz

2
cos kz

]
σ0 + (m − t̄ cos kx − t̄ cos ky − t̄z cos kz )σz + λ sin kz sin kxσx + λ sin kz sin kyσy,

(C2)

where δt = (td − ts), δtz = tdz − ts, t̄ = (ts + td )/2, and t̄z = (ts + tdz )/2. The first term associated with the identity matrix makes
the conduction and valence bands asymmetry; however, it does not affect the wave functions and hence is commonly neglected
when one is only interested in the quantum geometry or topological properties of the wave functions. Without the first term, the
Hamiltonian reduces as

H(k)  [m − t̄ (cos kx + cos ky) − t̄z cos kz]σz + λ sin kz sin kxσx + λ sin kz sin kyσy. (C3)

Apparently, this reduced Hamiltonian has subchiral symmetry, with the symmetry operator given by

C(kx, ky) = − sin θ (kx, ky)σy + cos θ (kx, ky)σx, (C4)

where θ (kx, ky) = arg[sin kx + i sin ky]. Similar to the three-dimensional Hamiltonian in the main text, this Hamiltonian supports
a mirror-symmetry-protected nodal ring in the bulk and a flat band on the top or bottom z-normal surface when the parameters are
appropriately chosen, e.g., 2t̄ − t̄z < m < 2t̄ + t̄z. However, a big difference between them is that, for here the three-dimensional
Hamiltonian, the winding number characterizing the subchiral symmetry operator is equal to one. Accordingly, if one considers
a closed contour enclosing the surface time-reversal invariant momentum within the projected region of the bulk nodal ring, then
the pseudospin textures of the surface flat bands on this contour will display a complete cycle of winding, and the Berry phase is
π (mod 2π ).

For the above example, the term associated with the identity matrix is in general finite in quantum material. Such a term does
not affect the existence and topological properties of the boundary flat bands, and its main effect to the boundary bands is to
make their band width finite. Nevertheless, if the band width of the surface bands is much smaller than other energy scales, such
as the band energy gaps, the surface bands remain an ideal platform to investigate interaction/disorder driven phenomena.

Next let us discuss the situation in superconductors. When a superconductor hosts appropriate pairings, the superconductor
can also have subchiral symmetry. A standard classification of the pairings in a superconductor is in terms of the irreducible
representation of the symmetry group. Here for illustration we directly use the results presented in the classic review paper [75].
Without loss of generality, let us focus on the symmetry group D4h for illustration. For this symmetry group, the spin-singlet
pairing corresponding to the irreducible representation +

5 takes the from kz(kx + iky) (see Table IV on page 9 and Table VI on
page 11 in Ref. [75]). If there is only one pair of spin-degenerate bands at the Fermi energy, then the tight-binding Hamiltonian
describing the superconductor with such a pairing, under the basis ψk = (ck,↑, ck,↓, c†

−k,↑, c†
−k,↓)T , is of the form

HBdG(k) =

⎛
⎜⎜⎜⎜⎝

ε(k) − μ 0 0 �(kx, ky) sin kz

0 ε(k) − μ −�(kx, ky) sin kz 0

0 −�∗(kx, ky) sin kz −ε(k) + μ 0

�∗(kx, ky) sin kz 0 0 −ε(k) + μ

⎞
⎟⎟⎟⎟⎠, (C5)

where ε(k) = −t (cos kx + cos ky) − tz cos kz describes the normal-state band structure, μ the chemical potential, and �(kx, ky) =
�(sin kx + i sin ky) the pairing gap function with � a real constant. Because of the spin-rotation symmetry due to the absence of
spin-orbit coupling, it is easy to see that the Hamiltonian can be decoupled into two parts by a rearrangement of the basis. To be
explicit, by a change of the basis, (ck,↑, ck,↓, c†

−k,↑, c†
−k,↓)T → (ck,↑, c†

−k,↓, ck,↓, c†
−k,↑)T , the Hamiltonian becomes

HBdG(k) =

⎛
⎜⎜⎜⎜⎝

ε(k) − μ �(kx, ky) sin kz 0 0

�∗(kx, ky) sin kz −ε(k) + μ 0 0

0 0 ε(k) − μ −�(kx, ky) sin kz

0 0 −�∗(kx, ky) sin kz −ε(k) + μ

⎞
⎟⎟⎟⎟⎠ = Hu(k) ⊕ Hd (k). (C6)

Let us focus on the upper two-by-two block Hu(k). In terms
of the Pauli matrices, its explicit form is

Hu(k) = (ε(k) − μ)σz + � sin kz sin kxσx

−� sin kz sin kyσy. (C7)

Apparently, the form of the subchiral symmetry operator is
similar to the above case. However, here a fundamental differ-
ence is that the absence of terms associated with the identity
matrix does not require any approximation. In other words,
for here the superconducting case, the subchiral symmetry is
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exact, and thereby the flatness of the boundary bands is also
exact.

Last but not the least, let us give a discussion about
the metamaterial realization of subchiral symmetric sys-
tems. Compared to quantum materials, metamaterials are
much easier to engineer the desired tight-binding Hamilto-
nians since the hopping patterns can be designed as will.
Here we take the circuit systems as an example for il-
lustration. In Ref. [79], Yu’s group (one author of the
current paper) have systematically designed a series of build-
ing blocks that can realize all kinds of two-by-two Pauli

matrices. By arranging these building blocks to form a peri-
odic lattice and connecting them via conducting wires, one
can in principle realize Hamiltonians with very complicated
matrix elements. For instance, in a recent work, a three-
dimensional two-band Hopf insulator, which involves much
more complicated hopping patterns compared to the two mod-
els concerned in the current paper, has been implemented by
using these building blocks [80]. The two two-band models
concerned in the current paper, and other two-band general-
izations, can also similarly be implemented via these building
blocks.
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