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Longitudinal (curvature) couplings of an N-level qudit to a superconducting resonator
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Understanding how and to what magnitude solid-state qubits couple to metallic wires is crucial to the design
of quantum systems such as quantum computers. Here, we investigate the coupling between a multilevel system,
or qudit, and a superconducting (SC) resonator’s electromagnetic field, focusing on the interaction involving
both the transition and diagonal dipole moments of the qudit. Specifically, we explore the effective dynamical
(time-dependent) longitudinal coupling that arises when a solid-state qudit is adiabatically modulated at small
gate frequencies and amplitudes, in addition to a static dispersive interaction with the SC resonator. We derive
Hamiltonians describing the longitudinal multilevel interactions in a general dispersive regime, encompassing
both dynamical longitudinal and dispersive interactions. These Hamiltonians smoothly transition between their
adiabatic values, where the couplings of the nth level are proportional to the level’s energy curvature concerning
a qudit gate voltage, and the substantially larger dispersive values, which occur due to a resonant form factor.
We provide several examples illustrating the transition from adiabatic to dispersive coupling in different qubit
systems, including the charge (1e double quantum dot) qubit, the transmon, the double-quantum-dot singlet-
triplet qubit, and the triple-quantum-dot exchange-only qubit. In some of these qubits, higher-energy levels play
a critical role, particularly when their qubit’s dipole moment is minimal or zero. For an experimentally relevant
scenario involving a spin-charge qubit with magnetic field gradient coupled capacitively to a SC resonator, we
showcase the potential of the dynamical longitudinal coupling. It enables close-to-quantum-limited quantum
nondemolition measurements and remote geometric phase gates, demonstrating its practical utility in quantum
information processing.
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I. INTRODUCTION

Effective coupling of a multi-quantum-dot encoded spin
qubit to a superconducting (SC) resonator would be a major
step towards establishing high-fidelity qubit quantum mea-
surement as well as long-range spin-spin interactions on an
electronic chip. Following the success with superconducting
qubits [1–4], the usual approach is to establish a transverse
(dipole) coupling g⊥ of the qubit to the quantized electromag-
netic (EM) field of the resonator. In a dispersive regime (at
a qubit-resonator frequency detunning �) an excitation ex-
change between qubit and resonator is suppressed by a small
probability ( g⊥

�
)2. Thus, avoiding a direct excitation of the

qubit by the resonator in this limit, a quantum nondemolition
(QND) measurement is possible, with non-QND effects of the
order of ( g⊥

�
)2.

Despite the smaller dipole strength and in the presence of
stronger charge noise, such a dispersive coupling was also
successfully introduced in the quantum dot (QD) spin-qubit
architectures [5–12]. Aside from the non-QND effects, this
approach may suffer from two main issues (both for SC qubits
and QD spin qubits): (1) qubit relaxation Purcell enhancement
via the resonator due to relative closeness of the qubit and
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resonator frequencies in the dispersive regime; (2) typically,
a large transverse (dipole) coupling would couple to nearby
two-level fluctuators, leading to charge noise. Also, for QD
spin qubits a large dipole coupling arises at regions of a
“charge degeneracy points” (c.d.p.), where the gate charge
noise is enhanced as well.

Motivated to avoid these issues, we have proposed [13,14]
qubit-resonator energy curvature couplings in the adiabatic
regime for encoded multidot spin qubits (in which the qubit
dipole moment is zero or suppressed), such as the triple
quantum dot (TQD) always on exchange only (AEON) qubit
and the double-quantum-dot singlet-triplet (DQD S-T) qubit
at their symmetric operating point (SOP). (Similar propos-
als already existed for superconducting qubits [15–18].) The
nonzero energy curvature (with respect to a gate voltage),
arising from higher levels, is essentially the qubit quantum

capacitance Cq ∝ ∂2Eq

∂V 2
m

, and it introduces two effective QND
interactions to the resonator:

Hδω/h̄ = δω σzâ
†â, (1)

H‖/h̄ = [g̃‖ σz + g̃av](â† + â) cos(ωmt ). (2)

The first one is an always on dispersive coupling with strength
δω ∝ g2

0 Cq, and the second one is a dynamical longitudi-
nal coupling with strength g̃‖ ∝ g0 Cq Ṽm, that arises when a
suitable qubit gate voltage is time modulated, ∼Ṽm cos(ωmt ),
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at or around the resonator frequency ωr , in an adiabatic
regime of small frequencies and modulation amplitudes.1

Both couplings are proportional to the qubit energy curva-
ture Cq, while g̃‖ can be switched on or off by the external
gate voltage modulation. In the above we have introduced
qubit-resonator “bare” dipole coupling, g0 ≡ αc

ωr
2

√
Zr

h̄/e2 �
ωr (with αc and Zr being the resonator-to-dot lever arm and
resonator impedance, respectively) (see Sec. II and Ref. [19]).
These couplings were derived in a “soft-field” approach
[13,14] at the SOP, essentially in the adiabatic regime

ωr � Egap ∼ Ucharge, (3)

since the typical energy gap to compare for these encoded
qubits is the dot’s charging energy Ucharge � 200 GHz (in
the absence of a qubit transverse dipole moment at the SOP,
see Secs. VI C and VI D and Ref. [14]). While at the SOP
it was proposed to use these couplings to perform a QND
quantum measurement [14] as well as N-qubit geometric
phase gates [20,21], the high-performance regime of these
operations (reaching infidelities of 10−3) was shown to be
limited either by small quantum capacitances (for realistic
experimental parameters) or by a necessity to work at a small
ratio [21] δω

g̃‖
.

Despite the SOP regime, it is worth to study also the regime
of dots’ detunnings closer to the c.d.p. Indeed, the ratio of the
curvatures at c.d.p. vs SOP for encoded spin qubits can reach
high values [14,21]:

Cc.d.p.
q

CSOP
q

∼ U 3
charge

16t3
c

∼ 102–104 (4)

for typical charging energies, Ucharge ∼ 200–300 GHz, and
tunnelings tc ∼ 5–10 GHz (in frequency units). At the c.d.p.
a typical qubit level splitting (with an attached to it transi-
tion dipole moment) is of the order of h̄ωq ∼ 2tc � Ucharge,
and the adiabatic regime h̄ωr � Egap ∼ 2tc requires much
smaller resonator frequencies. Recently, both the dispersive
and dynamical longitudinal couplings have been observed in
the adiabatic regime for a charge qubit coupled to SC res-
onator [11]. As the qubit and resonator are highly detuned
(� ≈ ωq) the Purcell effect will be strongly suppressed. In

this adiabatic regime the relevant dispersive coupling δω ∝ g2
⊥

ωq

(see Sec. V C), will be also suppressed with respect to the
usual dispersive coupling (since ωq 
 � ≈ 10g⊥). However,
this suppression may be compensated via much stronger dy-
namical longitudinal coupling. Estimations give for their ratio
(this ratio is independent of the qubit frequency detuning,
Sec. IV D)

g̃‖
δω

= eṼm

2h̄g0
≡ Ṽm

αcVvac
∼ 12–120, (5)

where Vvac = h̄ωr
e

√
Zr

h̄/e2 is the amplitude of zero-point (vac-
uum) voltage fluctuations of the resonator. Then, the overall

1In Eq. (2) g̃av is proportional to the average curvature of the qubit
levels (see Refs. [14,21] for discussion).

quantum measurement rate (with modulation) [14] in the adi-
abatic regime can be of the order or stronger than the usual
measurement rate of the dispersive regime.

Since the relevant energy gap around the c.d.p., Egap ∼ 2tc,
is relatively small, the adiabatic regime may not be fully sat-
isfied (e.g., when the qubit detuning is in the usual dispersive
regime). It is then desirable to derive effective Hamiltonians
of the type of Eqs. (1) and (2), which would be relevant both in
the adiabatic regime and in the much less detuned dispersive
regime.

In this paper we perform the task for a general N-level
system (qudit), such that the above effective Hamiltonians
obtain contributions from many levels, not just from the qubit
levels, in a general dispersive regime. First, in Sec. II we
introduce the usual dipole interaction of an N-level atom
to a quantized or classical electromagnetic field. In Sec. III
we derive the corresponding effective Hamiltonians in the
adiabatic regime, using the “soft-field” approach. Then, in
Sec. IV A similar effective Hamiltonians are derived in an
approach based on a time-dependent quantum mechanical
(QM) perturbation theory, extending them to a regime when
resonator frequency dependence is not neglected. In Sec. IV B
we obtained more general result, when the modulation fre-
quency is different from the resonator frequency. In Sec. IV C
and in Appendix A the equal frequency case is rederived
in a formal time-dependent Schrieffer-Wolff transformation
approach. In Sec. IV D we further extend these results by
adding an atom’s polarizability contribution to the effective
Hamiltonians Hδω and H‖, which is of the same order (∼g2

0)
as the above second-order PT contributions. This provides the
most general expressions for the effective Hamiltonians Hδω

and H‖ of Eqs. (1) and (2). The polarizability contribution
for each level is recast to the atom’s energy level curvatures
plus a sum over atom’s transition dipole matrix elements via
a “low-energy QM sum rule” (Appendix B). This allows us to
perform the adiabatic limit in the general effective Hamilto-
nians (Sec. V A), confirming the “soft-field” results. We also
consider the case of zero polarizability in Sec. V B, relevant to
QD spin qubits, as well as the dispersive regime in Sec. V C.
Out of the adiabatic regime, the second approach will provide
an ωr dependence of the effective Hamiltonian strengths δω,
g̃‖, which approaches that of the usual dispersive regime in the
appropriate limit.

In Secs. VI A–VI D, we apply the general theory to several
cases of interest, including a DQD charge qubit, a transmon,
a DQD S-T qubit, and TQD exchange-only qubit (in Ap-
pendix C we calculated the dipole matrix elements for the
TQD system). Finally, in Sec. VI E, we consider implica-
tions of the theory for (continuous) quantum measurements
on the example of a charge qubit [11] and a spin-charge
qubit with magnetic field gradient [7,22]. Implications for
geometric quantum gates [20,21] are briefly mentioned in
Sec. VI F.

II. DIPOLE INTERACTIONS OF AN N-LEVEL SYSTEM
WITH EM FIELDS

One starts with a qudit plus resonator Hamiltonian includ-
ing the dipole interaction with the EM field of the resonator
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FIG. 1. A multi-quantum-dot system is coupled capacitively to
a SC resonator via dot 2. The voltage variations at the dot 2 can be
quantum, δV2 = αcV̂r , or classical, δV2 = Vcl (t ) = Ṽm cos(ωmt ); αc �

Cc
Cc+Cd

is the resonator-to-dot lever arm, where Cc and Cd are dot’s
coupling capacitances.

Ĥdipole(t ) ≡ −−̂→
d · δ

−→
E λ(t ) (see Fig. 1 for a multi-quantum-

dot system):

Htot =
∑

k

Ek |k〉〈k| + h̄ω(λ)
r â†â + Ĥdipole(t ), (6)

Ĥdipole(t ) = −
∑
k, j

−→
d k j · δ

−→
E λ(t ). (7)

Here Ek is the energy of the kth level, ω(λ)
r is the frequency of

a single-resonator mode (λ), and the EM field applied to the
system has quantum and classical components:

δ
−→
E λ(t ) = −→

E λ,vac(â + â†) + 2
−→
E cl cos(ωmt ). (8)

The quantum field of the resonator has a normalized amplitude−→
E λ,vac [chosen real,

−→
E λ,vac = −→

E ∗
λ,vac (see, e.g., [23]]. The

classical field amplitude
−→
E cl may come from an applied gate

voltage to the dot system (see Fig. 1) which is generally

time dependent. The dipole matrix elements
−→
d k j are either

off diagonal (transition dipole matrix elements) or diagonal
( j = k). The latter are generally nonzero for a multidot system
where space parity is not a good quantum number. In what fol-
lows we skip the index of the resonator mode so that ω(λ)

r ≡ ωr

(the results can be easily extended to a multimode case).
It is often more convenient to deal with applied voltages

to the multidot system instead of the corresponding electric
fields. As an example, consider a DQD with a gate voltage
at the right dot V2. Then Ex = V2

lx
, where lx is the distance

between dots 1 and 2 (Fig. 1). If δV2 is induced by the quan-
tized voltage of the resonator [19], V̂r = Vvac (a + a†) then the
corresponding field amplitude is

Ex,vac = αc
Vvac

lx
≡ 2h̄

lxe
g0, (9)

where αc � Cc
Cc+Cd

is the lever arm of dot 2 to the resonator,

and g0 ≡ αc
eVvac
2h̄ is the DQD “bare” coupling to the resonator,

introduced above.
The dipole coupling in Eq. (7) is then gk j ≡ dx,k jEx,vac =

(x̂)k j

lx
2g0. By introducing also a classical voltage variation to

dot 2 [δV2 = Vcl(t ) ≡ Ṽm cos(ωmt )], Eqs. (7) and (8) can be

FIG. 2. A generic multilevel system where the energy levels de-
pend on a voltage parameter VG. By (Taylor) expanding the energy
levels to second order around a working point V 0

G , where the voltage
variation δVG = Vvac(â + â†) + Vcl (t ), obtains quantum and classical
part, allows to derive effective adiabatic interactions of the N-level
system to a superconducting resonator, Eqs. (13) and (14) (Sec. III).
These interactions are proportional to the levels’ energy curvatures
(quantum capacitances), shown with ↔ for each level. The effective
interactions imply adiabaticity condition h̄ωr � Egap, where a typical
energy gap Egap is either the qubit splitting or some higher-energy
transition [see Eq. (3)]. The adiabatic interactions (13) and (14) are
rederived in Secs. IV and V in a perturbation theory that also allows
to go beyond the adiabatic regime.

rewritten as

Ĥdipole(t ) =
∑

j,k

h̄gk j |k〉〈 j|{[â + bcl(t )] + [â† + b∗
cl(t )]},

(10)
where bcl(t ) ≡ bcl e−iωmt is a classical field with amplitude

bcl = eṼm

4h̄g0
= Ṽm

αcVvac
. (11)

From Eqs. (10) and (11) it is clear that the small parameters
of the problem are the energies associated with the quantized
and classical voltage variations eVvac and eṼm (relative to the
qubit energy scale Eq).

III. N-LEVEL EFFECTIVE HAMILTONIANS
IN THE “SOFT-FIELD” (ADIABATIC) LIMIT

Consider an adiabatic limit where ωr � |ω jk| ≡ |ω j − ωk|
(ω j ≡ Ej/h̄) for any energy levels Ej , and also that the volt-
age variations at the dot 2 (quantum and classical), αcV̂r ,
Vcl(t ) ≡ Ṽm cos(ωmt ) are considered small (or soft field) so
that photon excitations of the qudit are highly suppressed
(Fig. 2). (Also, in this limit it is assumed that phonon-assisted
excitations are suppressed, and therefore neglected, compare
with Refs. [24,25].) Assuming that the qudit energy levels
depend on the dot gate voltage, one can Taylor expand the en-
ergy levels to second order in the gate voltage variation δVG =
Vvac (â + â†) + Vcl(t ), that contains a quantum and classical
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part2:

Ek (VG) = Ek
(
V 0

G

)+ ∂Ek

∂VG
δVG + 1

2

∂2Ek

∂V 2
G

δV 2
G

= Ek
(
V 0

G

)+ Q(k)
d δVG + 1

2
C(k)

d δV 2
G . (12)

In the second row of Eq. (12), Q(k)
d ≡ ∂Ek

∂VG
is a (quasi)charge.3

It generates a static longitudinal interaction [13,14,16,18] [see
also Eq. (36) below]. The coefficient in the second-order term
C(k)

d ≡ ∂2Ek

∂V 2
G

is the quantum capacitance of the kth level. Sub-
stituting for δVG in the second order one obtains the following
effective qudit-resonator adiabatic Hamiltonians:

Hδω/h̄ = 4h̄g2
0
∂2	̂

∂V 2
G

(
â†â + 1

2

)
(13)

and

H‖/h̄ = 2g0(eṼm)
∂2	̂

∂V 2
G

(â + â†) cos(ωmt ), (14)

which replace the original dipole interactions [Eq. (10)] in the
adiabatic regime. Here, 	̂ ≡ diag{E1, E2, . . . , Ek, . . . } is the
qudit eigenenergy matrix. For a qubit the above expressions
coincide with that of Refs. [13,14].

The effective interactions (13) and (14) can be used to
perform (continuous) quantum measurements on a qudit via
measuring the photocurrent of a nearby superconducting (SC)
resonator [13,14] (see also recent paper, Ref. [26]). The sim-
plest example could be a DQD singlet-triplet qubit, which has
three relevant levels and the qubit subspace has no dipole mo-
ment for any DQD detunning (see Sec. VI C below). Another
interesting example relevant to the experiment is a spin-charge
qubit where a DQD charge qubit (1e) with a micromagnet-
induced gradient magnetic field between the two dots creates
effective dipole coupling to the resonator [7,22] (see Sec. VI E
below). Since the adiabatic conditions may not be fulfilled in
the relevant experiments, we develop an alternative derivation
of the effective interactions of the type of (13) and (14),
extending their range of applicability.

IV. N-LEVEL EFFECTIVE HAMILTONIANS
FROM A PERTURBATION THEORY

A. Derivation via second-order time-dependent
perturbation theory

The dipole interaction (10) is a time-dependent pertur-
bation. One (heuristic) way to deal with it is to apply a
time-dependent perturbation theory (PT). By treating the
quantized field in the Heisenberg picture one arrives at time-
dependent field operators â(t ) = â e−iωr t , that will be treated
semiclassically, i.e., on the same ground as the classical fields
[27,28] bcl(t ) ≡ bcl e−iωmt , in Eq. (10). The Hamiltonian is

2In an early work [69] a Taylor expansion in light Higgs fields
allowed to obtain effective interactions to light hadrons without cal-
culating Feynman diagrams.

3For a DQD charge qubit, Q(k) can be recast to the excess charge
on the right dot (see Ref. [70]).

then Ĥ (t ) = Ĥ0 + V̂ (t ) with a time-dependent perturbation
matrix element of the form

Vkl (t ) = h̄gkl (â e−iωr t + bcl e−iωmt ) + H.c. (15)

Working in the interaction picture the Hamiltonian be-

comes V̄ (t ) = ei Ĥ0
h̄ t V̂ (t ) e−i Ĥ0

h̄ t . To obtain an effective Hamil-
tonian in a nonresonant (dispersive) regime |ωk − ωl − ωr | 

gkl for any k, l , and to effectively eliminate the fast-oscillating
components of V̄ (t ), one performs a unitary transform to the
system’s state ρ̃ = e−iQ(t ) ρ eiQ(t ), and a corresponding Hamil-
tonian transform

Ṽ (t ) = e−iQ(t ) V̄ (t ) eiQ(t ) − ih̄ e−iQ(t ) ∂

∂t
eiQ(t ), (16)

requiring that the fast-oscillating components of V̄ (t ) to be
removed. Assuming that V̄ (t ) ∝ λ has a small parameter (e.g.,
the field amplitudes), one can expand Q(t ) and Ṽ (t ) in a
perturbation series:

Q(t ) = Q1(t ) + Q2(t ) + · · · , (17)

Ṽ (t ) = Ṽ0(t ) + Ṽ1(t ) + Ṽ2(t ) + · · · , (18)

where Qn(t ), Ṽn(t ) ∝ λn. Using the Baker-Hausdorff expan-
sion e−iQ V̄ eiQ = V̄ (t ) − i [Q, V̄ (t )] − 1

2 [Q, [Q, V̄ ]] + · · · ,
one substitutes in it the perturbative series to obtain the
following equations collected at a given power of λ:

Ṽ0(t ) = 0, (19)

Ṽ1(t ) = V̄ (t ) + h̄
∂Q1(t )

∂t
, (20)

Ṽ2(t ) = − i

2
[Q1, V̄ (t )] − i

2
[Q1, Ṽ1(t )] + h̄

∂Q2(t )

∂t
. . . . (21)

One requires that Ṽ1(t ) = 0 in the nonresonant dispersive case
[in the original frame V̄ (t ) is highly oscillating, so one effec-
tively remove it here]. Then, the solution of Eq. (20) takes the
standard form of a time-dependent PT [29]:

Q1,kl (t ) = −1

h̄

∫ t

−∞
dt ′ eiωkl t ′

Vkl (t
′), (22)

where ωkl ≡ (Ek − El )/h̄. The effective Hamiltonian can be
obtained from the second-order diagonal term Ṽ2,kk (t ), thus
requiring that the off-diagonal elements are zero, eliminating
highly oscillating terms.4

In the lowest order, from Eq. (21) with Ṽ1(t ) = 0 and
requiring5 ∂Q2,kk (t )

∂t = 0 one then obtains

Ṽ2,kk (t ) ≡ U eff
kk (t ) = − i

2

∑
l

[Q1,kl (t )V̄lk (t ) − V̄kl (t )Q1,lk (t )].

(23)

4Based on Eq. (21), to eliminate Ṽ2,kl (t ) for k �= l , one requires
that h̄ ∂Q2,kl (t )

∂t = i
2 [Q1, V̄ (t )]kl , which can be used for higher-order

calculations, e.g., of Ṽ3(t ) (not shown).
5The condition ∂Q2,kk (t )

∂t = 0 allows us to obtain the effective Hamil-
tonian in a closed form, Eq. (24). Since the higher-order contribution
Ṽ3(t ) contains only commutators of Q2, its diagonal part Q2,kk (t ) does
not contribute.
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Calculating the commutator for equal frequencies, ωm =
ωr [in this paper we mainly focus on this resonant case
(see Sec. VI), with some exceptions], and neglecting the
fast-oscillating (contrarotating) terms6 in a rotating-wave
approximation (RWA), one obtains an effective dispersive
Hamiltonian7 (diagonal in the atomic index)

Heff/h̄ =
∑

k

U eff
kk /h̄ |k〉〈k|

=
∑
k,l

{[rkl (ωr ) − rlk (ωr )]

× (â†â + â b∗
cl(t ) + â† bcl(t ))

+ [rkl (ωr ) − rlk (ωr )] |bcl|2 + rkl (ωr )} |k〉〈k|,
(24)

where

rkl (ωr ) ≡ |gkl |2
ωkl − ωr

. (25)

The effective Hamiltonian (24) contains a “dispersivelike”
coupling Dk (ωr ) â†â |k〉〈k|, and a dynamical longitudinal cou-
pling Lk (ωr ) (â + â†) |k〉〈k| cos(ωrt ), of the kth level to the
resonator, where

Dk (ωr ) ≡
∑
l �=k

[rkl (ωr ) − rlk (ωr )], (26)

Lk (ωr ) ≡
∑
l �=k

2bcl [rkl (ωr ) − rlk (ωr )] (27)

are given by a sum of terms rkl (ωr ) ∼ g2
0 over dipole

transitions k → l, l �= k. Introducing a drive-independent fre-

quency shift δω0
k (ωr ) and a drive-dependent one δω

bcl
k (ωr ),

δω0
k (ωr ) ≡

∑
l �=k

rkl (ωr ), (28)

δω
bcl
k (ωr ) ≡

∑
l �=k

bcl
2

[rkl (ωr ) − rlk (ωr )], (29)

one gets from Eq. (24)

Heff/h̄ =
∑

k

{Dk (ωr ) â†â + Lk (ωr ) (â + â†) cos(ωrt )

+ δω0
k (ωr ) + δω

bcl
k (ωr )} |k〉〈k|. (30)

The second-order PT effective Hamiltonian (24) [or Eq. (30)]
is one of the main results of this paper, particularly relevant
for QD spin qubits. In Sec. IV D we will show, however, that
in general, Heff may obtain additional atom’s polarizability
contributions of the same order ∼g2

0. The latter contributions

6In this approach the counter-rotating (fast-oscillating) terms are
that of the first order ∼g0 [Eq. (15)], as well as the off-diagonal in
atomic index terms of the second order ∼g2

0, in Eq. (21).
7This Hamiltonian is justified in two ways. First, for no-modulation

(b̄cl = 0) it coincides with the result of Ref. [32]; note also that in
our semiclassical approach, quantum and classical fields are treated
on the same ground [see Eq. (15)]. Second, the Hamiltonian (24) is
obtained in an independent derivation in Sec. IV C and Appendix A
via explicit time-dependent Schrieffer-Wolff transformation.

are ωr independent and are important to obtain the correct
adiabatic limit (Sec. V A).

B. Case of different frequencies, ωm �= ωr

While in this paper we consider mostly the resonant case of
equal frequencies, we provide here the result for different fre-
quencies for the sake of further reference. The above effective
Hamiltonian (30) is then transformed to

H̃eff/h̄ =
∑

k

{Dk (ωr ) â†â + L̃k (ωr, ωm) (â + â†) cos(ωmt )

+ δω0
k (ωr ) + δω

bcl
k (ωm)} |k〉〈k|, (31)

where

L̃k (ωr, ωm) ≡
∑
l �=k

bcl[rkl (ωr ) − rlk (ωr ) + rkl (ωm) − rlk (ωm)].

(32)

C. Alternative derivation via Schrieffer-Wolff transformation

Alternatively (see Appendix A), Eq. (24) can be obtained
via a time-dependent Schrieffer-Wolff transformation (see,
e.g., Refs. [30,31]) such that

Heff = U †(t )H(t )U (t ) − ih̄
∂U †(t )

∂t
U (t )

with U (t ) = eS1(t ) and S1(t )† = −S1(t ):

S1(t ) =
∑

lk

{
− gkl

ωlk − ωr
|k〉〈l|(â† + b∗

cl(t ))

+ glk

ωlk − ωr
|l〉〈k| (â + bcl(t ))

}
. (33)

This particular transformation is a generalization of the time-
independent case [32].

D. Generalization for systems
with nonlinear voltage dependence

In the models of quantum circuits that include QD qubits,
the qubit charging energy is a linear function of the dots’
gate voltages in a charge basis where each charge state cor-
responds to certain QD’s occupation. (The charge basis states
are assumed voltage independent.) Thus, in a simplified model
the total qubit Hamiltonian is a sum of a charging energy
part (linear in gate voltages) and a (voltage-independent) tun-
neling part (see, e.g., Refs. [33–35]). In a more elaborated
QD models (see, e.g., Refs. [36,37]) the qubit Hamiltonian
could acquire a voltage nonlinearity. Since our derivations are
general, it is worth to mention other systems. For example,
a Cooper pair box or transmon would possess a quadratic
dependence on a gate voltage [38] (see Sec. VI B below).

One can now expand a voltage-dependent atom Hamilto-
nian [10,13,14,20] near a working point V 0

G
8:

Hqb
(
V 0

G + δVG
) = Hqb

(
V 0

G

)+ ∂Hqb

∂VG
δVG + 1

2

∂2Hqb

∂V 2
G

δV 2
G ,

(34)

8Similar expansion was provided in Ref. [40].
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where the gate voltage variation contains a quantum and clas-
sical part,

δVG = vq(â + â†) + Ṽm(t )

= vq(â + â† + b̄cle
−iωmt + b̄cle

iωmt ), (35)

vq ≡ αcVvac is the amplitude of quantum voltage fluctuations

imposed on the QD system, and b̄cl = Ṽm
2vq

, as in Eq. (11) [vq

is a small parameter and b̄cl ∼ 1 or 
 1].
The linear term in voltage variation leads to the usual static

longitudinal and transverse couplings. Indeed, the operator
∂Hqb

∂VG
has dimension of charge and in the absence of mod-

ulation the atom-resonator interaction can be written in the
atom’s eigenbasis {|ψi〉} as

∂Hqb

∂VG
δVG =

∑
i, j

〈ψi|∂Hqb

∂VG
|ψ j〉 |ψi〉〈ψ j | vq (â + â†)

=
∑

i

h̄gii |ψi〉〈ψi| (â + â†)

+
∑
i �= j

h̄gi j |ψi〉 〈ψ j | (â + â†), (36)

where h̄gi j ≡ vq〈ψi| ∂Hqb

∂VG
|ψ j〉 plays the role of a dipole matrix

element. In Eq. (36) the single sum is the static longitu-
dinal interaction of the N-level atom. Note that using the
Feynman-Hellman theorem, 〈ψi| ∂Hqb

∂VG
|ψi〉 = ∂Ei

∂VG
. Thus, it is

reduced to the form presented in Ref. [14], and the double
sum (with i �= j) is the usual transverse interaction. In RWA,
transverse interaction is reduced to the “energy-conserving”
Jaynes-Cummings form, while the static longitudinal interac-
tion is suppressed. Still, for two qubits, for example, the static
longitudinal interaction can lead to qubits’ entanglement (see,
e.g. [16,21]), which amounts to interesting observable effects
[16,18,39].

Consider now the quadratic term in the Taylor expansion in
Eq. (34), which has the interpretation of atom’s polarizability
(see, e.g., Ref. [29]) since δ(2)Hqb ∼ α̃ δV 2

G (also note that
∂2Hqb

∂V 2
G

has dimension of capacitance). Expanding in the atom’s
eigenbasis one obtains

1

2

∂2Hqb

∂V 2
G

δV 2
G =

∑
i, j

〈ψi|1

2

∂2Hqb

∂V 2
G

|ψ j〉 |ψi〉〈ψ j | δV 2
G

�
∑

i

〈ψi|∂
2Hqb

∂V 2
G

|ψi〉 |ψi〉〈ψi|

× v2
q

[
â†â + 1

2
+ b̄cl(âe−iωmt + â†eiωmt )

]
,

(37)

where the last equation follows in the RWA.
For the dispersive interaction ∼|ψi〉〈ψi| â†â, one combines

the polarizability contribution from Eq. (37) and the second-
order PT contribution from Eq. (30) [both are of order ∼v2

q]

to obtain

Hδω =
∑

i

|ψi〉〈ψi| â†â

{
v2

q〈ψi|∂
2Hqb

∂V 2
G

|ψi〉 + Di(ωr )

}

≡
∑

i

δωi |ψi〉〈ψi| â†â, (38)

where Di(ωr ) is given by the sum over dipole transitions of
Eq. (26) and

δωi ≡ v2
q〈ψi|∂

2Hqb

∂V 2
G

|ψi〉 + Di(ωr ) (39)

is the effective dispersive interaction for the ith level.
Combining the corresponding polarizability and second-

order PT contributions, for the dynamical longitudinal inter-
action ∼|ψi〉〈ψi|(â + â†) cos(ωmt ), one obtains

H‖ =
∑

i

|ψi〉〈ψi| (â + â†) cos(ωmt )

×
{
v2

q (2b̄cl ) 〈ψi|∂
2Hqb

∂V 2
G

|ψi〉 + L̃i(ωr, ωm)

}

≡
∑

i

g̃‖,i(ωr, ωm) |ψi〉〈ψi| (â + â†) cos(ωmt ), (40)

where L̃i(ωr, ωm) = b̄cl [Di(ωr ) + Di(ωm)] is given by
Eq. (32), and

g̃‖,i(ωr, ωm) = v2
q (2b̄cl ) 〈ψi|∂

2Hqb

∂V 2
G

|ψi〉 + L̃i(ωr, ωm) (41)

is the effective dynamical longitudinal coupling of the ith level
in the general case of ωm �= ωr .

We will use now a quantum-mechanical sum rule [40]
relating the polarizability matrix element and the energy cur-
vature (quantum capacitance) of the level via the dipole matrix
elements (for completeness, it is rederived in Appendix B):

〈ψi|∂
2Hqb

∂V 2
G

|ψi〉 = ∂2Ei

∂V 2
G

+ 2
∑
j �=i

|〈ψi| ∂Hqb

∂VG
|ψ j〉|2

Ej − Ei
. (42)

The “dispersivelike” Hamiltonian Hδω [Eqs. (38) and (39)]
then obtains the dispersive couplings

δωi =
⎛
⎝v2

q

∂2Ei

∂V 2
G

+ 2
∑
j �=i

|gi j |2
ω ji

⎞
⎠+ Di(ωr )

= v2
q

∂2Ei

∂V 2
G

+
∑
j �=i

|gi j |2
(

2

ω ji
− 1

ω ji + ωr
− 1

ω ji − ωr

)

(43)

(compare with Ref. [40]).
In the resonant case ωm = ωr , the dynamical longitudi-

nal Hamiltonian H‖ [Eq. (40)] obtains the couplings g̃‖,i,
expressed in a similar manner as a function of ωr :

g̃‖,i(ωr ) = Ṽm

vq
δωi(ωr ), (44)

so that their ratio is independent of ωr . Since typically the
voltage modulation can be made much larger than the am-
plitude of vacuum fluctuations Ṽm 
 vq ≡ αcVvac, one gets
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the corresponding enhancement of the dynamical longitudinal
coupling vs the dispersive coupling:

g̃‖,i 
 δωi. (45)

The dispersive Hamiltonian Hδω [Eq. (38)] and the dynamical
longitudinal Hamiltonian H‖ [Eq. (40)], with their partial in-
teraction strengths δωi, g̃‖,i of Eqs. (43) and (41) [or Eq. (44)],
respectively, are the main results of this paper.

V. LIMITING REGIMES: ADIABATIC VS DISPERSIVE

A. Adiabatic regime

In the adiabatic limit when ωr, ωm � |ωkl | ≡ |ωk − ωl | for
any k, l , and ωr , ωm can be neglected in Eqs. (43) and (41).
Then, for any polarizability, the corresponding strengths are
expressed in terms of the energy curvature of the levels as a
result of the low-energy QM sum rule (42):

δωi(ωr = 0) = v2
q

∂2Ei

∂V 2
G

, (46)

g̃‖,i(ωr = 0, ωm = 0) = vqṼm
∂2Ei

∂V 2
G

. (47)

Thus, we recover the N-level adiabatic expressions (13) and
(14), derived via Taylor expansion of small and slow voltage
variations as in Refs. [13,14].

B. QD spin qubits: Zero polarizability

In the case of QD spin qubits the qubit Hamiltonian HQDs
qb

is linear in the applied QDs’ gate voltages VG,i (in a simple
model when interdot tunnelings ti are not affected by VG,i).
Then, the polarizability matrix element is zero in Eqs. (42)
and (43),

v2
q 〈ψi|∂

2Hqb

∂V 2
G

|ψi〉 ≡ v2
q

∂2Ei

∂V 2
G

+ 2
∑
j �=i

|gi j |2
ω ji

= 0, (48)

and one ends up with a simplified expression (26) for the
effective dispersive coupling δωi:

δωi = −
∑
j �=i

|gi j |2
(

1

ω ji + ωr
+ 1

ω ji − ωr

)
≡ Di(ωr ),

(49)

which coincides with the result of Ref. [32]. As per Eq. (44),
the dynamical longitudinal couplings in the resonant case are
simplified to

g̃‖,i = Li(ωr ) ≡ Ṽm

αcVvac
Di(ωr ). (50)

C. Dispersive regime for QD spin qubits

By definition, in the dispersive regime the resonator fre-
quency is of the order of a particular qudit’s energy difference
ωr ≈ |ωl − ωl ′ |, while the corresponding detuning is large
|ωl − ωl ′ − ωr | 
 gll ′ for any l, l ′. Then, the effective Hamil-
tonian Hδω recovers the well-known dispersive interaction.

For example, in a two-level approximation, and neglecting

a small term ∼ g2
12

ωq+ωr
� g2

12
ωq−ωr

, one obtains from Eq. (49)

Hdisp/h̄ = g2
12

ωq − ωr
σz â†â ≡ δωdisp σz â†â, (51)

where ωq ≡ ω2 − ω1 and δωdisp ≡ χ = g2
12

ωq−ωr
. It should be

noted that in the adiabatic regime, which is formally similar
to the dispersive regime (with � = ωq), one should keep both
terms in Eq. (49) which are exactly equal to each other. Then,

Hδω/h̄ ≈ 2 g2
12

ωq
σz â†â, i.e., the dispersive coupling in the adia-

batic regime is twice the standard dispersive coupling of the
dispersive regime.

By considering the dynamical longitudinal coupling in the
dispersive limit, one obtains in a two-level approximation

H‖, disp/h̄ = eṼm

2h̄g0

g2
12

ωq − ωr
σz (â† + â) cos(ωmt ). (52)

The enhancement of both couplings going from the adiabatic
regime to the dispersive regime can be estimated as (assuming
|ωq − ωr | ≈ 10g12)

g̃disp
‖

g̃adiabat
‖

= δωdisp

δωadiabat
≈ ωq

20g12
≈ 12.5–50, (53)

for ωq = 10 GHz and g12 ≈ 10–40 MHz.

VI. ILLUSTRATIVE EXAMPLES OF QUBITS

A. DQD 1e charge qubit

For a charge qubit one considers a double quantum dot
(DQD) with a single electron. The Hamiltonian in the charge
basis of left (dot 1) and right (dot 2) localized states is (cf.
Fig. 1)

Hq = ε

2
σ̃z + tcσ̃x, (54)

where ε = e(V1 − V2) is the double-dot energy detuning pa-
rameter, V1, V2 are the gate voltages applied to the dots, tc
is the tunneling, and σ̃z, σ̃x are the Pauli matrices in this
basis. The qubit-resonator dipole coupling ( �d · �E ) arises via
the resonator-quantized voltage V̂r [see Eq. (9)].

The resonator is coupled to dot 2 so that the quantum volt-
age change δV̂2 = αcV̂r at the dot 2 is given by the lever arm
αc � Cc

Cc+Cd
, where Cc is the dot 2 to resonator capacitance,

and Cd is the dot to ground capacitance. The corresponding
energy change is given by

δHq = ∂Hq

∂V2
δV̂2 = −1

2
(e σ̃z )(αcV̂r ), (55)

and results in a DQD-resonator dipole interaction

δHq = h̄g0σ̃z(â + â†). (56)

By diagonalizing the qubit Hamiltonian Hq at a fixed
detuning ε, one obtains the total DQD plus resonator
Hamiltonian:

Htot/h̄ = ωq

2
σz + ωr â†â + (gstatic

‖ σz + g⊥σx )(â + â†), (57)
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where σz, σx are the Pauli matrices in the qubit eigenbasis |+〉,
|−〉, with energies Eq0,± = ±Eq

2 with Eq = h̄ωq = √
ε2 + 4t2

c .
In Eq. (57) the gstatic

‖ and g⊥ are the static longitudinal and
transverse coupling, respectively:

gstatic
‖ = g0

ε√
ε2 + 4t2

c

,

g⊥ = g0
2tc√

ε2 + 4t2
c

, (58)

that correspond to diagonal (∼gstatic
‖ ) and transition (∼g⊥)

dipole matrix elements of Eq. (36). In a rotating-wave ap-
proximation the former is suppressed while the latter obtains
the energy-conserving Jaynes-Cummings form ∝ g⊥(âσ+ +
â†σ−).

In the adiabatic limit one can obtain the effective curvature
(quantum capacitance) couplings from the “soft-field” formu-
las (13) and (14) of Sec. III, using the energy level dependence
of Eq(ε). One then obtains the dispersivelike and dynamical
longitudinal (curvature) Hamiltonians of Eqs. (1) and (2), with
strengths

δω = 2h̄g2
0

∂2Eq

∂ε2
= h̄g2

0
8t2

c[
ε2 + 4t2

c

]3/2 (59)

and

g̃‖ = g0
∂2Eq

∂ε2
e Ṽm = g0

4t2
c[

ε2 + 4t2
c

]3/2 eṼm (60)

[same result can be obtained by modulating Eq. (57), compare
with Ref. [17]]. The above dynamical longitudinal coupling g̃‖
is on or off together with the dot’s gate voltage modulation.

By using the perturbative method of Sec. IV A one can
obtain the more general effective couplings that depend on
the resonator frequency. By taking into account the zero po-
larizability condition for QD Hamiltonians (48), one obtains
for a charge qubit system (in a two-level approximation) the
effective couplings

δωeff = g2
⊥

(
1

ωq − ωr
+ 1

ωq + ωr

)
, (61)

while g̃‖,eff = Ṽm
vq

δωeff . In Eq. (61), in the limit ωr � ωq,

one obtains δωeff ≈ 2 g2
⊥

ωq
, which coincides with the soft-field

expression (59), as has been shown in general in Sec. V.
We note that, recently, to reveal the curvature couplings in

adiabatic limit, an experiment was performed on a hybrid spin
qubit [11] (approximated as a two-level charge qubit), show-
ing a clear signature of the adiabatic longitudinal interactions
(59) and (60).

B. Transmon qubit

The transmon is the capacitively shunted (by CS , see Fig. 3)
Josephson junction with energy EJ . In the charge basis (of

FIG. 3. A schematic of transmon, capacitively coupled via Cg to a
voltage source Vg (or V̂r) (compare with Ref. [41]). CS is the shunting
capacitance of the Josephson junction with JJ energy EJ .

states with definite number (N) of Cooper pairs (2e) on the
transmon island one has the Hamiltonian

Htran = 4EC

∑
N

(N − Ng)2|N〉〈N |

− EJ

2
(|N〉〈N + 1| + |N + 1〉〈N |), (62)

where Ng = CgVg

2e is the induced charge on the island by a ca-

pacitively coupled voltage source Vg, EC � (2e)2

2CS
is the island

charging energy scale (CS 
 CJ ,Cg), and EJ plays the role of
charge tunneling matrix element.

The derivatives of Htran are defined with respect to the
voltage at the island, Ṽg = Cg

Cg+CS
Vg ≡ αg Vg, and the matrix

element of the first derivative defines the corresponding trans-
verse coupling gi j [see Eq. (36)]:

h̄gi j = αgVvac 〈ψi|∂Htran

∂Ṽg
|ψ j〉 = −2αg(eVvac) 〈ψi|N̂ |ψ j〉

(63)

(see Ref. [41]). The polarizability contribution to the ith level
dispersive shift in Eq. (39) is then obtained

δωP
i = v2

q 〈ψi|∂
2Htran

∂Ṽ 2
g

|ψi〉

= α2
gV 2

vac(CS + Cg)

= C2
g

CS + Cg
V 2

vac, (64)

that is independent of the energy level. Since in the transmon
limit EJ 
 EC , the curvature of the levels is zero, ∂2Ei

∂Ṽ 2
g

�
0, then the polarizability contribution is entirely due to the
sum of transition dipole matrix elements contributions in
Eq. (42). It is convenient to denote these matrix elements
as mi j ≡ 〈ψi| ∂Htran

∂Ṽg
|ψ j〉. By using the transmon energy levels

Ei � −EJ + √
8ECEJ − EC

12 (6i2 + 6i + 3), and that for given
“i” only the nearest-neighbor dipole matrix elements sur-
vive in the transmon limit [41] |〈i + 1|N̂ |i〉| �

√
i+1

2 ( EJ
8EC

)1/4,
one can show that for any energy level i the right-hand
side of Eq. (42) provides the same expression as the di-
rect second-order derivative 〈ψi| ∂2Htran

∂Ṽ 2
g

|ψi〉 [cf. Eq. (64)], as
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expected:

∂2Ei

∂Ṽ 2
g

+ 2
∑
j �=i

|mi j |2
Ej − Ei

� · · · + 2
|mi−1,i|2

Ei−1 − Ei
+ 2

|mi+1,i|2
Ei+1 − Ei

+ · · ·

� 4e2

(
EJ

8EC

)1/2 1√
8ECEJ

= CS + Cg, (65)

where the second and third rows are written in the transmon
limit.

While in the adiabatic limit ωr � |ωll ′ |, all couplings are
zero (in the transmon limit the energy levels are flat), δωi =
0, g̃‖ = 0, in the dispersive regime one recovers the known
expressions for the dispersive coupling (restricting to three
levels; see, e.g., Ref. [41]):

δω
disp
0 ≈ − |g01|2

ω10 − ωr
≡ −χ01, (66)

δω
disp
1 ≈ |g01|2

ω10 − ωr
− |g12|2

ω21 − ωr
≡ χ01 − χ12, (67)

χ
disp
eff ≈ δω

disp
1 − δω

disp
0

2
= χ10 − 1

2
χ12, (68)

Hdisp = χ
disp
eff σza

†a. (69)

For the dynamical longitudinal coupling in the dispersive
regime, one then obtains

g̃disp
‖,eff = Ṽm

αgVvac

(
χ10 − 1

2
χ12

)
, (70)

H‖,disp = g̃disp
‖,eff σz (a + a†) cos(ωrt ). (71)

We note that the first term in Eq. (70) coincides with a sim-
ilar longitudinal coupling derived in a different approach in
Ref. [42].

When one deviates from the dispersive regime (by consid-
ering smaller ωr) one obtains the full expression for χeff (in the
transmon limit), which interpolates between χ

disp
eff of Eq. (68)

and zero:

χeff � δω1 − δω0

2

= −|g01|2
(

2

ω10
− 1

ω10 + ωr
− 1

ω10 − ωr

)

+ 1

2
|g12|2

(
2

ω21
− 1

ω21 + ωr
− 1

ω21 − ωr

)
. (72)

Out of the transmon limit one has to take into account the
whole sum over transition dipole matrix elements in Eqs. (43)
and (44) [see also Eq. (65)], which we did not show here
explicitly. The expression for the dynamical longitudinal
coupling has the same functional dependence since the pro-
portionality of the two couplings g̃‖,eff = Ṽm

αgVvac
χeff (in the

resonance case).

One notes that for large detunings, when �10 = ω10 − ωr

becomes comparable to the transmon splitting, the relative

difference χeff−χ
disp
eff

χ
disp
eff

can reach � 100%.

C. DQD singlet-triplet qubit

Consider now a DQD singlet-triplet (S-T) system in which
the qubit states are given mainly by the charge configura-
tions (1,1) with some admixture of the higher charge states
[14] |S(0, 2)〉 and |S(2, 0)〉. Thus, the qubit ground state and
excited state are approximated as |−〉 ≈ |S(1, 1)〉 and |+〉 ≈
|T0(1, 1)〉, respectively, both having zero spin projection Sz =
0. Due to tunneling (with amplitude tc) between singlet-charge
configurations, the ground state |−〉 obtains curvature as a
function of the DQD energy detuning ε = e(V1 − V2) (com-
pare with the charge qubit, Sec. VI A). The excited state |+〉
remains flat, essentially due to Pauli spin blockade.

In what follows, we will consider detuning regimes when
one of the charge states [e.g., |S(2, 0)〉] is highly gapped by
the dot’s charging energy (Egap ∼ Ucharge ∼ hundreds GHz),
and can be neglected. In the remaining three-level system, the
upper charge state |S(0, 2)〉 is gapped from the qubit ground
state |−〉 by several tens of GHz, reaching a minimum of
2tc at the charge degeneracy point (c.d.p.). By measuring the
detuning ε from the c.d.p. the three-level Hamiltonian in the
charge basis {T0(1, 1), S(1, 1), S(0, 2)} reads as

Hc.d.p.

DQD =
⎛
⎝0 0 0

0 0 tc
0 tc −ε

⎞
⎠. (73)

For the eigenergies one gets

E−(ε) = −ε

2
− 1

2

√
ε2 + 4t2

c , (74)

E+(ε) = 0, (75)

ES(0,2)(ε) = −ε

2
+ 1

2

√
ε2 + 4t2

c . (76)

By calculating the curvatures of the levels one obtains from
Eqs. (13) and (14) the effective dispersivelike and dynamical
longitudinal interactions (projected on the qubit space):

δω = 2h̄g2
0
∂2Eq

∂ε2
, g̃‖ = eṼm

2h̄g0
δω, (77)

∂2Eq

∂ε2
= 1

2

4t2
c[

ε2 + 4t2
c

]3/2 . (78)

The qubit energy curvature is 1
2 of that for a charge qubit since

the contribution from the (“flat”) state |T0(1, 1)〉 is zero.
To obtain the effective interactions to the resonator in a

nonadiabatic regime one needs the dipole interactions of the
levels. Similar to the charge qubit case above, one writes
the dipole interaction using the linear response approach
[14]. In the system’s charge basis the dipole interaction is
diagonal:

Hc.d.p.

DQD, dipole � 2h̄g0 (a + a†)

⎛
⎝1 0 0

0 1 0
0 0 2

⎞
⎠. (79)
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In the eigenbasis one then obtains a diagonal dipole part
(corresponding to a static longitudinal interaction)

Hstat
DQD,‖ � 2h̄g0 (a + a†)

⎛
⎜⎝

1 0 0
0 3

2 + ε

2
√

ε2+4t2 0

0 0 3
2 − ε

2
√

ε2+4t2

⎞
⎟⎠,

(80)

and transverse dipole part

HDQD,⊥ � 2h̄g0 (a + a†)

⎛
⎜⎝0 0 0

0 0 − tc√
ε2+4t2

0 − tc√
ε2+4t2 0

⎞
⎟⎠,

(81)

according to the general structure of Eq. (36). We would
stress the following points. First, while in a RWA the (static)
longitudinal dipole part is suppressed, a time modulation of
the detuning survives in RWA and will lead exactly to the
expression for a qudit dynamical longitudinal coupling Hamil-
tonian of Eq. (14) (for a specially designed superconducting
qubit such interaction was derived in Ref. [17]).

More important for our further study is the transverse
dipole part (here and below we use the enumeration of the
states: |0〉 ≡ |−〉 ≈ |S(1, 1)〉, |1〉 ≡ |+〉 ≈ |T0(1, 1)〉, |2〉 ≡
|S(0, 2)〉): A nonzero transition dipole matrix element exists
only between the states |−〉 and |S(0, 2)〉,

g02 = −2g0
tc√

ε2 + 4t2
, (82)

while the other two dipole couplings are zero, g21 = 0, g01 =
0. This selection rule is essentially due to Pauli spin blockade.
With these dipole matrix elements it is straightforward to
show that the effective dispersive and longitudinal couplings
of the S-T qubit are

δωeff = |g02|2
2

(
1

ω20 + ωr
+ 1

ω20 − ωr

)
, (83)

g̃‖,eff = eṼm

2h̄g0
δωeff , (84)

where we take into account that for QDs’ systems the po-
larizability contribution (42) is zero (see Sec. VI A). For the
adiabatic limit we take ωr � ω20 since only the states |0〉, |2〉
are dipole coupled. Then,

δωadiabat
eff � |g02|2

ω20
= 2h̄g2

0
∂2Eq

∂ε2
, (85)

where the last equation reproduces the general low-energy
sum rule [Eqs. (46) and (47)]. We note that δωeff is 1

2 of
the expression for a charge qubit [Eq. (61)] since only the
curvature of the ground state contributes.

While the adiabatic limit implies ωr � ω20, the resonator
frequency can be comparable or even larger than the qubit
frequency ω10. So, the dispersive regime in Eq. (83) would
correspond to ωr ≈ ω20 and |ω20 − ωr | 
 g02.

From these considerations, and from the general expres-
sions for the quantum measurement rate �meas(g̃‖,eff , δωeff ),
considered in Ref. [14], it follows that the general strategy to
perform a S-T qubit strong quantum measurement is to be in

the dispersive regime with respect to the third level |S(0, 2)〉,
and to use the enhancement of the coupling strength via the
dynamical longitudinal coupling.

D. TQD exchange-only qubit

Similar analysis can be performed for the TQD exchange-
only qubit. The system consists of three dots filled with three
electrons, mostly in the charge configuration (1,1,1), that are
gated by voltages V1, V2, V3, respectively; the dots are tun-
nel coupled, with tunneling amplitudes t12 ≡ tl and t23 ≡ tr .
(For an introduction to the system, energy levels, study of
the relevant experimental parameters and couplings, see, e.g.
Refs. [14,21].) The relevant gate voltage (energy) detunings
εv ≡ e(V3 − V1)/2 and εm ≡ e[(V3 + V1)/2 − V2] ≡ eVm de-
fine the qubit energy levels which obtain energy curvature due
to the highly gapped states (see Appendix C). The SOP for this
system is a double sweet spot [14,43], where the gate voltage
fluctuations vanish to first order: ∂Eq

∂εv
= ∂Eq

∂εm
= 0.

At and around the SOP the sum over dipole matrix el-
ements for the dispersivelike and dynamical longitudinal
couplings δω and g̃‖ of Eqs. (39) and (41) are dominated by
the dipole transitions from the qubit states |−〉, |+〉 [of charge
configuration (1,1,1)], to the four highly gapped (Egap ≈
Ucharge) charge states, all of spin Sz = 1

2 , i.e., |3〉 ≡ (2, 0, 1) ≡
|S(21, 02) ↑3〉, |4〉 ≡ (1, 0, 2) ≡ | ↑1 S(02, 23)〉, and similar
for |5〉 ≡ (1, 2, 0), |6〉 ≡ (1, 0, 2). These dipole couplings are
denoted as g−,l and g+,l , l = 3, 4, 5, 6, and calculated in Ap-
pendix C, using a linear response approach [14]. At the SOP
(or out of it) the qubit dipole element g−,+ is of zero (or of
small nonzero) value [14].

The system is in the adiabatic limit with respect to
the higher gapped levels (as ωr � 10 GHz � Ucharge �
200 GHz), while ωr could be of the order of the qubit splitting
ω+,−. In a two-level approximation, the effective dispersive
coupling obtains qubit’s and higher level contributions:

δωeff = δωqb + δωhigher levels, (86)

δωqb = |g−,+|2
(

1

ω+,− + ωr
+ 1

ω+,− − ωr

)
, (87)

δωhigher levels =
6∑

l=3

( |g−,l |2
ωl,−

− |g+,l |2
ωl,+

)
. (88)

Using the dipole matrix elements g−,l and g+,l , one can re-
cover the curvature (quantum capacitance) couplings at SOP,
that is, the dynamical longitudinal and dispersivelike cou-

plings [14] g̃adiabat
‖,eff , δωadiabat

eff ∝ ∂2Eq

∂V 2
m

in the adiabatic limit.
Out of SOP, but still in the deep (1,1,1) region, the disper-

sive regime would correspond to ωr ∼ ω+,−. In this case the

qubit level dispersive coupling δωqb � χ = |g−,+|2
ω+,−−ωr

can be-
come comparable to the dispersivelike coupling δωhigher levels

induced by the higher levels [14].

E. Implications for quantum measurements

Below we consider implications for reaching quantum
limited regime of continuous quantum measurements on the
promising example of a spin-charge qubit [7,12], i.e., a charge
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qubit with magnetic field gradient between the two dots [22].
While the spin-charge qubit is essentially a � system [44]
(with levels 0, 1, 2), the relevant dynamical longitudinal
coupling g̃‖(0, 1, 2) can be made large with respect to the
dispersive coupling δω(0, 1, 2), by the possibly large ratio
(44) since g̃‖(ωr )

δω(ωr ) = Ṽm
αcVvac

� 10–100. For (continuous) quan-
tum measurements in general, both curvature Hamiltonians
Hδω and H‖ contribute to the measurement rate [13,14]:
�meas = �δω + �‖. However, in what follows, in the estima-
tions we will focus on the dynamical longitudinal coupling
only since it can dominate the measurement rate.

Indeed, in the so-called “bad-cavity limit” (see, e.g.
Refs. [45,46]) one requires that the resonator damping rate
is much faster κ 
 �meas, so that one is measuring the qubit
alone (and not the combined system of qubit plus resonator)
(see, e.g., Ref. [47]). Thus, one has the conditions κ2 

2 g̃2

‖, δω2, and therefore

�‖
�δω

≈ g̃2
‖

4δω2

κ2/4∣∣ε2
d − g̃2

‖/4
∣∣ 
 1, (89)

where εd is the resonator driving strength. With this, one gets

approximately �meas ≈ g̃2
‖

κ/2 , so the measurement rate scales
quadratically with the dynamical longitudinal coupling (see
also Ref. [17]).

By considering the charge-qubit example above
(Sec. VI A) (this is also relevant for the DQD S-T qubit
and for the spin-charge qubit [7,12]), the scaling with the
resonator frequency ωr is

g̃disp
‖

g̃adiabat
‖

= ωq

2|ωq − ωr | . (90)

The enhancement of the measurement rate then scales
quadratically with detuning

�
disp
meas

�adiabat
meas

= ω2
q

4(ωq − ωr )2
≈ (1.6–2.5) 102, (91)

where the estimated numbers are for the same conditions as in
Eq. (53).

It is now instructive to compare the measurement rate to
the Purcell relaxation rate. For the Purcell relaxation of a
qubit into the resonator (for κ �

√
(ωq − ωr )2 + 4g2

⊥, while

κ � g⊥) one has [48] �P � κg2
⊥

(ωq−ωr )2 , i.e., the same scaling

∼1/�2 as for the measurement rate. Therefore, for the pur-
pose of quantum measurements there is no profit of going
to the adiabatic regime as to the Purcell rate suppression.
Fortunately, their ratio can be suppressed

�P

�meas
= κ2

2g2
⊥

(
αcVvac

Ṽm

)2

≈ κ2

2g2
⊥

× (10−2–10−4) (92)

since the external voltage modulation can be made much
larger than the amplitude of vacuum voltage fluctuations.

It is worth now to compare to the charge dephasing (due
to voltage fluctuations only). Applying a theoretical model for
1/ f charge noise due to gate voltage fluctuations at the dots
or tunnel barrier [21] (see also Refs. [49,50]), one gets for a

charge qubit at the charge degeneracy point (ε = 0) the rate

�̃φ|ε=0 ≈ 1

h̄

[
3 log

(
ωUV

ωIF

)
Stc

]1/2

� 1

h̄
0.6 µeV, (93)

where the ratio of ultraviolet to infrared cutoff parame-
ters for the 1/ f spectrum is ωUV

ωIF
≈ 106, and Stc � 10−2 Sε,

Sε � (1 µeV)2, are the spectral density constants of the 1/ f
noise associated with the dot gates (Sε) and tunneling bar-
rier (Stc ), extracted from the experiment (see Ref. [21]). For
the above parameters one estimates dephasing time 1/�̃φ �
1.1 ns which is comparable with the experimentally measured
value [7].

Out of the charge degeneracy point (ε 
 2tc) the rate is
dominated by the dot gates fluctuations:

�̃φ |ε
2tc≈
1

h̄

[
1

2
log

(
ωUV

ωIF

)
Sε

]1/2

� 1

h̄
2.8 µeV, (94)

which corresponds to even (≈5 times) shorter dephasing time.
This situation considerably improves for a spin-charge

qubit [7,12,22]. For the parameters of the experiment, the
measured dephasing rate of the spin-charge qubit is γs �
0.4 MHz at ε = 0 (c.d.p. at 2tc � 11 GHz), which corre-
sponds to a 400 times longer dephasing time Ts = 0.4 µs. The
physical reason for this is that the qubit levels have opposite
spin [7], |0〉 ≡ |−,↓〉 and |1〉 ≡ |−,↑〉, while an emission of
acoustic phonons cannot flip the spin (see, e.g., Ref. [51]).

For the measured parameters of the experiment of Ref. [7]
they have κ � 1.4 MHz, ωr � 5.85 GHz, spin-charge dipole
coupling gs � 1.4 MHz, charge noise dephasing rate γs �
0.4 MHz, and relaxation rate γ1(ε = 0) = 0.05 MHz. One
can calculate the measurement rate due to dispersive coupling

δω � χs ≡ g2
s

�
and no modulation [14]:

�meas(g̃‖ = 0) = (2δω)2κ/2

[δω2 + κ2/4]2 ε2
d ≈ 0.1 MHz ≈ 2γ1, (95)

i.e., this measurement rate is not fast enough to reach a
quantum-limited measurement regime, as it is comparable
both to the charge dephasing rate γs and to the relaxation rate
γ1.

One can show, however, that with a qubit (gate) modulation
with even moderate coupling enhancement ratio of g̃‖

δω
≈ 15

(which is within reach, see, e.g., Ref. [11]) one can have a
measurement rate

�meas(g̃‖ �= 0) ≈ g̃2
‖

κ/2
≈ 50 �meas(g̃‖ = 0), (96)

which is considerably stronger. Thus, with the use of the dy-
namical longitudinal coupling g̃disp

‖ (ωr ) in a dispersive regime
[Eq. (52)], one can perform a close to quantum limited con-
tinuous measurement of a spin-charge qubit.

F. Implications for geometric quantum gates

While there are other means of parametric driving [52]
aiming to obtain entanglement gate between remote spin
qubits, here we perform an estimation based on the geo-
metric phase gates proposed in Refs. [21,53]. As shown in
Ref. [21], in order to obtain high-gate fidelity one needs to
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suppress dispersivelike coupling δω with respect to the dy-
namical longitudinal one g̃‖. For example, to reach infidelity
of 10−2–10−3 in the presence of δω one needs the ratio small,
δω
g̃‖

= 0.011–0.035, which is within reach [see Eq. (5)].
Assuming this ratio is suppressed, the main source of in-

fidelity in the QD spin system is that due to the charge noise
(see Ref. [21]). For a two-qubit controlled π -phase gate the
infidelity reads as [21]

δε
2Qb
φ,1/ f = 8

10
(�̃φ tπ )2, (97)

where the π -phase gate time tπ = π
√

2
g̃‖

(for equal couplings,

g̃(1)

‖ = g̃(2)

‖ ) is inversely proportional to the dynamical longitudi-
nal coupling g̃‖. Assuming the experimental charge dephasing
rate for a spin-charge qubit [7] [�̃exp

φ ≡ γs � 0.4 MHz, such
that (�̃exp

φ )−1 � 400 ns], to get infidelity of the level of
10−1–10−3 one needs g̃‖/2π ≈ 5–50 MHz, which is reachable
in the current experiments [7,12] due to an enhancement at the
charge degeneracy point [Eq. (4)]. Indeed, in the experiment
[7] the dispersive coupling can reach χs � 0.14–0.55 MHz
and an enhancement factor, Eq. (5), can make the dynami-
cal longitudinal coupling in a dispersive regime as large as
g̃‖ ≈ 2–66 MHz.

The entangling rate enhancement of a geometric phase
gate vs usual dispersive gate [12,21] can be estimated as

≈ �

√
g̃disp,(1)

‖ g̃disp,(2)

‖ /(g(1)

⊥g(2)

⊥ ) � g̃disp
‖ /δωdisp = Ṽm/αcVvac �

10–100, as of Eqs. (5) and (44). In the current remote spin
entangling experiment of Dijkema et al. [12], using similar
spin-charge qubits, they provided T ∗

2 ≈ 40–80 ns � T1, with
an entangling gate time of �42 ns which is comparable to T ∗

2 .
Thus, by Eq. (97), enhancing the entangling rate by 10 times
will allow to reach an infidelity of ∼10−2.

VII. CONCLUSION

In this paper we have derived effective interaction Hamil-
tonians, generically called “dispersivelike” and dynamical
longitudinal one, for an N-level atom coupled to a super-
conducting resonator. These interaction Hamiltonians replace

the “original” electric dipole interaction −−̂→
d · δ

−→
E λ(t ) in

a situation when the frequency of the EM field
−→
E λ(t ) is

relatively small to create excitations in the N-level system.
These Hamiltonians are diagonal in the system eigenlevels.
The dispersivelike Hamiltonian (time independent) is of
“energy-energy” type, Hδω ∼ δωi |i〉〈i|a†a. The dynamical
longitudinal (time-dependent) Hamiltonian is of “energy-
field” type, H‖ ∼ g̃‖,i |i〉〈i|(a + a†) cos(ωmt ), and appears due
to periodic voltage modulation of a qubit gate at ωm ≈ ωr .

It is worth mentioning some analogy between the inter-
actions discussed in this paper (in case of a transmon) and
the cross-resonance gate between two transmons (see, e.g.,
Refs. [54,55]). Since the second transmon can be approxi-
mated as an oscillator (neglecting the small anharmonicity, cf.
Ref. [42]), one can make the replacements σ

target
z → â†â and

σ
target
x → (â + â†)/2, such that the dispersivelike interaction

resembles that of a residual ZZ two-qubit term ∼σz σ
target
z ,

and the dynamical longitudinal one resembles that of a

cross-resonance qubit-qubit interaction ∼σz σ
target
x cos(ωmt ),

driven at the frequency of the “target” qubit.
The derivation of these effective Hamiltonians is presented

in two ways. First, in a more heuristic way, we treat the quan-
tized EM field of the resonator as a time-dependent classical
field (with frequency ωr). Thus, both classical and quantum
field perturbations are treated in a kind of time-dependent
perturbation theory in second order, to derive the effective
interactions. Second, in a more formal way, we consider a
time-dependent Schrieffer-Wolff transformation based on the
laboratory frame (time-independent) photon operators â, â† to
reproduce the same results.

The effective interactions reproduce previous results in
limiting cases. For example, in the absence of qubit gate
modulation (and dropping off a polarizability contribution),
the dispersivelike Hamiltonian is that of Zhu et al . [32]. With
qubit gate modulation, we reproduce the dynamical longitudi-
nal interaction of a transmon [42] in the dispersive regime, for
example.

As a side note, we mention that our derivations can be
equally applied to a qubit that is coupled inductively to a SC
resonator, e.g., in a flux qubit [56,57], a charge-flux qubit [58],
or Andreev qubit [59]. In this case one should consider the
system’s energy curvatures vs magnetic flux, which consti-
tute the quantum (Josephson) reverse inductances L−1

k,J ∝ ∂2Ek
∂�2

(compare with, e.g., [58,59]), and consider the quantized flux
�̂r of the resonator instead of the quantized voltage V̂r .

We have considered in this paper both the dispersive and
adiabatic (ultradispersive) regimes. In the latter, the modula-
tion frequencies are much smaller then any qubit transition
frequencies ωkl . For both effective interactions we have shown
that in this limit (ωr, ωm � ωkl ) the effective Hamiltonians
are expressed through the energy curvatures of the levels ∂2Ei

∂V 2
G

,
which is a nontrivial consequence of a (low-energy) quantum-
mechanical sum rule [40]. Thus, we exactly reproduce in a
new way the effective Hamiltonians Hδω, H‖ in the adiabatic
limit, that was previously derived via Taylor expansion of the
energy levels with respect to a voltage parameter [13,14].

As an application of the general theory, we consider several
examples of quantum dot qubits including a charge qubit, a
DQD singlet-triplet qubit, and a transmon. The charge-qubit
example is relevant to a recent experiment [11] demonstrating
detailed observation of the curvature couplings δω, g̃‖ in the
adiabatic regime. The DQD S-T qubit example will be rele-
vant to a recent experiment [10] on parametric longitudinal
coupling or its extension. It is also worth mentioning that
the proposed strategy in Sec. VI C to measure the S-T qubit
via the strongly dipole coupled third level |S(0, 2)〉 using the
dynamical longitudinal coupling can be used for enhancement
of the measurement strength of a capacitively coupled fluxo-
nium qubit, where the SC resonator is coupled dispersively
to a high-gapped plasmon level [32,60,61] possessing much
higher dipole moment.

Finally, we have also performed crude estimations rel-
evant to the spin-charge qubit of the Petta’s group [7,22]
and Vandersypen’s group [12], showing, in particular, that
using the dynamical longitudinal coupling (via gate modu-
lation) can significantly increase the quantum measurement
rate (see, e.g., Refs. [13,14]) so that the system can approach
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a quantum-limited measurement regime, a prerequisite for in-
teresting quantum measurement experiments, e.g., performing
continuous quantum feedback control [62,63], entanglement-
by-continuous joint measurement [47,64,65], and others,
however, with spin qubits.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN (24) VIA TIME-DEPENDENT
SCHRIEFFER-WOLFF TRANSFORMATION

An N-level atom and the EM field mode of frequency ωr

are represented by the Hamiltonian H0, and interact via the
(time-dependent) interaction V̂ (t ), H(t ) = H0 + V̂ (t ) (below
h̄ = 1). In the case of a dipole interaction with external gate
voltage modulation one gets V̂ (t ) ≡ Hdipole [Eq. (10)]. In
what follows, we consider only the nondiagonal contributions
V̂nd(t ) as the diagonal contributions are suppressed in the
rotating-wave approximation (RWA):

H0 =
∑

k

ωk|k〉〈k| + ωr â†â, (A1)

V̂nd(t ) =
∑

k,l,k �=l

gkl |k〉〈l| (â† + b∗(t ) + â + b(t )) (A2)

(note that gkl = g∗
lk). One can obtain an effective Hamil-

tonian Heff (t ), diagonal in the atom index, by applying a
time-dependent unitary transformation U1(t ) = exp[−S1(t )]
(time-dependent Schrieffer-Wolff transformation [30,31]). It
can be shown that to eliminate the off-diagonal terms in the
atom index in the next order in perturbation theory (PT) the
operator S1(t ) needs to satisfy the equation [31]

i
∂S1(t )

∂t
+ [S1(t ),H0] + Vnd(t ) = 0. (A3)

The operator S†
1 (t ) = −S1(t ) is anti-Hermitian and will be

searched in the form

S1(t ) =
∑
l,l ′

Sl ′l (t )|l ′〉〈l|(â† + b∗(t )) − H.c., (A4)

where S1(t ) is off diagonal, i.e., Sll = 0.
The commutator [S1(t ),H0] is obtained using the standard

relations [|l ′〉〈l|, |m〉〈m′|] = |l ′〉〈m′| δlm − |m〉〈l| δm′l ′ and
[â, â†] = 1. One gets

[S1(t ),H0] =
∑
l,l ′

{Sl ′l (t )|l ′〉〈l|[ωll ′ (â
† + b∗(t )) − ωr â†]

+ S∗
l ′l (t )|l〉〈l ′|[ωll ′ (â + b(t )) − ωr â]}, (A5)

where ωll ′ ≡ ωl − ωl ′ . One now substitutes Eq. (A4) for S1(t )
into Eq. (A3) and obtains equations at the different operator
structures. For example, at the structures |l ′〉〈l| â† and |l ′〉〈l| â

one gets, respectively,

i
∂Sl ′l (t )

∂t
+ Sl ′l (ωll ′ − ωr ) + gl ′l = 0, (A6)

−i
∂S∗

ll ′ (t )

∂t
+ S∗

ll ′ (ωl ′l − ωr ) + gl ′l = 0. (A7)

One should note that the equation obtained at the structure
|l ′〉〈l| is not independent, but is a linear combination of
Eqs. (A6) and (A7). For time-independent dipole couplings
gl ′l , one gets the solutions

Sl ′l = − gl ′l

ωll ′ − ωr
, (A8)

S∗
ll ′ = − gl ′l

ωl ′l − ωr
. (A9)

Substituting these results into Eq. (A4) one obtains S1(t )
[Eq. (33)] of the main text.

Using the result for S1(t ), the effective Hamiltonian in
the dispersive and adiabatic regimes is calculated from the
commutator

Heff |RWA= 1
2 [S1(t ), V̂nd(t )] (A10)

in the RWA. Calculating the commutator we have neglected
terms of the form [â† + b∗(t )]2, [â + b(t )]2, in a RWA. Thus,
we recover the effective Hamiltonian (24) of the main text,
that was obtained via a time-dependent PT.

APPENDIX B: QUANTUM-MECHANICAL SUM RULE
FOR THE POLARIZABILITY MATRIX ELEMENT

For completeness, here we present a detailed derivation
of the quantum-mechanical sum rule (42) of the main text,
essentially following Ref. [40].

To express the diagonal matrix element of the polarizability

in the energy eigenbasis 〈ψi| ∂2Hqb

∂V 2 |ψi〉, one differentiates the

Hellmann-Feynman relation ∂Ei
∂V = 〈ψi| ∂Hqb

∂V |ψi〉, with respect
to a suitable voltage parameter V to obtain

∂2Ei

∂V 2
=
〈
∂ψi

∂V

∣∣∣∣∂Hqb

∂V

∣∣∣∣ψi

〉
+ 〈ψi|∂

2Hqb

∂V 2
|ψi〉

+
〈
ψi

∣∣∣∣∂Hqb

∂V

∣∣∣∣∂ψi

∂V

〉
. (B1)

It is convenient to introduce the ith level Green’s function
Gi ≡ 1

Ei−Hqb
. Differentiating the relation G−1

i |ψi〉 ≡ (Ei −
Hqb)|ψi〉 = 0 one gets∣∣∣∣∂ψi

∂V

〉
= −Gi

∂
(
G−1

i

)
∂V

|ψi〉. (B2)

To evaluate the third term in Eq. (B1) one substitutes in it
Eq. (B2) to obtain〈

ψi

∣∣∣∣∂Hqb

∂V

∣∣∣∣∂ψi

∂V

〉
= −

∑
j,k

〈ψi|∂Hqb

∂V
|ψ j〉 〈ψ j |Gi|ψk〉

× 〈ψk|
∂
(
G−1

i

)
∂V

|ψi〉, (B3)

where we have inserted the completeness condition∑
j |ψ j〉〈ψ j | = I . For the last multiplier of Eq. (B3) one
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gets

〈ψk|
∂
(
G−1

i

)
∂V

|ψi〉 = δki
∂Ei

∂V
− 〈ψk|∂Hqb

∂V
|ψi〉. (B4)

By differentiating the identities 〈ψk|Hqb|ψi〉 = δkiEi and
〈ψk|ψi〉 = δki, one gets the simple relations

〈ψk|∂Hqb

∂V
|ψi〉 = δki

∂Ei

∂V
−
〈
∂ψk

∂V

∣∣∣∣ψi

〉
Ei −

〈
ψk

∣∣∣∣∂ψi

∂V

〉
Ek,

(B5)〈
∂ψk

∂V

∣∣∣∣ψi

〉
+
〈
ψk

∣∣∣∣∂ψi

∂V

〉
= 0, (B6)

and combining them one gets

〈ψk|∂Hqb

∂V
|ψi〉 = δki

∂Ei

∂V
+ (Ei − Ek )

〈
ψk

∣∣∣∣∂ψi

∂V

〉
. (B7)

Substituting Eqs. (B7) and (B4) into Eq. (B3) and taking into
account that 〈ψ j |Gi|ψk〉 = 1

Ei−Ek
δ jk one finally obtains for the

third term of Eq. (B1):

(B3) ≡
〈
ψi

∣∣∣∣∂Hqb

∂V

∣∣∣∣∂ψi

∂V

〉
= −

∑
j �=i

|〈ψi| ∂Hqb

∂V |ψ j〉|2
Ej − Ei

. (B8)

The first term in Eq. (B1) is expressed via the third one
(B3) since ∂Hqb

∂V is Hermitian:〈
∂ψi

∂V

∣∣∣∣∂Hqb

∂V

∣∣∣∣ψi

〉
=
(〈

ψi

∣∣∣∣∂Hqb

∂V

∣∣∣∣∂ψi

∂V

〉)∗
. (B9)

Substituting this in Eq. (B1) one recovers the quantum-
mechanical sum rule (42) for the polarizability matrix
element:

〈ψi|∂
2Hqb

∂V 2
G

|ψi〉 = ∂2Ei

∂V 2
G

+ 2
∑
j �=i

|〈ψi| ∂Hqb

∂VG
|ψ j〉|2

Ej − Ei
. (B10)

The mere purpose of this sum rule is to establish the proper
limit for Hδω and H‖ [Eqs. (38) and (40) in the adiabatic
regime] when they are expressed via the energy curvature
with respect to voltage (i.e., quantum capacitance) effective
Hamiltonians (13), (14), and (46), (47).

APPENDIX C: DIPOLE MATRIX ELEMENTS OF THE TQD
EXCHANGE-ONLY QUBIT AT OR AROUND THE FULL

SWEET SPOT

Here we briefly sketch the calculation of the transition
dipole moments of the TQD system, where the higher excited
(doubly occupied) states contributions will dominate in the
effective adiabatic interactions at or around the full sweet
spot (SOP). Some details of the calculations can be found in
Ref. [14]. We repeat some of the results and definitions from
that reference for the sake of completeness.

The TQD Hamiltonian and the dipole interaction are
formulated [14] in the charge basis of the six states of spin pro-
jection Sz = + 1

2 , namely, |1〉 = 1√
2
(| ↑1↑2↓3〉 − | ↓1↑2↑3〉),

|2〉 = − 1√
6
(| ↑1↑2↓3〉 + | ↓1 ↑2 ↑3 〉 − 2| ↑1 ↓2 ↑3 〉) [qubit

subspace with charge configuration (1,1,1)], and the four

highly gapped charge states (Egap ≈ Ucharge), i.e., |3〉 =
(201) = |S(21, 02)〉| ↑3〉, |4〉 = (102) = | ↑1〉|S(02, 23)〉,
|5〉 = (120) = | ↑1〉|S(22, 03)〉, |6〉 = (021) = |S(01, 22)〉| ↑3

〉. The TQD system Hamiltonian has diagonal energies
E1 = E2 = 0, E3 = εv − εm + Ũ1, E4 = −εv − εm + Ũ3,
E5 = εv + εm + Ũ2, E6 = −εv + εm + Ũ ′

2, and off-diagonal
tunneling matrix elements that are linear in the left or
right tunneling amplitudes tl , tr that couple only the qubit
subspace {|1〉, |2〉} to the upper gapped states [14]. The dipole
interaction in the charge basis is diagonal and assuming the
coupling to the SC resonator is through the middle dot 2
via the V2 gate voltage (we neglect small corrections due to
capacitance coupling between the dots), one gets

Hdipole = 2h̄g0(â + â†) D̂,

D̂ ≡ diag[1, 1, 0, 0, 2, 2]. (C1)

This is obtained using the linear response approach [14]. In the
above energies of the excited states we have used the notations
of the two gate voltage (energy) detunings εv ≡ e(V3 − V1)/2
and εm ≡ e[(V3 + V1)/2 − V2] ≡ eVm. Also, the charging en-
ergies Ũi ≈ Ucharge are defined as the energy costs to go from
the (1,1,1) configuration to a configuration where the ith dot
is doubly occupied, e.g., Ũ1 is the energy cost for transition
from (1,1,1) to (2,0,1), etc.

One first performs a (static) Schrieffer-Wolff transfor-
mation [66,67] that brings the TQD Hamiltonian to a
block-diagonal form, decoupling the qubit subspace from the
highly gapped four states. The qubit block (Hamiltonian)
takes the well-known form in the transformed basis

HTQD
q = −J (εv, εm) + J (εv, εm)

2
σ̃z −

√
3

2
j(εv, εm) σ̃x (C2)

= −J (εv, εm) − Eq(εv, εm)

2
σz, (C3)

with the exchange energies J ≡ (Jl + Jr )/2, j ≡ (Jl − Jr )/2
and a qubit splitting Eq =

√
J2

l + J2
r − Jl Jr , where the left and

right exchange energies are given as

Jl (εv, εm) = 2t2
l

[
1

εv − εm + Ũ1
+ 1

−εv + εm + Ũ ′
2

]
, (C4)

Jr (εv, εm) = 2t2
r

[
1

εv + εm + Ũ2
+ 1

−εv − εm + Ũ3

]
. (C5)

In Eq. (C2) the diagonalization is further performed by a
unitary transformation

Uqb =
(

cos(η/2), sin(η/2)

− sin(η/2), cos(η/2)

)
, (C6)

where

η/2 = arccos

⎡
⎣ 1√

2

(
1 − J√

J2 + 3 j2

)1/2
⎤
⎦. (C7)
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Thus, the qubit eigenstates |+〉, |−〉 obtain energy curva-
ture with respect to voltage detunings εv , εm due to the
higher levels. The other block of the four highly gapped
states (at or around the full sweet spot) remains approxi-
mately diagonal since the corrections to the diagonal energies
El ≈ Ucharge, l = 3, 4, 5, 6, are of the order of ∼t2

l,r/Ucharge,
i.e., highly suppressed for tl,r ∼ 5–10 GHz and Ucharge ∼
200–300 GHz.

By performing the same transformations as above to the
dipole Hamiltonian, one obtains the qubit dipole coupling
g−,+ as [14]

g−,+ ≡ g⊥ = −g0

√
3

4Eq

[
∂Jr

∂εm
Jl − ∂Jl

∂εm
Jr

]
. (C8)

Note that at the full sweet spot (SOP) when the detunings take
the values [43]

ε0
v = 1

4 (−Ũ1 + Ũ ′
2 − Ũ2 + Ũ3), ε0

m = 1
4 (Ũ1 − Ũ ′

2 − Ũ2 + Ũ3),

(C9)

the qubit dipole coupling is zero, g−,+ = 0 [14]. It is
also zero in the symmetric situation tl = tr , Ũ1 = Ũ3, Ũ ′

2 =
Ũ2, and εv = ε0

v = 0 is at sweet spot value while εm is
arbitrary [14].

For the dipole couplings of the qubit levels to the
upper highly gapped levels, one obtains (up to a factor
of 2g0)

g−,3 =
√

2 tl sin(α+)

εv − εm + Ũ1
, g−,4 =

√
2 tr sin(α−)

−εv − εm + Ũ3
, (C10)

g−,5 = −
√

2tr sin(α−)

εv + εm + Ũ2
, g−,6 = −

√
2tl sin(α+)

−εv + εm + Ũ ′
2

(C11)

and

g+,3 =
√

2tl cos(α+)

εv − εm + Ũ1
, g+,4 =

√
2tr cos(α−)

−εv − εm + Ũ3
, (C12)

g+,5 = −
√

2tr cos(α−)

εv + εm + Ũ2
, g+,6 = −

√
2tl cos(α+)

−εv + εm + Ũ ′
2

, (C13)

where α± ≡ π
6 ± η

2 . These dipole couplings are used in the
main text (Sec. VI D). They are relevant in a range of detun-
ings εv ≈ ε0

v , εm ≈ ε0
m at or around the full sweet spot.

Calculations for the resonant exchange (RX) regime [68]
are analogous to the above, but not performed here. In the
RX regime (approaching a c.d.p.) some of the energy denom-
inators become small and their contributions are enhanced.
Then the block of four upper states need to be diagonalized as
well, in order to obtain the dipole elements to the upper states
g−,l , g+,l .
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