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Detecting the Néel vector of altermagnets in heterostructures with a topological
insulator and a crystalline valley-edge insulator
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We investigate topological phases in a bilayer system composed of an altermagnet and a two-dimensional
topological insulator described by the Bernevig-Hughes-Zhang model. A topological phase transition occurs
from a first-order topological insulator to a trivial insulator at a certain critical altermagnetization if the Néel
vector of altermagnet is along the x or y axis. It is intriguing that valley-protected edge states emerge along the
Néel vector in this trivial insulator, which are as stable as the topological edge states. We name it a crystalline
valley-edge insulator. On the other hand, the system turns out to be a second-order topological insulator when
the Néel vector is along the z axis. The tunneling conductance has a strong dependence on the Néel vector.
In addition, the band gap depends on the Néel vector, which is measurable by optical absorption. Hence, it is
possible experimentally to detect the Néel vector by measuring tunneling conductance and optical absorption.

DOI: 10.1103/PhysRevB.109.245306

I. INTRODUCTION

Recently, altermagnets have attracted rapid growth of in-
terest [1–3]. Altermagnets are promising candidates for future
spintronics [1–3]. Ultra-high-density memories with ultrahigh
flip rate may be realized owing to the zero net magnetization.
It is difficut to detect the direction of the Néel vector due to the
zero net magnetization in general [4–10]. Nevertheless, the z
component of the Néel vector can be read out via anomalous
Hall effect in altermagnets [11–14].

An altermagnet is the third-type of magnets in terms of
symmetry [1–3]. Altermagnets have a combinational sym-
metry of time-reversal symmetry and rotational symmetry.
Especially, d-wave altermagnet has a combination sym-
metry of time-reversal symmetry and four-fold rotational
symmetry. On the other hand, ferromagnets break time-
reversal symmetry, while antiferromagnets has a combina-
tional symmetry of time-reversal symmetry and one-site
translational symmetry.

The characteristic feature of altermagnets is a momentum-
dependent band structure for each spin [1–3,15,16]. Indeed,
momentum dependent band structures are observed by Angle-
Resolved Photo-Emission Spectroscopy (ARPES) [17–21].
Furthermore, spin current is generated by applying electric
field [22–25] owing to the above-mentioned characteristic
band structure. However, there are only few works on topo-
logical properties [26] of altermagnets except for Majorana
states [27–29].

In this paper, analyzing a bilayer system composed of
an altermagnet and a two-dimensional topological insulator,
we construct a topological phase diagram. It has intriguing
features. On one hand, a topological phase transition occurs
from a first-order topological insulator to a trivial insulator at
a certain altermagnetization Jcr when the Néel vector is along
the x or the y axis. This trivial insulator is intriguing since it is
characterized by the emergence of edge states parallel to the
Néel vector, which are as robust as topological edges. Further-
more, an edge state connects two valleys either in the occupied

band or in the unoccupied band, as is a reminiscence of the
valley-protected edge states in the valley-Chern insulator [30].
Hence, we name it the x -axis crystalline valley-edge insulator
(x-CVEI) or the y-axis crystalline valley-edge insulator (y-
CVEI). On the other hand, the system becomes a second-order
topological insulator (SOTI) when the Néel vector is along
the z axis. We show that tunneling conductance has a sharp
dependence on the Néel vector. In addition, the band gap has
a dependence on the Néel vector, which is measured by op-
tical absorption. Therefore, the Néel vector is experimentally
determined by combining the tunneling conductance and the
optical absorption spectra.

II. MODEL

We analyze the bilayer system where d-wave altermagnet
is attached on a two-dimensional topological insulator. The
Hamiltonian is given by

H = HBHZ + HAlter. (1)

The topological insulator is described by the Bernevig-
Hughes-Zhang (BHZ) model [31],

HBHZ = M(k)σ0 ⊗ τz + λ(sin kxσx ⊗ τx + sin kyσy ⊗ τx ),

(2)

with M(k) = m − t (cos kx + cos ky), where m is the mass
parameter, t is the hopping parameter, λ is the spin-orbit
interaction, σ is the Pauli matrix for the spin, and τ is the Pauli
matrix for the orbital. The BHZ model describes a topological
insulator for |m/(2t )| < 1.

The effect of d-wave altermagnet is described by the
Hamiltonian [1–3,27–29]

HAlter(k) = J (cos kx − cos ky)(s · σ ) ⊗ τx, (3)

with s = (sin θ cos φ, sin θ sin φ, cos θ ), where J is the magni-
tude of altermagnetization and Jsis the Néel vector. The Néel
vector is controlled by spin-orbit torque [32,33] or spin-split
torque [34,35]. The characteristic feature of altermagnet is
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FIG. 1. (a) Bulk band gap in the (J, θ ) plane with 0 � J � t and
π/2 � θ � 0, where we have set φ = 0. The band gap closes at J =
Jcr and θ = π/2. (b) Topological phase diagram in the (φ, J/t ) plane
with 0 � φ � π and −2 � J/t � 2, where we have set θ = π/2.
The topological phase boundaries are analytically given by Eq. (7),
which are illustrated by white dashed curves. A star represents a point
at which the band structure in ribbon geometry is shown in Fig. 3. We
have set m = t and λ = 0.5t . (c) Color palette showing the band gap
E/t for (b).

that the magnetization has a momentum dependence as in
Hamiltonian (3).

III. BAND GAP

We study the bulk band gap. If the Néel vector is along the
x axis, the energy spectrum is given by

E2 = M2(k) + (λ sin kx + J (cos kx − cos ky))2 + λ2 sin2 ky.

(4)

The minimum of the band gap is taken at ky = 0. The solution
M(kx, 0) = 0 is given by kx = ± arccos(m/t − 1). The gap
closing condition is

|Jcr/λ| = 1/
√

2t/m − 1. (5)

We show the band gap in the J-θ plane at φ = 0 in Fig. 1(a).
The band gap closes at J = Jcr when θ = π/2.

If the Néel vector is in the x-y plane with angle φ, the
energy spectrum is given by

E2 = M2(k) + (λ sin kx + J cos2 φ(cos kx − cos ky))2

+ (λ sin ky + J sin2 φ(cos kx − cos ky))2. (6)

The bulk band gap closes at J = Jcr with∣∣∣∣Jcr

λ

∣∣∣∣ =
√

m(2m + √
2F ) sec2 2φ

2(4t2 − m2)
, (7)

and F ≡
√

4t2 + m2 + (4t2 − m2) cos 4φ. We have shown the
gap-closing curves in Fig. 1(b). We later argue that they are
topological phase boundaries when the Néel vector is within
the x-y plane.

We show the band-gap structure in the m-J plane when
the Néel vector is along the x axis is shown as a color plot
in Fig. 2(a) and the gap-closing curves in Fig. 2(a). We later
argue that they are topological phase boundaries. The trivial
phase of the BHZ model remains as it is for |m/(2t )| > 1 and
J �= 0. However, a new type of trivial insulator emerge for
|m/(2t )| < 1 and J �= 0, as described below.

If the Néel vector is along the z axis (θ = 0), the energy
spectrum is given by

E2 = M2(k) + λ2(sin2 kx + sin2 ky) + J2(cos kx − cos ky)2.

(8)
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FIG. 2. (a) Topological phase diagram in the (m/t, J/t ) plane,
where the Néel vector is along the x axis. The phase boundaries are
analytically given by Eq. (5), which are illustrated by white dashed
curves. (b) Topological phase diagram in the m-J plane, where the
Né el vector is along the z axis. (c) Color palette showing the band
gap E/t for (a) and (b).

The band gap is shown as a color plot in Fig. 2(b). It implies
that the altermagnetization does not contribute to the gap
closing and the gap closing condition is identical to that of
the BHZ model, i.e., m = ±2t as in Fig. 2(b). Hence, the
topological phase boundaries remain the same as those of the
BHZ model. However, the topological phase is changed from
the first-order one to the second-order one, as described below.

IV. RIBBON GEOMETRY

We analyze the energy spectrum of the total Hamiltonian
with ribbon geometry to see the topological property. In the
absence of the altermagnetization, J = 0, there are topological
edge states of the BHZ model (2), which cross at the momen-
tum kx = 0, as in Fig. 3(a).

If the altermagnetization is along the x axis, Jsx =
(J, 0, 0), the crossing point of the topological edge states
moves away from kx = 0 for J < Jcr as in Fig. 3(b1). At the
critical point J = Jcr, the bulk band gap closes and the system
is a semimetal as in Fig. 3(b2). For J > Jcr, each edge state
connects either the occupied band or the unoccupied band,
as in Fig. 3(b3). It indicates the system is trivial. Although
the edge states are nontopological, they are robust against
the order of the band gap because the turning point of the
edge state much exceeds the band gap. Indeed, it requires
perturbation much larger than the band gap to remove the
trivial edge states. These nontopological edge states are as
robust as topological edges. They are a reminiscence of the
valley-protected edge states with each edge connecting two
valleys either in the occupied band or in the unoccupied band
[30]. We explicitly study the robustness against disorder later.

If the altermagnetization is along the y axis, Jsy = (0, J, 0),
the topological edge states are maintained for J < Jcr as in
Fig. 3(c1). At the critical point J = Jcr, the bulk band gap
closes as in Fig. 3(c2). Edge states disappear for J > Jcr as
in Fig. 3(c3).

We show the band structure when the altermagnetization
is given by Js = J (cos φ, sin φ, 0) for the cases φ = π/8,
π/4 in Figs. 3(b4) and 3(c4), respectively. The bulk band gap
closes in the vicinity of φ = π/8 as in Figs. 3(b4) and 1(b).
The valley-protected edge states become the topological edge
states as in Figs. 3(c4) and 1(b).

If the altermagnetization is along the z axis, Jsz = (0, 0, J ),
the topological edge states anticross and a finite gap emerges
in edge states as in Fig. 3(d). It means that the system is
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FIG. 3. Band structure in ribbon geometry for (a) no altermag-
netization, [(b1)–(b3)] the Néel vector along the x axis, [(c1)–(c3)]
the Néel vector along the y axis, (b4) the Néel vector with angle
φ = π/8, (c4) the Néel vector with angle φ = π/4, and (d) the Néel
vector along the z axis. The ribbon is taken along the x axis. The
horizontal axis is the momentum kx . (b1) and (c1) J = 0.2t . [(b2) and
(c2)] J = 0.5t = Jcr. [(b3), (c3), (b4), and (c4)] J = 0.7t . We have set
m/t = 1, λ/t = 0.5. Red color indicates the edge state, while cyan
color indicates the bulk state. The point (φ, J) of each figure except
(d) is indicated as a star in the phase diagram Fig. 1(b).

not a first-order topological insulator. We will soon see that
the system is a second-order topological insulator, which is
characterized by the emergence of corner states in square
geometry.

V. SQUARE GEOMETRY

We investigate the energy spectrum of the total Hamilto-
nian with square geometry to see the topological property
more in detail.

In the case of Jsx = (J, 0, 0) or Jsy = (0, J, 0), the edge
states emerge along the x axis or the y axis, as in Fig. 4(a1)
or 4(a2), respectively. Correspondingly, the energy spectrum
is linear as a function of the eigenindex in the vicinity of the

FIG. 4. [(a1)–(a3)] Spatial distribution of the zero-energy states
marked in red. [(b1)–(b3)] Energy spectrum as a function of the
eigenindex of the Hamiltonian. The inset in (b3) shows the pres-
ence of the four corner states at zero energy. [(c1)–(c3)] Tunneling
conductance as a function of the energy. [(d1)–(d3)] Illustration of
a square sample with four leads. [(a1)–(d1)] The Néel vector is
along the x axis. [(a2)–(d2)] The Néel vector is along the y axis.
[(a3)–(d3)] The Néel vector is along the z axis. We have set m/t = 1,
λ/t = 0.5, and J = 0.7t > Jcr. Conductance between the leads A and
B is calculated, where current is injected from the lead A as depicted
by a red arrow.

zero energy, as in Fig. 4(b1) or 4(b2). These edge states are
nontopological as we have argued in ribbon geometry. On
the other hand, there are no edge states along the y axis or
the x axis in the case of Jsx = (J, 0, 0) or Jsy = (0, J, 0) as
in Fig. 4(a1) or 4(a2), respectively. It is a reminiscence of
edge states of topological crystalline insulator [36]. The sys-
tem is the x -axis crystalline valley-edge insulator (x-CVEI)
in Fig. 4(a1) and the y-axis crystalline valley-edge insulator
(y-CVEI) in Fig. 4(a2).

In the case of Jsz = (0, 0, J ), four topological corner states
emerge as in Fig. 4(a3). Correspondingly, there are four zero-
energy corner states within a finite gap as in Fig. 4(b3). As a
result, the system is a second-order topological insulator.

VI. CONDUCTANCE

We show that the Néel vector is detectable by measuring
the conductance in the setup shown in Figs. 4(d1)–4(d3),
where four leads are attached to the corners of the square
sample. We assume that the leads are single-atomic chains
with semi-infinite length.

The conductance between two leads is calculated based on
the Landauer formalism [37–41]. The conductance σ (E ) at
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FIG. 5. [(a1) and (a2)] Tunneling conductance in the (φ, θ )
plane. [(b1) and (b2)] Tunneling conductance as a function of θ at
φ = 0. The horizontal axis is 0 � θ � π . [(c1) and (c2)] Tunneling
conductance as a function of φ at θ = π/2. The horizontal axis is
0 � φ � π . [(a1)–(c1)] J = 0.7t > Jcr. [(a2)–(c2)] J = 0.2t < Jcr.

energy E is calculated as [37]

σ (E ) = (e2/h)Tr[�L(E )G†
D(E )�R(E )GD(E )], (9)

where �R(L)(E ) = i[	R(L)(E ) − 	
†
R(L)(E )] is the line width

with the self-energies 	 L(E ) and 	R(E ) for the left and right
leads, and GD(E ) = [E − H − 	L(E ) − 	R(E )]−1 is the
Green function with the Hamiltonian H for the sample. The
self energy of a single-atomic semi-infinite chain is analyti-
cally obtained [37] as 	L(E ) = 	R(E ) = E − i

√
|t2 − E2|.

First, we study the case J > Jcr. We show the conductance
as a function of the energy E in Figs. 4(c1), 4(c2), and 4(c3).
We have calculated the conductance between the leads A and
B. The conductance is nonzero at E = 0 when the Néel vector
is along the x axis as in Fig. 4(c1). It is understood that the
current flows through the edge state along the x axis as in
Fig. 4(d1). On the other hand, it is zero at E = 0 when the
Néel vector is along the y axis as in Fig. 4(c2). It is because
there is no edge state to carry the current along the x axis as
in Fig. 4(d2). The conductance is also zero at E = 0 when
the Néel vector is along the z axis as in Fig. 4(c3). It is
because there is no edge state although corner states exist as
in Fig. 4(d3). It seems to be difficult to differentiate the cases
where the Néel vector is along the y axis or the z axis by mea-
suring the conductance because the tunneling conductance is
zero for both cases. However, it is differentiated by measuring
the tunneling conductance between the leads A and D, where
the conductance is nonzero if the Néel vector is along the y
axis but zero if the Néel vector is along the z axis.

The conductance in the φ-θ plane is shown in Fig. 5(a1).
The conductance as a function of θ at φ = 0 is shown in
Fig. 5(b1). The conductance takes the maximum value at
θ = π/2 and takes the minimum value at θ = 0. The conduc-
tance as a function of φ at θ = π/2 is shown in Fig. 5(c1).
The conductance takes the maximum value at φ = 0 and the
minimum value at φ = π/2. Hence, we can detect the Néel
vector by measuring the conductance.

Next, we study the case J < Jcr. We show the conductance
in the φ-θ plane in Fig. 5(a2). The dependence on the angle
φ is tiny comparing with the case J > Jcr, as in Fig. 5(c2).
It is because the system is a first-order topological insulator,
where the topological edge state surround the sample. The

FIG. 6. Optical absorption spectra. Red curves indicate the spec-
tra with θ = π/2, while blue curves indicate that with θ = 0. We
have set φ = 0. The horizontal axis is the photon energy h̄ω. Insets
show the bulk band gap as a function of θ at φ=0. (a) J =0.2t < Jcr

and (b) J = 0.7t > Jcr. The red and blue circles correspond to the
optical absorption colored in red and blue.

conductance is zero for θ = 0 and π as in the case of the sys-
tem J > Jcr, as in Fig. 5(b2). It is because there are topological
corner states but there are no edge states.

VII. OPTICAL ABSORPTION

We show that the band gap is observed by examining the
optical absorption spectrum. We analyze the optical interband
transition from the state |uv(k)〉 in the valence band to the
state |uc(k)〉 in the conduction band. We apply a circularly
polarized light, where the electromagnetic potential is given
by A(t ) = (Ax sin ωt, Ay cos ωt ).

The optical absorption is calculated based on the Kubo
formula [36,42–45],

ε(ω) = πe2

ε0m2
eω

2

∑
i

∫
BZ

dk

(2π )2 f (k)|Pj (k)|2

× δ[Ec(k) − Ev(k) − h̄ω], (10)

where Pj (k) is the optical matrix element Pj (k) ≡
m0〈uc(k)| ∂H

∂k j
|uv(k)〉, Ec(k) and Ev(k) are the energies of the

conduction and valence bands, and f (k) is the Fermi distribu-
tion function.

We show the optical absorption spectra at θ = 0 and π/2
in Fig. 6. There is a gap in the spectrum, implying the sud-
den occurrence of the optical absorption at the moment that
the photon energy becomes the same as the band-gap en-
ergy. Hence, the band gap is measured by optical absorption
experiments.

VIII. DISORDER EFFECTS

We study disorder effects. We introduce randomness dis-
tributing from −δ to δ by making the procedure t �→
t (1 + ηδ), m �→ m(1 + ηδ), λ �→ λ(1 + ηδ), J �→ J (1 + ηδ),
where η is a random variable ranging from −1 to 1. The band
structures in nanoribbon geometry are shown in Fig. 7. The

FIG. 7. Band structure in nanoribbon geometry in the presence
of disorder with the strength (a) δ = 0.1, (b) 0.2, and (c) 0.5.
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FIG. 8. The disorder effect on the conductance. (a) The Néel
vector is along the x axis. (b) The Néel vector is along the y axis.
(c) The Néel vector is along the z axis. The horizontal axis is the
disorder δ. Average is taken 100 times.

edge states are robust for δ � 0.3. The band gap at the left
valley closes around δ ∼ 0.3. At the same time, the difference
between the edge states and the bulk states become obscured
in the vicinity of k = 0. Clear edge states survive at the right
valley even for δ ∼ 0.3, which is obscured around δ ∼ 0.7.
Hence, the valley edge states are as robust as topological edge
states.

Next, we study a conductance at E = 0 corresponding to
Fig. 4(c1) in the presence of disorders, which is shown in
Fig. 8. First, we study the case where the Néel vector is along
the x axis, whose result is shown in Fig. 8(a). The conductance

is robust for δ � 0.3 corresponding to the robustness of the
edge states in Fig. 7. The reduction of the conductance is less
than one half even for δ = 1. It means that the conductance
measurement based on the valley edge states is very robust
against disorders as well as topological edge states. Next, we
study the case where the Néel vector is along the y and z axis,
whose result is shown in Figs. 8(b) and 8(c), respectively. The
conductance is zero in the absence of disorders. It gradually
increases as the increase of disorder δ. The conductance be-
tween Figs. 8(a) and 8(b) is well differentiated for δ � 0.3.

Note added. Recently, we became aware of a relevant paper
[46]. Based on the density-functional theory, the system made
of MnF2 and bismuthene is shown to become a second-order
topological insulator, where MnF2 is an altermagnet, while
bismuthene is a two-dimensional topological insulator.
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