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Carrier diffusion in semiconductor nanoscale resonators
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It is shown that semiconductor nanoscale resonators with extreme dielectric confinement accelerate the
diffusion of electron-hole pairs excited by nonlinear absorption. The response function of the effective carrier
density is computed by an efficient eigenmode expansion technique. A few eigenmodes of the diffusion equa-
tion effectively capture the long-timescale carrier decay rate, which is advantageous compared to time-domain
simulations. Notably, the eigenmode approach elucidates the contribution to carrier diffusion of the in-plane and
out-of-plane cavity geometry. These results and insights may be used to optimize the design of various photonic
devices, e.g., for applications in all-optical signal processing.
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I. INTRODUCTION

The ability to control and route optical signals with light
itself – namely, all-optical switching [1–4] – is an essential
functionality of photonic integrated circuits. In particular, op-
tical switches based on semiconductor nanoscale resonators
[5–11] offer high speed, energy efficiency, and reduced foot-
print, with record-low [6] switching energies. In these devices,
a control signal excites electron-hole pairs (carriers) via two-
photon absorption (as well as linear absorption in [6]) and
the free carrier-induced dispersion tunes the cavity refractive
index. The cavity resonance shifts, thus blocking or letting
through the probe signal encoding the information to be
transmitted. However, the modulation speed is limited by the
diffusion and recombination time of the excited carriers and
data transmission rates exceeding a few tens of Gbit/s are yet
to be demonstrated [12]. Previous works [6,7,13] on photonic
crystal (PhC) cavities [14] have shown that tight field con-
finement reduces the time it takes for the carriers to diffuse
out of the effective mode area of interest. Here, we show
that new cavity designs comprising a bowtie and featuring
deep subwavelength optical confinement [15–21] [so-called
extreme dielectric confinement (EDC)] further speed up the
diffusion of carriers. The large quality factor (Q factor) and
enhanced carrier diffusion may lead to energy-efficient optical
switches with superior modulation speeds.

The diffusion and recombination of carriers are often
modeled by rate equations, with different numbers of time
constants [7,22,23]. The time constants are usually deter-
mined by fitting to experiments or space- and time-domain
simulations of the ambipolar diffusion equation [6,7,24].
However, it has been pointed out that even a multiexponential
decay may not be entirely satisfactory and that a Green’s func-
tion formalism generally provides better accuracy [13]. The
Green’s function of the mode-averaged (or effective) carrier
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density reflects the shift in the cavity resonance due to an
impulse excitation of carriers in the time domain. Figure 1(a)
shows the Green’s function – from now on, response function
– of the effective carrier density for the cavities considered in
this article: EDC ring (blue), EDC nanobeam (red), PhC H0
(yellow), and PhC nanobeam (purple). The cavity parameters
are summarized in Table I. The in-plane excitation profile of
the carrier density due to two-photon absorption is illustrated
in Figs. 1(b)–1(e).

In Table I, in addition to the geometrical parameters (in-
plane footprint and cavity thickness), we include the quality
factor (Q factor), as well as the two-photon absorption (TPA)
and free-carrier absorption (FCA) mode volume [14]. These
parameters are computed from three-dimensional simulations
of Maxwell’s equations in the frequency domain with radia-
tion boundary conditions [25]. In semiconductor nanocavities,
the intensity of the carrier generation rate due to TPA and
the induced nonlinear losses scale with the inverse of the
nonlinear mode volumes, as detailed in [7]. Compared to the
PhC cavities, the Q factor of the EDC cavities in Table I is
relatively low. However, the in-plane footprint of the PhC
cavities is much larger. The Q factor of the EDC cavities could
be increased by adding air rings or air holes without altering
the geometry in the bowtie proximity [18]. We emphasize that
plasmonic resonators also feature deep subwavelength optical
confinement [27]. However, the Q factor of the EDC cavities
in Table I is already much larger than offered by plasmonic
cavities [28,29].

The response function in Fig. 1(a) is obtained from full
three-dimensional simulations of the ambipolar diffusion
equation in space and time. Surface recombination at
the boundaries between the semiconductor material and
surrounding air is also included. Compared to more
conventional geometries, the electric field in EDC cavities
is tightly localized to a hot spot, which accelerates the
effective carrier density decay rate. As discussed later,
further improvements are feasible by scaling down the
bowtie gap. However, depending on the timescale of interest,
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FIG. 1. (a) Response function of the mode-averaged carrier density for a ring cavity (blue) with extreme dielectric confinement (EDC),
an EDC nanobeam cavity (red), a photonic crystal (PhC) H0 cavity (yellow), and a PhC nanobeam cavity (purple). The cavity parameters are
summarized in Table I. The in-plane excitation profile of the carrier density due to two-photon absorption in the various cavities is also shown,
as indicated in the following: (b) EDC ring, (c) PhC H0, (d) EDC nanobeam, and (e) PhC nanobeam. The response function is obtained from
full three-dimensional simulations. The surface recombination velocity at the boundaries between the semiconductor material and surrounding
air is 104 cm/s. The designs in (b), (c), and (e) are inspired by [25], [7], and [26], respectively.

time-domain simulations may be computationally demanding.
Furthermore, three-dimensional simulations tend to obscure
the impact of the cavity geometry in the xy plane (in plane)
and along the growth direction, z (out of plane). The x, y, and z
directions are indicated in Fig. 1(b). In this article, we present
an alternative eigenmode expansion technique to calculate
the response function of the effective carrier density. This
eigenmode approach efficiently provides the long-timescale
decay rate with only a few eigenmodes of the ambipolar
diffusion equation. Notably, the eigenmode approach singles

out the contributions of the in-plane and out-of-plane diffusion
dynamics, thus offering new insights, that will guide future
cavity designs, e.g., by topology optimization [30,31].

The article is organized as follows. Section II introduces
the carrier diffusion model. In particular, the approximations
leading from the drift-diffusion model to the ambipolar dif-
fusion regime are illustrated step by step and the limitations
are discussed, including the impact of surface recombination.
The eigenmode expansion and response function formalism
are presented in Sec. III. The eigenmode approach is then

TABLE I. Parameters representative of the photonic cavities in Fig. 1 with resonant wavelength λ0 ≈ 1550 nm: quality factor (Q factor),
two-photon absorption (TPA), and free-carrier absorption (FCA) mode volume [14], size along the x and y direction (in-plane footprint), and
size along the z direction (cavity thickness). The outer in-plane perimeter of the EDC ring cavity is elliptical and the ellipse axes are reported.
The EDC cavities have a bowtie gap of 60 nm. Further details on the in-plane geometries are in Fig. 1. The semiconductor material is indium
phosphide (InP), with refractive index n = 3.17.

Cavity Q factor VTPA (λ0/n)3 VFCA (λ0/n)3 In-plane footprint Cavity thickness (nm)

EDC ring 2 × 103 0.5 0.3 2a = 3.2 µm, 2b = 2.8 µm (ellipse axes) 240
EDC nanobeam 8 × 103 0.8 0.5 11.5 µm × 683.4 nm 250
PhC H0 3 × 104 1.7 1 8.5 µm × 8.8 µm 340
PhC nanobeam 3 × 106 3 2 21.5 µm × 580 nm 250
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applied in Sec. IV and Sec. V, respectively, to analyze the
in-plane and out-of-plane diffusion dynamics in detail, with
an overview of the cavities in Table I. Finally, Sec. VI draws
the main conclusions.

II. CARRIER DIFFUSION MODEL: FROM DRIFT
DIFFUSION TO AMBIPOLAR DIFFUSION

The drift-diffusion equations are pivotal for understand-
ing fundamental characteristics of electronic and photonic
devices, including transistors [32], photodetectors [33], and
solar cells [34], and have also been applied to semiconductor
lasers [35–38], for cases where simpler descriptions based on
rate equations may be inadequate. For instance, effects such
as the quenching of the ground-state power in the presence of
dual-state lasing or the impact of p-type modulation doping
on the lasing threshold are naturally explained [38] within a
drift-diffusion picture.

The optical switching characteristics of semiconductor
nanocavities are well understood in a modeling frame-
work that combines temporal coupled-mode theory with the
ambipolar regime of the drift-diffusion equations [6,7,9].
However, the literature is not always clear on the approxima-
tions involved and conflicting descriptions flourish, especially
regarding the recombination terms. In the following, we derive
the ambipolar diffusion equation from the classical drift-
diffusion equations, outlining the main approximations and
limitations.

The drift-diffusion model [39] consists of the continu-
ity equations for electrons and holes, typically coupled to
Poisson’s equation. Carrier heating effects [40] are ignored,
assuming that the excited electrons and holes have already
relaxed to their quasiequilibrium distributions, described by
quasi-Fermi levels. The approximation is appropriate on
timescales longer than about 1 ps [13], to which the conclu-
sions of this article are therefore restricted. The continuity
equations read

∂n

∂t
= 1

q
∇ · Jn − Un + Gn, (1a)

∂ p

∂t
= −1

q
∇ · Jp − Up + Gp. (1b)

Here, n and p are the densities per unit volume of electrons
and holes, respectively, whereas q is the electron charge. The
electron (Jn) and hole (Jp) current density per unit area reflects
the motion of electrons and holes and accounts for both drift
and diffusion.

The generation rates per unit volume and unit time describe
the excitation of excess electrons (Gn) and holes (Gp) with
respect to thermal equilibrium. We assume optical excitation,
which is fast compared to the timescales of the other pro-
cesses. Therefore, electrons and holes are generated in pairs,
leading to the same generation rate, Gn = Gp = G.

The recombination rates per unit volume and unit time
of electrons (Un) and holes (Up) account for trap-assisted
recombination in the bulk semiconductor material, as well
as radiative and Auger recombination. At carrier densities
around 1015–1018 cm−3, as relevant [41] for optical switching
applications, trap-assisted recombination usually dominates

over radiative and Auger recombination [13,42], which are
characterized by longer lifetimes.

Trap-assisted recombination deserves special considera-
tion. Strictly speaking, it is only under steady-state conditions
that the general theory [43] of electron and hole trap-assisted
recombination reduces to the well-known Shockley-Read-
Hall (SRH) recombination rate [43–45]

Un = Up = U = np − n2
i

τ SRH
n (p + p1) + τ SRH

p (n + n1)
, (2)

with n1 and p1 given by

n1 = ni e
Et −EFi

kBT , (3a)

p1 = ni e
EFi

−Et
kBT . (3b)

Here, ni is the electron and hole intrinsic concentration, EFi

is the intrinsic Fermi level, and Et is the trap energy level,
including the trap degeneracy factor [45]. A single trap level
dominates trap-assisted bulk recombination [45]. The Boltz-
mann constant and temperature are denoted by kB and T ,
respectively. In Eq. (2), the probability per unit time of an
electron (hole) being trapped when the traps are all empty is
1/τ SRH

n (1/τ SRH
p ). This probability is inversely proportional to

the density of traps per unit volume.
In general, electrons and holes feature different capture

cross sections, which leads to Un �= Up under time-varying
conditions [43,46]. As a result, an electron (or hole) may be
trapped for a certain period before recombining, which tends
to unbalance the electron and hole densities. Recent works
on nanowaveguides [47] and microring resonators [48] have
pointed out that modeling the electron and hole recombi-
nation rates with separate formulations [46] is necessary to
accurately reproduce the nonlinear carrier dynamics observed
experimentally. In particular, the carrier decay rate due to
trap-assisted recombination generally depends on the initial
carrier density [47,49], which makes the process nonlinear.

In practice, one may assume Un = Up if the dynamics
of the trapped electrons and holes is sufficiently slow com-
pared to the drift-diffusion dynamics and, in general, to the
timescale of interest [39,45]. This quasistationary approxima-
tion is justified when the trap density is small compared to the
excess electron and hole densities [47] and typically satisfac-
tory at carrier densities around 1015–1018 cm−3 [41], which
we are interested in. Furthermore, the carrier lifetimes due
to trap-assisted recombination are typically larger than 1 ns
[47,48]. This further corroborates the quasistationary approx-
imation on much shorter timescales, where carrier diffusion
is expected to dominate. Trap-assisted recombination due to
defects at the interface between the semiconductor material
and surrounding cladding (so-called surface recombination)
[45] is discussed later, but similar considerations can be made.

We consider photonic cavities realized using semicon-
ductor materials that are either intrinsic or homogeneously
doped. Therefore, without an external excitation, the electron
and hole densities are uniform throughout the cavity. In the
presence of an optical excitation pulse, electrons and holes
are generated and initially diffuse at different speeds, due
to the different mobilities. Electrons and holes, however, are
charged particles. As a result, an internal electric field arises,
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which tends to retard the electrons and accelerate the holes
[50]. If trap-assisted recombination does not unbalance the
electron and hole densities (an assumption whose limitations
have been discussed above), the internal electric field ensures
local neutrality. This means that the excess electron density
is balanced by an equal excess hole density. Consequently,
electrons and holes end up diffusing together, in a so-called
ambipolar diffusion regime [51].

It is clear that if local neutrality were fulfilled exactly,
no internal field would be set up. However, the difference
between electron and hole densities required to induce the in-
ternal field is so small compared to the excess densities them-
selves that local neutrality is often a good approximation [50].

Assuming local neutrality, we denote by N (r, t ) the excess
density of electrons and holes. We multiply Eq. (1a) by pμp

and Eq. (1b) by nμn, with μp and μn being the hole and elec-
tron mobility, respectively. Summing the two equations and
using Einstein’s relations for the electron and hole diffusion
coefficients, we arrive at [50]

∂N

∂t
= Deff∇2N − μeffE0 · ∇N − U + G, (4)

where the effective diffusion coefficient, Deff , is

Deff = (n0 + p0 + 2N )DnDp

(n0 + N )Dn + (p0 + N )Dp
(5)

and the effective mobility, μeff , reads

μeff = μnμp(n0 − p0)

(n0 + N )μn + (p0 + N )μp
. (6)

Here, n0 (p0) is the electron (hole) density at thermal equi-
librium (with n = n0 + N and p = p0 + N), whereas Dn and
Dp are the electron and hole diffusion coefficient, respectively.
The electric field, E0, accounts for the internal field and any
externally applied bias. The external field is assumed to be
weak enough that the ambipolar approximation would hold.
Equation (4) is the basis of the classical Haynes-Shockley
experiment to measure the minority carrier mobility in n- or
p-type semiconductors [52,53].

We assume high-level injection, whereby the excess elec-
tron and hole density is much larger than the thermal
equilibrium concentrations. This is the typical scenario for
lasing [54] and optical switching [6,7,9] applications unless
the semiconductor material is heavily doped [42]. For the sake
of reference, we note that the room-temperature equilibrium
carrier concentration of intrinsic indium phosphide is around
107 cm−3 [55]. We also assume no externally applied bias.
Therefore, E0 reduces to the internal field. For N � n0, p0,
Eq. (5) reduces to

Deff = 2DnDp

Dn + Dp
, (7)

whereas Eq. (6) gives μeff ≈ 0. The fact that the effective
mobility is negligible means that the effect of the internal
field on the carrier dynamics, besides ensuring the ambipolar
diffusion regime, is small and is therefore neglected in these
calculations.

As for the SRH recombination rate, it should be noted that
unless the trap level is close enough to the intrinsic Fermi level
(around the middle of the electronic band gap), either n1 or p1

will become large, significantly reducing the recombination
rate. For the traps to be effective, they must introduce energy
levels close to the middle of the gap [54], in which case one
finds p1 ≈ n1 ≈ ni. Thus Eq. (2) under high-level injection
gives [54]

U ≈ N/τbulk, (8)

with τbulk = τ SRH
n + τ SRH

p being the recombination lifetime.
Consequently, Eq. (4) reduces to the usual form of the am-
bipolar diffusion equation [7,13,50]

∂N (r, t )

∂t
= Deff∇2N (r, t ) − N (r, t )

τbulk
+ G(r, t ), (9)

with the effective diffusion coefficient given by Eq. (7).
The drift-diffusion equations require suitable boundary

conditions. In particular, surface recombination due to in-
terface traps (so-called surface states) may be modeled, in
general, via the following boundary conditions [56,57]:

n̂ · Jn = −q Uns , (10a)

n̂ · Jp = q Ups . (10b)

Here, Uns and Ups are the electron and hole surface recom-
bination rates per unit area, respectively, whereas n̂ is the
unit vector normal to the semiconductor surface and pointing
outwards.

The physical analogies between trap-assisted bulk re-
combination and surface recombination lead to similar
considerations and mathematical descriptions. The density of
surface states, however, is naturally expressed as a density per
unit area, because interface defects are spread throughout a
plane rather than a volume. As a consequence, τ SRH

n (τ SRH
p )

in Eq. (2) becomes 1/vn (1/vp), with vn and vp being the
electron and hole surface recombination velocity, respectively.
These velocities are directly proportional to the electron and
hole capture cross sections, respectively, as well as the density
of surface states. If the dynamics of the electrons and holes
trapped at the surface states is sufficiently slow, the surface
recombination rates for electrons and holes are the same.
Then, for a single trap energy level, one finds [45]

Uns = Ups = Us = ns ps − n2
i

(ps + p1s )/vn + (ns + n1s )/vp
, (11)

where ns and ps are the electron and hole densities per unit
volume at the semiconductor surface, respectively. The ex-
pressions of n1s and p1s are given by Eqs. (3a) and (3b),
respectively, but the intrinsic Fermi level and the intrinsic
carrier density are evaluated at the surface. The trap level is
that of the surface states.

It should be noted that surface recombination usually
involves trap levels distributed in energy throughout the elec-
tronic band gap [45], in contrast to bulk recombination.
Therefore, one should in principle integrate Eq. (11) over
all the trap levels, with possibly energy-dependent surface
recombination velocities [45]. However, the recombination
process is dominated by trap levels close to the middle of the
gap, as already noted for bulk recombination. Therefore, one
may often assume constant surface recombination velocities,
equal to the midgap value [58]. Then, under the assumption of
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high-level injection, Eq. (11) reduces to [54]

Us ≈ vsNs, (12)

where Ns is the excess electron and hole density at the semi-
conductor surface. The surface recombination velocity, vs, is
given by 1/vs = 1/vn + 1/vp. It is strongly dependent on the
semiconductor material and fabrication process [9,59–61].

To obtain the boundary condition for Eq. (9), we multi-
ply Eqs. (10a) and (10b) by pμp and nμn, respectively. We
subtract the second equation from the first one and express
the electron and hole current densities in terms of the corre-
sponding drift-diffusion contributions. We use the ambipolar
approximation (namely, n = n0 + N and p = p0 + N), as well
as Uns = Ups = Us ≈ vsNs, finally arriving at

Deff n̂ · ∇N (r, t ) = −vsN (r, t ). (13)

Here, the excess carrier density is evaluated at the semicon-
ductor surface.

It should be pointed out that surface states usually act as
donorlike or acceptorlike recombination centers and possess a
charge depending on the occupation [57,62,63]. The resulting
electric field tends to unbalance the electron and hole densities
[57] and should in principle be taken into account by self-
consistently coupling the surface recombination rates with
Poisson’s equation [57,62,64,65]. The unbalance, however, is
minor if the density of surface states is small compared to the
excess electron and hole densities [57] and may be neglected,
as a first approximation, under high-level injection conditions.

We also note that surface recombination in nanostructures
usually dominates over bulk recombination, owing to the large
surface-to-volume ratio [47,61,66]. Therefore, for a given
density of surface states, the unbalance between the electron
and hole surface recombination rates may eventually become
important when the surface-to-volume ratio is sufficiently
large [47] and thus jeopardize the ambipolar approximation.
This modeling scenario falls outside the scope of this article
and is left to future works.

Here, we model the carrier diffusion by Eq. (9) and sur-
face recombination by Eq. (13), consistently with previous
works [6,7,9]. Electrostatic and saturation effects [57,62,64]
are ignored, as discussed above. Unless otherwise specified,
we assume parameters realistic for indium phosphide (InP):
Deff = 10 cm2/s [55] and vs = 104 cm/s [7].

III. EIGENMODE EXPANSION AND RESPONSE
FUNCTION FORMALISM

In optical switches based on micro- or nanoscale
semiconductor resonators, the shift in the cavity resonance
due to various carrier-induced effects (mainly, free
carrier-induced dispersion) [67] scales to first order with
a mode-averaged (or effective) carrier density [7,22]:

Neff (t ) =
∫

Vm
N (r, t )ε(r)|E(r)|2d3r∫

V ε(r)|E(r)|2d3r
. (14)

Here, E is the electric field of the cavity mode, ε(r) is
the permittivity, and Vm is the semiconductor volume. The
integration volume, V , encloses the optical cavity with a
margin of a few wavelengths. The carrier density, N (r, t ),

follows the ambipolar diffusion equation [Eq. (9)], with
surface recombination boundary conditions [Eq. (13)].

It should be noted that the field distribution diverges in
space at sufficiently large distances from the cavity, due to the
leaky nature of the cavity mode [68–71], which, in principle,
makes Eq. (14) ill defined. Due to the relatively high Q factors
of the relevant cavity modes, and to focus on the dynamics of
Neff (t ), we ignore this issue and implicitly assume the fields
to vanish outside the volume V .

In the framework of coupled-mode theory, the carrier gen-
eration rate in the diffusion equation is a separable function of
space and time [13,72]:

G(r, t ) = F (r) f (t ). (15)

We focus on optical switches with carriers generated by two-
photon absorption (TPA) [7,9,72]. In this case, f (t ) describes
the time variation of the square of the optical energy. The
carrier density excitation profile, F (r), is given by

F (r) = |E(r)|4. (16)

The case of linear absorption, as relevant for semiconductor
lasers [54], corresponds to F (r) = |E(r)|2. We note that elec-
trical injection of carriers [73,74] would not excite the spatial
profile of an EDC mode and it falls outside the scope of this
article.

The carrier density may be expressed as [13]

N (r, t ) =
∫ t

0
f (τ )h(r, t − τ )dτ, (17)

where h(r, t ) is the response function. The response function
(see Sec. I in the Supplemental Material [75]) is the solution
of the homogeneous diffusion equation

∂N (r, t )

∂t
= Deff∇2N (r, t ) − N (r, t )

τbulk
, (18)

with the initial condition given by N (r, t = 0) = F (r).
To gain insight, we postulate a solution in the form

N (r, t ) = u(r‖)v(z)T (t )e− t
τbulk , (19)

with r‖ being the in-plane position vector and z the out-of-
plane position coordinate. We emphasize that, for the solution
to be exact, the initial condition should be separable, namely

F (r) = Fxy(r‖)Fz(z). (20)

This is not generally the case. Nonetheless, as we shall see,
this separation procedure provides a good approximation of
the effective carrier density. Furthermore, for the separation of
variables to be applicable, the cavity geometry should also be
separable, in the sense that the extension of the cavity along
the z direction should be uniform throughout the volume of
the semiconductor material, which defines the support of the
function N (r, t ). This condition is fulfilled throughout this
article, but it does not apply to some of the cavity geometries
reported in the literature [16].

By inserting Eq. (19) into Eq. (18), the latter is reduced to
two eigenvalue problems, corresponding to the in-plane and
out-of-plane diffusion dynamics, respectively. By expanding
the two solutions on the corresponding sets of eigenmodes,
see Supplemental Material [75] (and Refs. [76–78] therein),
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and averaging over the optical mode profile, one finally arrives
at the response function of the effective carrier density

heff (t ) = heff,xy(t )heff,z(t )e− t
τbulk , (21)

with the effective carrier density given by

Neff (t ) =
∫ t

0
f (τ )heff (t − τ )dτ. (22)

Nonlinear effects, including thermal effects, may be eas-
ily included by coupling Neff (t ) with the coupled-mode
theory equations describing the optical energy inside the
cavity [7,9,79].

We emphasize that including nonlinear effects is essential
to assess the optical switching performance. Although our
work is motivated largely by applications in all-optical switch-
ing, here we focus exclusively on the diffusion of carriers
in order to investigate this phenomenon thoroughly and pro-
vide a model calculation framework. We note, however, that
the resulting calculation framework is fully compatible with
nonlinear switching dynamics calculations. In that respect,
it is important to point out that even if the main switching
mechanism employed relies on an instantaneous nonlinearity,
like the Kerr effect, any carrier generation, e.g., due to associ-
ated two-photon absorption, will be a limiting process due to
the noninstantaneous decay of the carriers. Thus it has been
shown that patterning effects encountered when switching
actual random bit streams are strongly affected by slow pro-
cesses [80]. Thermal effects are also known to be important
for a correct assessment of high data transmission rates [13].
Because of the focus on the diffusion dynamics, we neglect
nonlinear effects on f (t ) and the carrier diffusion model is
linear. Furthermore, thermal effects usually contribute with
longer time constants, as compared to diffusion, to the non-
linear shift in the cavity resonance wavelength, thus being
unimportant on the timescale of interest of this article.

We also note that the shift in the cavity resonant wave-
length is proportional to the effective carrier density via a
proportionality constant [7,13], that is, the change of the
cavity refractive index with the excited carrier density. The
decay rate of the effective carrier density, which determines
the recovery time in a switching application, is unaffected
by this proportionality constant. The response function of the
in-plane effective carrier density, heff,xy(t ), reads

heff,xy(t ) =
∑

i

κxyi
e
− t

τxyi , (23)

with 1/τxyi
being the eigenvalues of the in-plane diffusion

problem and τxyi
the corresponding lifetimes. The excitation

coefficients, κxyi
, are given by

κxyi
= Axyi

∫
Sm

ui(r‖)ε(r‖)|E(r‖)|2d2r‖∫
S ε(r‖)|E(r‖)|2d2r‖

, (24)

with Axyi
reading

Axyi
=

∫
Sm

ui(r‖)Fxy(r‖)d2r‖∫
Sm

u2
i (r‖)d2r‖

(25)

and ui(r‖) being the eigenmodes of the in-plane diffusion
problem. Sm is the in-plane cross-section area limited to the

semiconductor material. S is an in-plane cross-section area
enclosing the cavity with a margin of a few wavelengths and
including both the semiconductor and surrounding cladding.
Similar considerations apply to the denominator of Eq. (24)
as to that of Eq. (14). To arrive at Eq. (24), we have also
assumed the electric energy density in Eq. (14), ε(r)|E(r)|2,
to be a separable function of r‖ and z, consistently with the
initial condition [cf. Eq. (20)].

Eigenmodes and eigenvalues are found by solving the
diffusion equation in two dimensions via the finite-element
method (FEM) and heff,xy(t ) is readily computed by applying
Eq. (23). Alternatively, one may find heff,xy(t ) by solving the
diffusion equation in space and time [6,7,13] and with the ini-
tial condition given by Fxy(r‖). Equation (23) converges to the
result of the latter approach when a sufficiently large number
of eigenmodes is considered, as we shall see in Sec. IV.

Similar considerations apply to the response function of
the out-of-plane effective carrier density, heff,z(t ). Specifically,
one finds

heff,z(t ) =
∑

j

κz j e
− t

τz j , (26)

with τz j being the out-of-plane diffusion lifetimes. The corre-
sponding excitation coefficients, κz j , are found by applying
Eqs. (24) and (25) with obvious changes of the surface
integrals into one-dimensional integrals along z. In partic-
ular, Fxy(r‖) and ui(r‖) are replaced by Fz(z) and v j (z),
respectively, the latter being the out-of-plane eigenmodes.
We emphasize that Eq. (26) is a generalization of the usual
single-lifetime approximation, heff,z(t ) = exp(−t/τz0 ), of the
out-of-plane diffusion dynamics, with 1/τz0 = 2vs/Lz [6,7].
Here, Lz is the thickness of the cavity and vs is the surface
recombination velocity. The out-of-plane diffusion dynamics
is analyzed in Sec. V.

For example, Fig. 2(a) shows the response function of the
effective carrier density for the EDC ring cavity in Table I. The
excitation profile, F (r) = |E(r)|4, is displayed in Fig. 2(b).
The electric field corresponds to the cavity fundamental mode.
It is obtained from three-dimensional FEM simulations of
the source-free Maxwell’s equations in the frequency domain
with radiation boundary conditions [25]. The excitation pro-
file over the in-plane cross-section area (z = 0) and along
the cavity growth direction, z, at the center of the cavity
(x = y = 0) is shown in Figs. 2(c) and 2(d), respectively. To
focus on the effect of carrier diffusion, bulk recombination is
ignored (τbulk = ∞). The curves in Fig. 2(a) correspond to full
three-dimensional simulations (blue), two-dimensional simu-
lations of the in-plane diffusion [red, Eq. (23)], and combined
simulations of the in-plane and out-of-plane diffusion [yellow,
Eq. (21)]. In three dimensions, the response function is found
from space- and time-domain simulations, but the eigenmode
approach could also be applied (see Sec. I in the Supplemental
Material).

From Fig. 2(a), the separation into in-plane and out-of-
plane diffusion (2D × 1D, yellow) is seen to be a good
approximation of the full three-dimensional dynamics (3D,
blue). The out-of-plane diffusion mainly affects the long-
timescale decay rate. The separation of the excitation profile,
Eq. (20), is fulfilled only approximately, which explains
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FIG. 2. (a) Response function of the effective carrier density for
the EDC ring cavity in Table I. The surface recombination velocity
is 104 cm/s. Results are obtained from 3D simulations (blue), simu-
lations of the in-plane diffusion (red), and combined simulations of
the in-plane and out-of-plane diffusion (yellow). The other figures il-
lustrate the carrier density excitation profile for (b) 3D diffusion,
(c) in-plane diffusion, and (d) out-of-plane diffusion.

the nonperfect agreement between Eq. (21) and the three-
dimensional simulation results.

For the other photonic cavities, we have found similar
results. We note that the fundamental mode profile of PhC
H0 cavities features a node at the center of the cavity [see
Fig. 1(c)]. However, the separation procedure herein illus-
trated is still applicable by choosing the in-plane position
coordinates, x and y, around a maximum of the field profile
when considering Fz(z).

IV. IN-PLANE DIFFUSION

In the following, we focus on the contribution to the carrier
dynamics due to in-plane diffusion. Figure 3(a) shows the
response function of the in-plane effective carrier density for
the EDC ring cavity in Table I, as obtained from space- and
time-domain simulations (blue) and applying the eigenmode
expansion introduced in Sec. III. Here, we have sorted the
eigenmodes by decreasing values of the diffusion lifetimes
and accounted for the first 5 (red), 15 (yellow), and 300
eigenmodes (green). For example, the first three eigenmodes
are shown in Figs. 3(b), 3(c) and 3(d), respectively. The
eigenmode approach conveniently captures the long-timescale
decay rate with only a few eigenmodes, which is advantageous
compared to time-domain simulations. Empirically, we have
found that around 300 eigenmodes are generally enough to
calculate the response function at all times. This criterion

FIG. 3. (a) Response function of the in-plane effective carrier
density for the EDC ring cavity in Table I. The response function is
obtained by space- and time-domain simulations (blue) and applying
the eigenmode approach, with the first 5 (red), 15 (yellow), and
300 eigenmodes (green). The eigenmodes are ordered by decreasing
values of the diffusion lifetimes. (b) First, (c) second, and (d) third
eigenmode. The surface recombination velocity is 104 cm/s.

applies to all the photonic cavities considered in this article.
Moreover, as we shall see, sorting the eigenmodes by different
criteria may reduce the number of eigenmodes being required.
As shown in Fig. 1(a), tighter field confinement accelerates the
decay rate of the effective carrier density. Therefore, exploring
the impact of the bowtie gap in EDC cavities is interesting.
For this purpose, Fig. 4(a) displays the response function of
the in-plane effective carrier density for the PhC H0 cavity
(green) and EDC ring cavity in Fig. 1. The bowtie gap is
60 nm (blue), 40 nm (red), and 20 nm (yellow). We note that
even smaller values have been demonstrated both in silicon
[19] and InP [81]. Scaling down the bowtie gap accelerates
the decay rate on the short timescale. We emphasize that a
smaller bowtie gap does not only squeeze the field along the
x direction [for the reference system, see Fig. 1(b)], but also
along the y direction, as illustrated in the inset of Fig. 4(a).

Unfortunately, direct inspection of the diffusion lifetimes,
τxyi

[Fig. 4(b)], or the excitation coefficients, κxyi
[Fig. 4(c)],

does not elucidate further the role of the bowtie gap. Further-
more, the size of the bowtie gap barely affects the TPA and
FCA mode volumes (not shown). This observation signifies
that these mode volumes are not a direct measure of the carrier
diffusion enhancement.

To gain insight, we introduce the in-plane instantaneous
lifetime, τeff,xy(t ), defined as follows:

1

τeff,xy(t )
= −d ln[heff,xy(t )]

dt
. (27)

In particular, by inserting the eigenmode expansion from
Eq. (23), one finds

1

τeff,xy(t )
=

∑
i

κxyi
τxyi

e
− t

τxyi

∑
i κxyi

e
− t

τxyi

. (28)
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FIG. 4. (a) Response function of the in-plane effective carrier
density for the PhC H0 cavity (green) and EDC ring cavity in Fig. 1.
The bowtie gap is 60 nm (blue), 40 nm (red), and 20 nm (yellow).
The surface recombination velocity is 104 cm/s. Inset: carrier density
excitation profile along the y direction in the EDC ring cavities.
(b) In-plane diffusion lifetimes and (c) excitation coefficients ordered
by decreasing values of the diffusion lifetimes. For each cavity, the
excitation coefficients are normalized to the maximum value.

For t � τxyi
, the instantaneous lifetime reduces to the longest

lifetime, τxy1
, which supports the definition. At a generic time,

the inverse of the instantaneous lifetime gives the exponential
decay rate of the effective carrier density. Figure 5 shows
the instantaneous lifetime versus time for the PhC H0 cav-
ity (green) and EDC ring cavity. Again, the bowtie gap is
60 nm (blue), 40 nm (red), and 20 nm (yellow). Including
only a few eigenmodes with the longest diffusion lifetime
(dotted) is enough to calculate the instantaneous lifetime on
the long timescale, as expected. We also note that the diffu-
sion lifetimes decrease with increasing surface recombination
velocity (not shown). Consequently, for larger surface re-
combination velocities even fewer eigenmodes are enough
to capture the long-timescale decay rate. Zooming on the
short timescale (inset) highlights that a smaller bowtie gap
reduces the instantaneous lifetime, which is consistent with
Fig. 4(a). Furthermore, compared to the PhC H0 cavity, the
EDC cavities feature shorter instantaneous lifetimes on the
short timescale due to the tighter field confinement. The H0

FIG. 5. In-plane instantaneous lifetime versus time (solid) for the
PhC H0 cavity (green) and EDC ring cavity in Fig. 1. The bowtie
gap is 60 nm (blue), 40 nm (red), and 20 nm (yellow). The dotted
lines only account for the eigenmodes with the 10 longest diffusion
lifetimes. The surface recombination velocity is 104 cm/s. Inset:
zoom on the short timescale.

cavity, on the other hand, is faster on the long timescale, most
likely due to the larger area exposed to surface recombination.

It is instructive to consider the instantaneous lifetime at
zero time:

τ−1
eff,xy(t = 0) =

∑
i

κxyi
τxyi∑

i κxyi

. (29)

From here, it is evident that not the lifetimes themselves, but
instead a weighted average of the (inverse) lifetimes deter-
mines the instantaneous lifetime, with weights given by the
excitation coefficients. This explains why considering either
the lifetimes or the excitation coefficients alone [see Figs. 4(b)
and 4(c)] does not emphasize the impact of the geometry on
the carrier diffusion dynamics. Furthermore, Eq. (29) suggests
that sorting the eigenmodes by their excitation coefficients
may be advantageous on the short timescale. This is evident
from Fig. 6, showing the instantaneous lifetime at zero time
versus the number of eigenmodes taken into account. Sorting
the eigenmodes by decreasing values of |κxyi

| (solid) reduces
the number of eigenmodes to be included for an accurate
estimate. In contrast, sorting the eigenmodes by decreasing
diffusion lifetimes (dotted) significantly slows down the con-
vergence. We note that sorting the eigenmodes by increasing
diffusion lifetimes (not shown) is not advantageous either.
In fact, the diffusion lifetimes monotonically decrease with
increasing order of the eigenmodes [see Fig. 4(b)]. Therefore,
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FIG. 6. In-plane instantaneous lifetime at zero time versus the
number of eigenmodes taken into account. The PhC H0 cavity
(green) and EDC ring cavity in Fig. 1 are considered. The bowtie gap
is 60 nm (blue), 40 nm (red), and 20 nm (yellow). The eigenmodes
are ordered by decreasing absolute values of the excitation coeffi-
cients (solid) or decreasing diffusion lifetimes (dotted). The surface
recombination velocity is 104 cm/s.

high-order eigenmodes may easily have diffusion lifetimes
much smaller than the instantaneous lifetime at zero time.

To further quantify the impact of the in-plane geometry,
we consider the response of the effective carrier density in the
presence of in-plane diffusion only:

Neff,xy(t ) =
∫ t

0
f (τ )heff,xy(t − τ )dτ. (30)

In particular, we assume the time variation, f (t ), of the
squared optical energy inside the cavity to be Gaussian,

f (t ) = exp

[
− (t − t0)2

2σ 2

]
, (31)

with full width at half maximum (FWHM) given by

� = 2σ
√

2 ln(2). (32)

In this case, the in-plane effective carrier density, Neff,xy(t ),
can be computed analytically:

Neff,xy(t ) = σ
√

2π

2

∑
i

Hi(t )
i(t ), (33)

with the two time-domain factors, Hi(t ) and 
i(t ), given by

Hi(t ) = exp

⎡
⎣−

t − t0 − σ 2

2τxy,i

τxy,i

⎤
⎦, (34a)


i(t ) = erf

⎡
⎣ t0 + σ 2

τxy,i

σ
√

2

⎤
⎦ − erf

⎡
⎣ t0 − t + σ 2

τxy,i

σ
√

2

⎤
⎦. (34b)

Here, erf is the error function, erf (x) = 2√
π

∫ x
0 e−y2

dy. We
note that the intracavity excitation pulse, f (t ), only matches
the external input pulse if the duration of the latter is much

FIG. 7. (a) Response function (gray) of the in-plane effective
carrier density (blue) in the EDC ring cavity in Table I. The squared
optical energy in the cavity (intracavity excitation) is a Gaussian
pulse (black) with full width at half maximum (FWHM) of 10 ps.
(b) Time window (FWHM) of the in-plane effective carrier density
[cf. Fig. 7(a)] versus the width of the intracavity excitation pulse.
The cavities in Table I are considered, with the corresponding colors
indicated in the legend. (c) Time window of the in-plane effective
carrier density in the EDC ring cavity (blue) and EDC nanobeam
cavity (red) versus the size of the bowtie gap. The intracavity exci-
tation pulse width is 1 ps (solid), 5 ps (dashed), and 10 ps (dotted).
The surface recombination velocity is 104 cm/s.

longer than the cavity photon lifetime, as determined by the
loaded Q factor. As an example, Fig. 7(a) shows the time
evolution of the in-plane effective carrier density (blue) in
response to an intracavity Gaussian excitation (black) with
FWHM of 10 ps. The EDC ring cavity in Table I is considered
and the corresponding response function (gray) is also shown.
The time window (FWHM) of the effective carrier density
[cf. Fig. 7(a)] is reported in Fig. 7(b) as a function of the
intracavity excitation pulse width. On this timescale, the im-
pact of out-of-plane diffusion is safely negligible, as shown in
Sec. V. We note that the switching time (FWHM of the cavity
transmission) [3,4,6,7] is a critical figure of merit in optical
switching applications and is also influenced by nonlinear
effects [82], herein neglected. Yet, a faster linear response
generally reduces the switching time. Therefore, Fig. 7(b)
suggests that EDC cavities (blue and red) may offer shorter
switching times than H0 (yellow) or nanobeam (purple) PhC
cavities. Despite the differences in the geometry surrounding
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FIG. 8. In-plane instantaneous lifetime at (a) zero time, (b) 25 ps,
and (c) 250 ps as a function of the surface recombination velocity.
The same cavities as in Fig. 7(b) are considered.

the bowtie, the two types of EDC cavities show comparable
responses due to the similar field hot spots [see Figs. 1(b)
and 1(d)].

In addition, shrinking the bowtie gap may further reduce
the switching time, as suggested by Fig. 7(c). Here, the time
window of the effective carrier density in EDC ring cavities
(blue) and EDC nanobeam cavities (red) decreases with the
bowtie gap. As a reference, we note that switching times
measured for optical switches based on PhC H0 cavities are
on the order of 20–50 ps [6,7].

So far, we have assumed a surface recombination velocity
of 104 cm/s, representative of InP [7]. However, this pa-
rameter is strongly influenced by the semiconductor material
and fabrication process. For instance, the surface recombi-
nation velocity may be intentionally increased by growing
surface quantum wells on InP photonic cavities [8] or by
ion implantation in silicon cavities [83]. Compared to InP,
other materials, such as gallium arsenide [9], may feature
much higher surface recombination velocities. On the other
hand, surface passivation techniques have proved effective
in limiting surface recombination [60,61]. Figure 8 explores
the impact of surface recombination by showing the in-plane
instantaneous lifetime at (a) zero time, (b) 25 ps, and (c)
250 ps as a function of the surface recombination velocity. The
different colors correspond to the same cavities as in Fig. 7(b).
For all cavities, the instantaneous lifetime at zero time hardly
depends on the surface recombination velocity. This signifies
that the carrier diffusion speed is dominated, in the initial
stage, by the excitation spatial profile. A stronger dependence
on surface recombination is observed with increasing time as

diffusion gradually smears out the initial spatial distribution
of the carrier density. On the short timescale [Figs. 8(a) and
8(b)], EDC cavities are generally faster than conventional
geometries. Consistent with Fig. 5, PhC H0 cavities may
offer higher decay rates at longer times [Fig. 8(c)], but the
advantage fades with increasing surface recombination. Inter-
estingly, we also note that sufficiently large values of surface
recombination lead, at sufficiently long times [Figs. 8(b) and
8(c)], to the same carrier decay rate in the EDC cavities and
PhC nanobeam cavities. This is because the carrier diffusion
essentially reduces to a one-dimensional phenomenon, with
similar diffusion lengths in the EDC and PhC nanobeam cavi-
ties herein considered. The effect is further discussed in Sec. V
in connection with Fig. 11.

We emphasize, though, that large values of surface recom-
bination velocity are not necessarily advantageous for optical
switching applications [9]. Indeed, if the carrier diffusion dy-
namics is much faster than the excitation pulse, the carriers
decay before the optical energy in the cavity has built up
significantly. As a result, the nonlinear change in the cavity
transmission is weak and the switching contrast degrades.
For a given input power, the switching contrast is optimal
when the duration of the excitation pulse matches the short-
timescale carrier dynamics [79].

V. OUT-OF-PLANE DIFFUSION

In the following, we analyze the contribution to the carrier
dynamics due to out-of-plane diffusion. In contrast to the
case of in-plane diffusion, the out-of-plane diffusion lifetimes
and eigenmodes are described by simple analytical formulas
thanks to the one-dimensional nature of the problem.

The out-of-plane diffusion lifetimes, τz j , are given by

τz j = 1

Deffα2
z j

, (35)

where αz j obeys the following equation (see Sec. II in the
Supplemental Material):

cot

(
αz j Lz

2

)
=

(
2Deff

Lzvs

)(
αz j Lz

2

)
. (36)

Here, Lz is the cavity thickness along the cavity growth direc-
tion and the surface recombination velocity, vs, is the same at
the top and bottom surface of the cavity.

The diffusion lifetimes and the excitation coefficients, κz j ,
determine the response function of the out-of-plane effective
carrier density, heff,z(t ) [cf. Eq. (26)]. The excitation coeffi-
cients are given by

κz j = Az j

∫
Lz

v j (z)ε(z)|E(z)|2dz∫
L ε(z)|E(z)|2dz

, (37)

with v j (z) being the out-of-plane eigenmodes and Az j reading

Az j = 2αz j

αz j Lz + sin
(
αz j Lz

)
∫

Lz

cos
(
αz j z

)
Fz(z)dz. (38)

The integration line, L, in Eq. (37) includes the whole thick-
ness of the cavity, with a margin of a few wavelengths on
the top and bottom. Again, similar considerations apply to the
denominator of Eq, (37) as to that of Eq. (14).
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In analogy to Eq. (27), we introduce the out-of-plane in-
stantaneous lifetime, τeff,z(t ) = −d ln[heff,z(t )]/dt . From the
eigenmode expansion, we obtain

1

τeff,z(t )
=

∑
j

κz j

τz j
e
− t

τz j

∑
j κz j e

− t
τz j

. (39)

We emphasize that Eq. (36) and Eq. (38) should be general-
ized if the cavity geometry is not z symmetric or the surface
recombination velocity differs at the top and bottom surface
of the cavity. This general case is treated later on in this
section. The graphical solution of Eq. (36) is illustrated in
Fig. 9(a). The intersections (blue bullets) between the straight
line (red) on the right-hand side of Eq. (36) and the cotangent
function (gray) on the left-hand side determine the values of
αz j and hence the diffusion lifetimes. With decreasing cavity
thickness and surface recombination velocity, the intersec-
tion corresponding to the longest diffusion lifetime moves
closer to the x-axis origin, where the cotangent function
may be approximated with a hyperbola (black). By insert-
ing cot (αz j Lz/2) ≈ (αz j Lz/2)−1 in Eq. (36), one recovers the
usual single-lifetime approximation [6,7]

τz0 = Lz

2vs
(40)

corresponding to the intersection (green bullet) between the
straight line and the hyperbola in Fig. 9(a).

Several eigenmodes generally contribute to the instanta-
neous lifetime, as already seen for the in-plane diffusion. For
example, we consider the EDC ring cavity in Table I with vs =
104 cm/s. The out-of-plane excitation profile is illustrated in
Fig. 2(d). As shown by Fig. 9(b), the out-of-plane instanta-
neous lifetime at zero time significantly differs from the value
found by only including the first eigenmode, corresponding
to the longest diffusion lifetime. At zero time, the excitation
profile dominates the diffusion speed and higher-order eigen-
modes must be considered. However, the convergence with
the number of eigenmodes is much faster than previously seen
for the in-plane diffusion (cf. Fig. 6) and a few eigenmodes are
enough for an accurate estimate.

As shown by Fig. 9(c), the out-of-plane instantaneous
lifetime at zero time (blue) is hardly dependent on surface
recombination, similarly to the case of in-plane diffusion [cf.
Fig. 8(a)]. The in-plane instantaneous lifetime (red) and the
total instantaneous lifetime (yellow) are also shown. The latter
is defined as follows:

1

τeff (t )
= −d ln [heff (t )]

dt
, (41)

which leads to

1

τeff (t )
= 1

τeff,xy(t )
+ 1

τeff,z(t )
+ 1

τbulk
(42)

based on Eq. (21). To focus on the effect of carrier dif-
fusion, we shall assume τbulk = ∞. The in-plane diffusion
dominates the total instantaneous lifetime. The single-lifetime
approximation (green) poorly describes the out-of-plane dif-
fusion, but the error barely affects the total instantaneous
lifetime. The other photonic cavities in Fig. 1 feature similar

FIG. 9. (a) Graphical solution of Eq. (36) to calculate the out-
of-plane diffusion lifetimes. Parameters: Lz = 240 nm and vs =
5 × 105 cm/s. (b) Out-of-plane instantaneous lifetime at zero time
versus the number of eigenmodes taken into account. The EDC ring
cavity in Table I is considered with vs = 104 cm/s. (c) Out-of-plane
instantaneous lifetime at zero time (blue) versus the surface recom-
bination velocity. The in-plane instantaneous lifetime (red), the total
instantaneous lifetime (yellow), and the out-of-plane single-lifetime
approximation (green) are also shown. The same cavity as in (b) is
considered.

out-of-plane excitation profiles and comparable values of the
cavity thickness, leading to similar results (not shown).

We point out that reducing the cavity thickness accelerates
the out-of-plane diffusion, whose contribution to the total
instantaneous lifetime may become non-negligible. However,
the change in the out-of-plane excitation profile, which is
essential to consider at zero time, should be self-consistently
taken into account. The time dependence of the instantaneous
lifetimes is illustrated in Fig. 10. A surface recombination
velocity of 104 cm/s is considered. With increasing time, the
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FIG. 10. Out-of-plane instantaneous lifetime (blue) versus time.
The EDC ring cavity in Table I is considered with vs = 104 cm/s.
The in-plane instantaneous lifetime (red), the total instantaneous
lifetime (yellow), and the out-of-plane single-lifetime approximation
(green) are also shown. Inset: out-of-plane carrier density distribution
at different times versus the out-of-plane position coordinate.

out-of-plane lifetime (blue) tends to saturate much faster than
the in-plane counterpart (red). The inset displays the out-of-
plane carrier density distribution at zero time (light blue),
5 ps (light red), and 50 ps (light green) as a function of z
(see Sec. II in the Supplemental Material). The distribution
is quickly smeared out and the carrier decay rate, within a
few picoseconds, is only limited by surface recombination. In
contrast, the in-plane geometry, which is less trivial, tends to
preserve the nonuniformity of the carrier distribution and re-
tard the saturation of the in-plane instantaneous lifetime. The
in-plane diffusion is also seen to be faster and it dominates
the total instantaneous lifetime (yellow) at any given time.
This is generally the case unless the surface recombination is
strong enough. Figure 11 illustrates the impact of surface re-
combination on the long timescale, where the in-plane carrier
decay rate is close to saturation. For sufficiently large val-
ues of surface recombination, the out-of-plane instantaneous
lifetime (blue) approaches the in-plane lifetime (red), with
a non-negligible impact on the total lifetime (yellow). The
single-lifetime approximation (green) accurately captures the
out-of-plane lifetime unless the surface recombination is high.
The insets display the in-plane carrier density distribution for
(a) moderate and (b) high values of surface recombination.
Interestingly, large values of surface recombination tend to
split the carriers and trap them in the space between the bowtie
holes and the air openings above and below. The size along
the y direction, Ly, of this interstitial space [see inset (b)]
roughly corresponds to the cavity thickness, Lz, explaining
why the out-of-plane and in-plane lifetimes tend to coincide.
We have noticed similar trapping phenomena in the other
photonic cavities (not shown). The observation suggests that
the in-plane diffusion may be described as a one-dimensional
phenomenon at sufficiently long times and high enough values

FIG. 11. Out-of-plane instantaneous lifetime at 250 ps (blue)
versus the surface recombination velocity. The in-plane instanta-
neous lifetime (red), the total instantaneous lifetime (yellow), and the
out-of-plane single-lifetime approximation (green) are also shown.
The EDC ring cavity in Table I is considered with vs = 104 cm/s.
Insets: in-plane carrier density distribution in arbitrary units at 250 ps
for (a) vs = 104 cm/s and (b) vs = 106 cm/s.

of surface recombination. However, we expect the effective
diffusion length to depend on the specific in-plane geometry,
which prevents further general considerations.

If the out-of-plane excitation profile is not symmetric with
respect to z or the surface recombination velocity is not the
same at the top and bottom surface of the cavity, the out-
of-plane diffusion is generally asymmetric. In this case, the
values of αz j governing the diffusion lifetimes [cf. Eq. (35)]
are determined by

cot
(
αz j Lz

) = D2
eff

(
αz j Lz

)2 − vst vsbL
2
z

Deff
(
αz j Lz

)(
vst + vsb

)
Lz

, (43)

with vst and vsb being the surface recombination velocity at the
top and bottom surface of the cavity, respectively. The expres-
sion of Az j [cf. Eq. (38)] is also generalized (see Sec. III in the
Supplemental Material) and takes into account that the eigen-
modes are not even functions of z. In practice, the out-of-plane
diffusion is asymmetric if the substrate and cladding materials
below and above the cavity, respectively, are different [with
Fz(z) thus being asymmetric] or in general if the top and
bottom surface feature different defect densities. For example,
we consider again the EDC ring cavity in Table I. The cav-
ity remains z symmetric [with Fz(z) thus being unchanged],
but vst and vsb are now allowed to differ. We focus on the
long timescale, where the impact of surface recombination
is significant, and the contribution of the out-of-plane diffu-
sion to the total instantaneous lifetime may be non-negligible.
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FIG. 12. Out-of-plane instantaneous lifetime at 250 ps (solid)
versus the surface recombination velocity at the top surface of the
cavity, vst . The surface recombination velocity at the bottom surface,
vsb , is 102 cm/s (blue), 104 cm/s (red), and 106 cm/s (yellow). The
single-lifetime approximation [dotted, Eq. (40)] is also shown with
the substitution vs → (vst + vsb )/2. The EDC ring cavity in Table I
is considered.

Figure 12 shows the out-of-plane instantaneous lifetime at
250 ps (solid) versus the surface recombination velocity at the
top surface of the cavity. We also include the single-lifetime
approximation [dotted, Eq. (40)] with the surface recombi-
nation, vs, replaced by the average value of vst and vsb . For
low (blue) and moderate values (red) of vsb , the out-of-plane
instantaneous lifetime as obtained from the eigenmode ex-
pansion only differs from the single-lifetime approximation at
sufficiently high values of vst . In contrast, large surface recom-
bination values (yellow) at either the top or bottom surface
degrade the accuracy of the single-lifetime approximation,
irrespective of the surface recombination velocity at the other
surface.

VI. CONCLUSIONS

In conclusion, we have investigated the diffusion of
carriers in semiconductor nanoscale resonators by employing

an efficient eigenmode expansion technique. The response
function of the mode-averaged (or effective) carrier density
is found from the eigenmodes of the ambipolar diffusion
equation, at variance with time-domain simulations of previ-
ous works [13]. Importantly, we have shown that emerging
dielectric cavities with extreme dielectric confinement (EDC)
[15,17–19] reduce the time it takes for the carriers to diffuse
out of the effective mode area of interest. This is due to the
tight confinement of the electric field to a hot spot. Thus the
effective carrier density decay rate is accelerated, which is
promising for optical switching applications compared to
more conventional geometries. However, we emphasize that
considering specific cavity designs, including input and output
coupling channels, is important for investigating the optical
switching performance. Likewise, nonlinear effects, including
thermal effects, have been neglected in this article, and they
should also be considered, which is left for future works.

A major merit of the eigenmode approach is singling out
the contribution to the effective carrier density decay rate due
to the in-plane and out-of-plane cavity geometry. The in-plane
contribution is found to dominate unless the surface recombi-
nation is high and the timescale of interest is sufficiently long.
Furthermore, we have quantified the instantaneous decay rate
of the effective carrier density, as a function of time and
surface recombination, and compared EDC geometries with
conventional photonic crystal designs. In contrast, previous
works often rely on multiexponential fits of nonlinear switch-
ing experiments [8,23], where the impact of carrier diffusion
is difficult to isolate.

The eigenmode approach captures the long-timescale de-
cay rate with only a few eigenmodes, making the method
advantageous compared to time-domain simulations. More-
over, sorting the eigenmodes by their excitation coefficients
significantly improves the convergence rate on the short
timescale. Future works may conveniently exploit the formu-
lation herein illustrated [in short, Eqs. (28), (39), and (42)] to
systematically optimize the carrier decay rate at given times,
e.g., by inverse design [30,31].
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