
PHYSICAL REVIEW B 109, 245139 (2024)

Collective tunneling of a Wigner necklace in carbon nanotubes
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The collective tunneling of a Wigner necklace—a crystal-like state of a small number of strongly interacting
electrons confined to a suspended nanotube and subject to a double-well potential—is theoretically analyzed and
compared with experiments in Shapir et al. [Science 364, 870 (2019)]. Density matrix renormalization group
computations, exact diagonalization, and instanton theory provide a consistent description of this very strongly
interacting system, and show good agreement with experiments. Experimentally extracted and theoretically
computed tunneling amplitudes exhibit a scaling collapse. Collective quantum fluctuations renormalize the
tunneling, and substantially enhance it as the number of electrons increases.
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I. INTRODUCTION

While investigating correlation effects in electron liquids,
Eugene Wigner conjectured in 1934 the existence of an elec-
tron crystal [1], today referred to as the Wigner crystal. In his
seminal work, Wigner noticed that the interaction energy of a
three-dimensional electron gas scales as Eint ∼ n1/3 with their
density n, and dominates over the kinetic energy EK ∼ n2/3

in the very dilute limit. Therefore, electrons must become
localized at very small carrier concentrations, and form a
crystal. The kinetic energy of the electrons increases upon
compression, and the crystal melts due to quantum and ther-
mal fluctuations into an electron liquid. A similar solid-liquid
(quantum or thermal) phase transition occurs in two spatial
dimensions [2]. In one dimension, however, quantum fluctua-
tions destroy long-range order, and no phase transition takes
place but only a crossover between a Luttinger liquid-like state
and a dilute regime with power-law crystalline correlations
appears [3,4].

Since the predictions of Wigner, tremendous effort has
been devoted to detect and understand this quantum crystal.
While these efforts remained unsuccessful in three dimen-
sions, Wigner crystal phases and correlations have been
demonstrated in two-dimensional structures [5–29], as well
as more recently in one dimension [30,31].

Spatial confinement suppresses quantum and classical fluc-
tuations, and stabilizes the crystalline structure. When only
few electrons are confined within a limited spatial region,

one often refers to Wigner molecules. Such “molecules” ex-
hibit highly correlated arrangements due to the dominance of
electron-electron interaction [32–36] and are characterized by
significant variations in electron density as well as distinc-
tive peaks in the density-density correlation function [37–39].
In two-dimensional quantum dots, the formation of Wigner
molecules has been observed indirectly by various measure-
ments, including transport [40,41] and spectroscopy [42].

The real-space structure of small crystals became directly
accessible recently. The structure of a small one-dimensional
Wigner crystal in a carbon nanotube has been carefully probed
in Ref. [30], and a collective tunneling of the crystal has
been observed. Very recently, one-dimensional Wigner crys-
tals have also been observed in van der Waals heterostructures
[43], where the artificial stacking technique used introduces
strain variations and leads to the formation of domain walls,
which exhibit unique electronic behavior, associated with the
formation of a phase-locked one-dimensional Wigner crystal.
By tuning the electron density, a transition can be observed
from a one-dimensional Wigner crystal to a dimerized Wigner
crystal, and eventually to a weakly interacting Luttinger liquid
[43]. In this work, we focus on this latter phenomenon, and
model and analyze the tunneling of a small, one-dimensional
Wigner crystal, which we refer to as the “Wigner necklace.”

The setup of Ref. [30] is illustrated in Fig. 1(a). A carbon
nanotube is suspended and appropriately gated. Gates on the
right-hand side, underneath the nanotube, are utilized to trap
N electrons (or holes) and create a confining potential V (z) at
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FIG. 1. (a) Experimental setup of Ref. [30] used to detect collec-
tive tunneling. The bottom gates under the nanotube are used to shape
the double-well potential, the left-hand-side quantum dot (dark blue)
serves as a charge detector. (b), (c) Ground-state charge densities
(red) from exact diagonalization for a system of three electrons in
a double-well potential (gray). A single electron moves between
the two sides upon changing the asymmetry. The charge density
displays a crystalline structure due to the strong Coulomb interaction
[η = 20 in Eq. (7)].

will, with z being the electron coordinate along the nanotube.
On the left, a quantum dot is formed from the same nanotube
and serves as a charge detector. The spatial structure of charge
distributions within the nanotube can be further detected by
placing a probe nanotube on top of the device and measuring
the charge detector’s response. The confining potential V (z) is
well approximated by a simple quartic form,

V (z) = b

4
z4 − a

2
z2 − c z, (1)

with a, b, and c being tunable parameters. Tunneling between
the two sides of the potential is generated by applying a bias
and thereby changing the sign of c.

In the present work we investigate theoretically the collec-
tive tunneling of very strongly interacting charged particles
in the potential V (z). Such collective tunneling occurs for an
odd number of particles. Then the classical ground state of
the particles is twofold degenerate in a symmetrical potential,
but quantum tunneling allows for the hybridization of these
two states, and splits their energy. However, as demonstrated
experimentally [30], due to the strong Coulomb interaction,
moving just one charge from one side of the barrier to the
other is accompanied by the reordering of charges and a col-
lective motion of all particles.

The theoretical study of this phenomenon is rather chal-
lenging in the strongly interacting regime, where usual
quantum chemistry approaches break down [44]. In fact, we
are not aware of any precision calculation in this regime,
apart from our earlier work [30], where a special DMRG

procedure has been developed to compute charge density
profiles. Reaching the requested accuracy and obtaining the
tunneling amplitude, however, is an even more difficult task.
We apply a combination of three different methods. In the
deep tunneling regime, an instanton approach can be used
[45], but incorporating quantum fluctuations turns out to be
crucial (as well as a technical challenge due to numerical
instabilities) in the quantum tunneling regime. Unfortunately,
most of the experimental data turn out to be in the inter-
mediate region, where instanton theory is inapplicable. To
capture the physics in this regime, too, we perform density
renormalization group–based (DMRG-based) computations,
which we corroborate with restricted “exact” diagonalization
calculations. These three approaches provide us a consistent
picture, are in good agreement with the experimental data, and
confirm the presence of collective tunneling.

Through most of this work, we neglect the electron spin.
While this is not justified for intermediate interactions [39], it
turns out to be an excellent approximation in the strongly in-
teracting regime studied here. By studying the spinful N = 3
case we show that in the experimentally relevant regime of
large interactions spin-charge separation takes place, where
charge degrees of freedom are responsible for the collective
charge tunneling, while the spin degrees of freedom remain
spectators at the experimentally relevant energies. By com-
paring the different theoretical methods and experiment, we
also conclude that quantum fluctuations (phonons) of a small
necklace enhance tunneling.

The paper is organized as follows: In Sec. II we outline
the basic model used to describe the experimental setup of
Ref. [30]. Section III is devoted to the discussion of the
three complementary theoretical methods used in this work.
Our results are presented in Sec. IV, along with a detailed
comparison with the experimental data. Finally, in Sec. V, we
study the case of N = 3 spinful electrons, and demonstrate
spin-charge separation. Our conclusions are summarized in
Sec. VI, while some technical details of the instanton calcula-
tion are described in the Appendix.

II. MODELLING THE EXPERIMENTAL SETUP

To observe the Wigner crystal regime in a carbon nanotube,
the mass of the charge carriers needs to be as large as possible,
and their interaction as strong as possible. The Wigner crys-
tal regime is therefore ideally observed in suspended small
diameter semiconducting nanotubes with large gaps, as those
used in Refs. [30,31]. Electrons confined to such nanotubes
are very well described by the effective Hamiltonian

H =
N∑

i=1

[
− h̄2

2m∗
∂2

∂z2
i

+ V (zi)

]
+

N∑
i< j

e2

4πε0

1

|zi − z j | , (2)

with m∗ the effective mass of the electrons (holes) in the
nanotube, and V (z) the confining potential, Eq. (1). The spin
σ and the chirality τ of the particles do not appear in this
Hamiltonian [46]. They play an important role at larger elec-
tron densities [47]. However, since the tunneling experiments
studied here and in Ref. [30] are performed in the spin in-
coherent regime [48], in most of our analysis we neglect
them and consider simply interacting spinless fermions. As
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we demonstrate in Sec. V, this is well justified in the large-
interaction limit, relevant for the experiments in Ref. [30],
where the exchange splitting is small, spin degrees of freedom
are incoherent, and the charge sector is responsible.

While they turn out to be unimportant in the very strongly
interacting regime studied here, exchange interactions as
well as spin-orbit interaction do play an important role at
intermediate densities, where the Wigner crystal starts to melt;
there they modify the structure of avoided level crossings in
Wigner molecules [39] and lead to the emergence of magnetic
correlations and magnetic phases in larger systems [31,47].

Usually, the strength of electron-electron interaction in a
homogeneous, d-dimensional electron gas is characterized by
the parameter rs = n−1/d/aB, the ratio of the typical distance
between charge carriers and the Bohr radius, aB = h̄2ε/me2.
At rs ≈ 1 the electrons’ kinetic energy is approximately the
same as their potential energy, while for rs � 1 the interaction
energy dominates. It is in the latter regime that the Wigner
crystal emerges.

In a confined potential, however, the concept of rs is not
particularly useful. There the confining potential sets a typical
length scale, which in our case is simply the oscillator length
of the quartic potential (a = c = 0),

ld =
(

h̄2

m∗b

)1/6

. (3)

Introducing the corresponding dimensionless coordinates,
z → χ = z/ld , defines then the natural energy scale of the
problem,

E0 = h̄2

m∗l2
d

, (4)

and leads to the definition of the dimensionless strength of the
Coulomb interaction,1

η = ld
aB

= m∗e2

ε h̄2

(
h̄2

m∗b

)1/6

. (5)

For the nanotube investigated here and in Ref. [30] we obtain

ld ≈ 160 nm, E0 ≈ 5.56 K, η ≈ 20, (6)

the latter signaling an extremely strong Coulomb interaction.
In terms of these units, we obtain the dimensionless

Hamiltonian

H̃ =
N∑

i=1

[
−1

2

∂2

∂χ2
i

+ 1

4
χ4

i − α

2
χ2

i − εχi

]
+η

N∑
i< j

1

|χi − χ j | ,

(7)

where the dimensionless parameter α = a l2
d /E0 sets the

height of the tunneling barrier between the two valleys, while
ε = c ld/E0 characterizes their bias.

1As the relevant length scale is provided by the quartic part of the
double-well potential, here, we consider a modification of the stan-
dard rs parameter as originally introduced by Wigner, implemented
to the situation we investigate.

In the following sections, we analyze this Hamiltonian by
three complementary approaches: a semiclassical many-body
tunneling approach, a DMRG-based quantum chemistry ap-
proach, and a restricted exact diagonalization method.

III. THEORETICAL APPROACHES

Our goal is to compute the tunneling amplitude � of the
tiny crystal, i.e., the splitting of the two almost degener-
ate states of the necklace for N = odd, and to investigate
this tunnel splitting and the electrons’ charge distribution as
a function of the potential height α, and the bias ε. The
tunneling amplitude is inversely proportional to the polariz-
ability of the Wigner molecule at T = 0 temperature, and is
therefore directly accessible experimentally via polarization
measurements, while charge distributions can be detected by
an AFM-like method using a probe nanotube [30].

A. Instanton theory

We first consider the Wigner necklace tunneling problem
by using the instanton approach [45,49–52]. Instanton theory
(IT) is accurate in the tunneling regime, α � 0, however, it
breaks down at small positive values,α � αcr, with αcr denot-
ing the barrier height parameter where tunneling sets in.

In the instanton approach, one considers the imaginary
time tunneling amplitude between two many-body positions.
Tunneling appears as a classical motion of the particles in
imaginary time, and the tunneling amplitude is proportional to
� ∼ e−Sinst , with Sinst the instanton action. Fluctuations around
this classical path determine the amplitude of tunneling, i.e.,
the prefactor in front of the exponential [49].

The energy splitting � of the lowest lying states can be ob-
tained by computing the imaginary time Feynman propagator,

K (χ′
0,χ0, τ̃ ) = 〈χ′

0|e−τ H̃ |χ0〉, (8)

between the minima χ0 and χ′
0 of the many-body potential,

vN (χ) =
N∑

i=1

(
−α

2
χ2

i + 1

4
χ4

i

)
+ η

N∑
i< j

1

|χi − χ j | , (9)

with τ the dimensionless imaginary propagation time mea-
sured in units of h̄/E0. One can express (8) as a path integral
in terms of the imaginary time trajectories χ(τ ), which are
separated into a classical instanton trajectory χcl(τ ), minimiz-
ing the classical (Euclidean) action

SE [χ(τ )] = S0

∫ T

0
dτ

{
1

2

N∑
i=1

(
dχi

dτ

)2

+ vN (χ)

}
, (10)

and small fluctuations around that, χ(τ ) = χcl(τ ) + r(τ ). The
prefactor S0 = (ld/E0)3/2 emerges naturally, and denotes the
natural action unit in this problem, and T denotes the tun-
neling time in units of h̄/E0. Expanding the action to second
order in r(τ ) leads to the expression

K (χ′
0,χ0, T ) ≈e−Sinst

∫ r(T )=0

r(0)=0
Dr exp

{
1

2

∫ T

0
dτ r(τ )

× [−∂2
τ + ∂ ◦ ∂ vN (χcl (τ ))

]
r(τ )

}
, (11)
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FIG. 2. Soft modes ωi as a function of α, for N = 3. The vertical
line at α = αcr ≈ 4.45 marks the beginning of the tunneling regime.
For α > αcr there are two independent equilibrium position, while
for α < αcr only one, indicating the absence of the tunneling at
small α.

with Sinst = SE [χcl(τ )] the instanton action, and the integral
accounting for quantum fluctuations around it.

We determined the initial and final equilibrium positions
χ0 and χ′

0 as well as the instanton trajectories by applying
a Monte Carlo simulated annealing procedure [53]. Figure 2
shows the frequencies of small vibrations around the mini-
mum (minima) of vN (χ) for N = 3. The symmetrical position
of the three particles becomes classically unstable at αN=3

cr ≈
4.45, the classical threshold for collective tunneling. For
α < αcr the minimum-energy configuration is unique, while
for α > αcr two equilibrium positions exist, and tunneling
becomes possible. The transition to the tunneling regime is
marked by the softening of the lowest energy mode. Interest-
ingly, the direction of this mode coincides with that of the
instanton trajectory for α > αcr.

A typical trajectory is displayed for N = 3 particles
in Fig. 3, which demonstrates collective tunneling. In our
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5

FIG. 3. Three-particle imaginary time trajectories (blue) in the
dimensionless units for a specific confinement parameter α = 12.5 >

αcr and η = 20. Dashed lines show the classical equilibrium positions
or instanton turning points for the three particles.
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FIG. 4. Renormalization factor R0(α, N ) as a function of α for
N ∈ {1, 3, 5, 7}. On each line, the diamond symbols mark the begin-
ning of the quantum tunneling regime.

calculations, we “compactify” time by introducing the param-
eter ϑ = tanh(τ/τ0), and parametrize χ by using ϑ . Clearly,
the middle electron tunnels through the potential barrier, while
the outer electrons do not tunnel but adjust their positions.

The choice of τ0 is important from the point of view of nu-
merical accuracy. A small value of τ0 increases the numerical
accuracy in the tunneling region, while a large value of τ0 ≈ 5
provides better resolution around the end of the trajectories.
Since the primary contribution to the energy splitting arises
from the region around τ ≈ 0, a value τ0 ≈ 0.5 turns out to be
optimal for accurate calculations.

Performing the Gaussian integral in Eq. (11) is a highly
nontrivial task [45,54]. The procedure consists of introduc-
ing the arc-length variable ds2 = dχ2

cl along the instanton
trajectory, and N − 1 perpendicular coordinates. In this way,
one describes the tunneling as a one-dimensional tunnel-
ing process in an effective potential w(s), renormalized by
“perpendicular” quantum fluctuations (see Appendix). The
tunneling amplitude is then expressed as

� = R0(α, N ) �1,

�1 =
√

4ωsoft

π

√
2
[
vmax

N − vmin
N

]
P[χcl (s)]e−SE , (12)

with �1 associated with a one-dimensional motion in the
effective double-well potential, and R0(α, N ) the aforemen-
tioned renormalization factor [45,54] (see Appendix for
details). Here ωsoft denotes the oscillation frequency at the
initial position of the tunneling trajectory in the tunneling
direction, and P[χcl] is a renormalization factor associated
with the effective one-dimensional motion. The prefactor R0

is equal to one for N =1, but it becomes significant for N � 3
(see Fig. 4) and exhibits a non-negligible α dependence.
Somewhat surprisingly, quantum fluctuations seem to increase
the tunneling amplitude substantially, and quantitative compu-
tations must take them into account.

B. Density matrix renormalization group

As an alternative to instanton computations, we also
performed density matrix renormalization group (DMRG)
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computations. DMRG provides an accurate description of the
intermediate tunneling regime, however, it fails in the deep
tunneling regime, where we experience convergence prob-
lems.

Originally, DMRG has been proposed as an efficient
computational scheme for one-dimensional systems with
short-ranged interactions [55], but has been extended later to
systems with long-ranged interactions as well as to higher-
dimensional lattices [56], and it has been reformulated more
recently in a possibly more transparent way by using the
language of matrix product states (MPS’s) [57,58].

To perform DMRG, we express the Hamiltonian (7) in
a second-quantized form. The key to efficient DMRG cal-
culations is to choose an appropriate basis in the strongly
interacting limit studied here, η � 1. The most natural choice
of harmonic-oscillator basis functions centered at χ = 0,
e.g., is not able to reach this regime [44]. Here we perform
calculations by using an overcomplete adaptive basis with
harmonic-oscillator wave functions localized around the clas-
sical equilibrium positions of the electrons [30].

In this basis, we rewrite the Hamiltonian (7) the second-
quantized form:

H̃ =
∑
a,b

tabc†
acb + 1

2

∑
a,b,c,d

Vab,cd c†
ac†

bcd cc, (13)

where tab stands for the matrix elements of the noninteracting
part of (7), tab = 〈ψa|H̃0|ψb〉, while Vab,cd = 〈ψaψb|U |ψcψd〉
are the matrix elements of the Coulomb interaction, U =
η/|χ − χ ′| calculated within the single-particle wave func-
tions described above. The computation of the matrix
elements Vab,cd is numerically demanding, but it can be
speeded up by exploiting the translational invariance of the
Coulomb interaction.

For our computations, we utilized the Budapest-DMRG
code [59–61], which allows us to treat long-range interactions
efficiently and to take advantage of the U(1) symmetry of the
model associated with the conservation of the total charge
as well as the Z2 symmetry associated with parity. In our
computations, we use a bond dimension of the order of 2048–
4096, and an adaptive basis consisting of 8–16 orbitals per
electron, depending on the number of electrons. We computed
the ground-state energies in the even- and odd-parity sectors,
E (e)

GS and E (o)
GS , and extracted the energy splitting

� = ∣∣E (e)
GS − E (o)

GS

∣∣, (14)

identified as twice the tunneling amplitude in the tunneling
regime. Typical results for � as well as a comparison with
the results of the other approaches we used are displayed in
Fig. 5 as a function of α. Unfortunately, in the deep tunneling
regime, where � becomes exponentially small, � � 10−3,
we noticed that the convergence of DMRG was influenced
by the choice of basis we utilized. Specifically, as we de-
creased α, the states became increasingly localized, which
led to convergence challenges for the desired accuracy.
Although increasing the bond dimensions improves the cal-
culations, it also demanded greater computational resources.
Consequently, as an alternative approach, we employed com-
plementary methods like restricted exact diagonalization or
instanton theory to achieve accurate results. Nevertheless, the

FIG. 5. (a), (b) Numerically computed tunnel splitting on both
linear and logarithmic scales, compared with the rescaled experimen-
tal polarization data (EXPT). Instanton theory captures � accurately
in the deep tunneling regime, where � is suppressed exponentially
by increasing barrier height [see panel (b)]. Each set of curves cor-
responds to a different number of electrons, N . The shaded region
indicates the regime, where the exchange couplings may already
modify the tunneling process and spin can play an important role.
In panel (c), the data are scaled together and trace a single, universal
curve. The tunneling regime starts at α̃ ≈ 0.

range of applicability of DMRG overlaps with that of these
methods, and enables us to obtain a complete description of
the collective tunneling.

C. Restricted exact diagonalization

As a third, complementary method, we also used the re-
stricted exact diagonalization (ED), which can be utilized to
determine the eigenstates of relatively small quantum systems.
Here we also use it to benchmark the other two, more sophis-
ticated methods. In this work, we diagonalize the Hamiltonian
(7) in real space.

For N ∈ {1, 3}, diagonalization is performed with a rela-
tively large number of states, ≈100 for each particle, ensuring
accurate ground-state and a few excited-state energies. How-
ever, for N ∈ {5, 7}, the Hilbert space becomes too large, and
a complete diagonalization is impossible in practice. Never-
theless, a projected version of ED can be used even in these
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FIG. 6. Density plots for the charge polarization P̃(α, ε) repre-
sented as a function of α and ε. The polarization is calculated for
N = 1 and N = 3 electrons inside the confinement potential.

cases, where a restricted wave function is used, with electrons
treated as distinguishable particles. This method reduces the
size of the Hilbert space by two to three orders of magnitude,
and can be used to study up to N = 7 electrons the low-energy
spectrum in the strongly interacting limit, where exchange
processes are unimportant [62].

IV. RESULTS AND COMPARISON
WITH EXPERIMENTAL DATA

A. Polarization, polarizability, and tunneling amplitude

The careful design and control in the experiments of
Ref. [30] allows one to measure the polarization P of the
electrons on the nanotube as a function of the applied bias [ε
in Eq. (7)] as well as that of the height of the barrier, regulated
by a back gate potential VK . Such polarization results are
displayed in Fig. 6 along with our theoretical calculations for
N = 3.

In the theoretical computations in Fig. 6, we define the
dimensionless polarization simply as

P̃(α, ε) = N〈χ〉 =
∫

dχ χ ρ(χ, α, ε), (15)

with ρ(χ, α, ε) the ground-state charge density,

ρ(χ, α, ε) =
N∑

i=1

〈�|δ(χ − χi )|�〉, (16)

and |�〉 = |�(χ, α, ε)〉 the ground-state wave function ob-
tained using ED or DMRG.

As one enters the quantum tunneling regime, the polariza-
tion displays a kink as a function of the applied bias. This kink
becomes sharper and sharper as the barrier height increases,
clearly demonstrating that the broadening of the polarization
jump in the experiments is not due to thermal fluctuations,
but is dominated by quantum fluctuations—excepting the very

TABLE I. List of rescaling parameters appearing in Eq. (18).

N α
(N )
0 x(N ) [meV]−1 y(N ) [meV] V (N )

0 [meV]

1 2.2 14.8 1 109
3 6.9 74.2 0.25 280
5 10.4 141.9 0.15 560
7 13.2 170.8 0.13 850

deep tunneling regime, where the transition becomes very
sharp and its width is set by thermal fluctuations.

In this quantum tunneling regime, right at the transition,
ε = 0, the polarizability is inversely proportional to the tun-
neling amplitude,

� = ∂P

∂ε
∝ 1

�
. (17)

The precise prefactor here is hard to determine, since it de-
pends on the precise charge distribution before and after the
tunneling. Also, although the response at the charge sensor
is certainly proportional to the polarization, it depends on the
capacitive coupling between the electrons at various positions
and the charge sensor. Nevertheless, the relation above enables
us to extract the tunneling amplitude as a function of the shape
of the barrier, apart from an overall scale.

For a detailed comparison with the experiments, we as-
sumed that there is a linear relation between the voltage VK

and the dimensionless parameter α. This leads to the relations

α(N ) = α
(N )
0 + x(N )

(
VK − V (N )

0

)
,

�(N ) = y(N ) �(N )
(
V (N )

0

)
�(N )(VK )

. (18)

Here the parameters α
(N )
0 and V (N )

0 mark the threshold of tun-
neling regime, while x(N ) and y(N ) rescale the axes. We obtain
a remarkably accurate fit to the experiments, as displayed in
Fig. 5. Our fitting parameters are enumerated in Table I; both
α

(N )
0 and x(N ) scale roughly linearly with the threshold, V (N )

0 ,
while the overall polarizability rescaling coefficient scales as
y(N ) ∼ 1/N . Interestingly, the data obtained for various N val-
ues also display a universal scaling when plotted as a function
of α̃ = α − α0, as demonstrated in Fig. 5.

B. Charge distribution and polarization

The experimental setup of Ref. [30] also allows measuring
charge distributions. In particular, the collective motion of the
electrons has been demonstrated by measuring the difference
of the charge density, �ρ(z, α, ε), before and after the tunnel-
ing, and comparing the results with theoretical computations
for N = 3 (see Fig. 4 in Ref. [30]).

Although experimentally it is not possible to measure non-
invasively ρ(z) at the most interesting point, ε = 0, we can
compute ρ(z) for any value of ε and study its evolution upon
changing the bias ε. The redistribution of charge as a function
of bias, as obtained via ED computations is displayed in Fig. 7
for N = 5 particles. While for ε � � two electrons reside on
the right and three on the left, for ε ≈ 0 the system delocalizes
between the “2 + 3” and “3 + 2” states, as reflected by the
deformation of the density profile. While the motion of the
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FIG. 7. Charge distribution profiles for N = 5 particles, with dif-
ferent ε values. At ε = 0 the particle in the middle is represented
on both sides of the potential barrier, while by increasing the linear
detuning, we see that it slowly shifts to one side, changing the
positions for the side particles as well.

central electron is certainly dominant, the profile difference,
�ρ(z), presented in Fig. 8, clearly indicates that all charges
are displaced in course of the quantum tunneling process.

We present ρ(χ ) for N = 3 particles in Fig. 9 for a set
of parameters α. The classical ground state becomes twofold
degenerate at α = αN=3

cl ≈ 4.45. Quantum fluctuations, how-
ever, shift this threshold to αN=3

0 ≈ 6.9, and tunneling takes
place only for α � 6.3. Figure 9 also displays the charge po-
larization, Eq. (15). The main contribution to the polarization
comes from the tunneling of the central electron, and the
rearrangement of electrons on the right and the left yields a
much smaller contribution. At ε ≈ 0, the central electron is
strongly delocalized between the two sides, while the lateral
electrons gradually shift as the central charge is transferred.

This seems to suggest that lateral electrons are merely
spectators of the tunneling event. This, however, is not true. As
already discussed above, the profile �ρ clearly demonstrates
that all electrons participate in the tunneling process. This

-1 0 1 -1 0 1

FIG. 8. Smeared charge density difference, �ρ(z), between the
left- and right-polarized states for N = 3 and N = 5 as a function of
the bias, ε. The peaks emerging on the sides indicates, that during the
tunneling all the three particles change their positions.

is corroborated by our instanton computations, which show
that lateral electrons participate in collective vibrations and
thereby enhance quantum fluctuations, which largely facilitate
the quantum-tunneling process, as captured by the increased
prefactor R0 in Eq. (12).

V. THE ROLE OF SPIN AND VALLEY
DEGREES OF FREEDOM

In this section, we investigate the role of the spin degrees
of freedom, and demonstrate that they do not play a significant
role in the experimentally accessible regime for large interac-
tions, η ≈ 20. In addition to spin, electrons in nanotubes also
possess a chirality (spin) [63]. These play a role similar to
ordinary spins in nanotubes. In the small diameter nanotubes
used in Ref. [30], however, spin-orbit coupling is strong [63].
Therefore, at the energy scales investigated here, chiral quan-
tum numbers are already merged with spin degrees of freedom
in to a composite SU(2) degree of freedom, replacing the
electrons’ ordinary spin [47]. Spin in the following refers to
this composite degree of freedom.

Studying this large interaction range, η ≈ 20 is extremely
demanding, and we are not aware of any reliable computation
in this regime. In this regime, a much larger and adaptive
basis [30] is needed to capture the physics at all relevant
length scales and reach the accuracy requested to determine
the size of (exponentially small) level crossings. Here we
therefore focus only on the case of N = 3 and include only
the electrons’ composite spin, i.e., we focus on small diameter
nanotubes and energy scales below a few Kelvins.

The evolution of the ground-state energy and that of a few
excited states is computed by varying the potential height α.
The spinful DMRG approach [60] is employed as the method
of analysis, utilizing an over-complete harmonic-oscillator
basis, centered at around the classical equilibrium positions
before and after tunneling [30]. The calculation employs a
total of 24 spinful orbitals, and a DMRG bond dimension
M = 2048, guaranteeing an accuracy of around ≈10−5 in
terms of the Schmidt values, corresponding to an energy pre-
cision of around ≈10−2 K.

Figure 10 demonstrates the energy spectrum’s dependence
on α for intermediate [η = 4, Fig. 10(a)], and strong [η = 20,
Fig. 10(b)] interactions. For intermediate interactions
[Fig. 10(a)], the spin degrees of freedom play a significant
role: the ground state is a doublet in agreement with prior
results [39]. The excitation spectrum observed can be
interpreted very differently for small and large values of α.
In the limit of small α � 5, the excitation spectrum can be
understood as a spectrum of a small, N = 3 Wigner necklace:
in this case the electrons form a small spin chain with a
doublet ground state, and their spin excitations are well
described by the effective Hamiltonian,

Heff = J (S1 + S3)S2.

The ground state and the first excited states of this
Hamiltonian are doublets, separated by the exchange energy
E1 − E0 = J , while the highest excited state is a spin S =
3/2 multiplet, located at an energy E2 − E0 = 3J/2, in good
agreement with the spectrum presented in Fig. 10, and an
exchange interaction, J ≈ 0.5 K. The excited states at around
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FIG. 9. Charge distribution (color code) and the polarization (dashed line) for N = 3 particles. The classical critical point is at αN=3
cl ≈ 4.45,

but tunneling occurs only above αN=3
0 ≈ 6.9. Most of the polarization is carried by the central electron. Quantum fluctuations of lateral electrons

facilitate the tunneling process.

8 K exhibit a strikingly similar spin structure. They can be
interpreted as a collective vibrational charge excitation, dec-
orated by the spin excitations of the Wigner necklace, with a
slightly increased value of the exchange coupling J .

The interpretation of the α � 5 spectrum for η = 4 is,
however, rather different. At large α, two electrons are forced
to reside on one side of the barrier, and the strength of the
potential that squeezes them together increases linearly with
α. As a result, for η = 4 and α � 5, these two electrons do
not form a Wigner molecule but occupy the ground state of
the confining potential, forming a singlet. These two electrons
can tunnel between the right-hand side (r.h.s.) and the left-
hand side (l.h.s.) of the barrier, yielding an even spin S = 1/2
ground state and an almost degenerate odd state of spin 1/2.
The splitting between these states can be identified as the
quantum tunneling amplitude.

The other, higher energy excited states for α � 5 and η = 4
can be explained similarly, but in this case one of the electrons
resides on the excited state, and forms a triplet by Hund’s rule.
This triplet can form a spin S = 1/2 and a spin S = 3/2 state
with the electron on the other side of the barrier, and form even
and odd states, yielding a group of four excited multiplets, two
of S = 3/2, and two other of S = 1/2.

In the strong-coupling limit, η = 20, the spectrum changes
substantially [see Fig. 10(b)]. In this regime, the exchange
couplings are suppressed, and electrons form a Wigner
molecule, even when confined to one side. As a result, charge
degrees of freedom play the dominant role, and the levels form
almost spin degenerate “bundles.”

For α � 6, ground state and the seven almost degenerate
low-energy excitations correspond to the spin states of an
N = 3 Wigner necklace, consisting of two almost degener-
ate doublets and a triplet. The first excitation “bundle” can
be interpreted as the first collective charge excitation of the
molecule, with the spins remaining spectators only.

Upon increasing the barrier α, the first excitation, identified
for small α as a collective vibrational charge mode, becomes
softer and softer, and gradually turns into a tunneling mode
between the charge states (NL, NR) = (2, 1) and (1,2). Notice
that, for η ≈ 20, the spins play the role of silent degeneracy
labels even for α � 6. For comparison, we have also dis-
played in Fig. 10(b) the energy levels obtained by solving the
Schrödinger equation for three spinless interacting particles in
real space (solid blue line), demonstrating that the electrons’
spin is almost redundant, and the amplitude of tunneling is
determined simply by charge excitations.
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FIG. 10. The energy spectrum of three electrons with spin con-
fined in a double-well potential is depicted, illustrating the influence
of spin degrees of freedom under both (a) weak Coulomb interac-
tions with η = 4 and (b) the strong-coupling limit with η = 20, as a
function of the parameter α.

These findings confirm that, in the strongly interacting
regime, η ≈ 20, it is safe to neglect spin degrees of freedom
and consider electrons as spinless particles as long as the
tunnel splitting associated with the charge degrees of freedom
remains larger than the exchange splitting, which for η = 20
and N = 3 is approximately �min ≈ 0.03 K. This threshold
is just below the smallest experimentally observed tunneling
amplitude.

VI. CONCLUSION

In this work, we combined several theoretical approaches
to describe the tunneling of a tiny Wigner crystal confined
within a suspended carbon nanotube and subject to a double-
well potential, studied experimentally in Ref. [30]. For an
odd number of electrons and for sufficiently high barriers,
the classical ground state of the Wigner molecule becomes
degenerate, and the necklace tunnels between these two states.

A combination of instanton theory, density matrix renor-
malization group and a peculiar exact diagonalization method
allowed us to describe the low-energy spectrum of the neck-
lace as well as its charge distribution, and determine the
amplitude of collective tunneling in this very strongly inter-
acting regime and compare with the experimental results [30].

The methods above provide us a consistent picture, compare
well with the experiments and provide a quantitative theory
for the experimental data in Ref. [30].

Interestingly, the tunneling crossover does not take place
at the classical bifurcation point, as naively expected, but
due to quantum fluctuations it is shifted towards somewhat
higher barrier values [higher values of α in Eq. (7)]. Indeed,
our calculations clearly demonstrate both the importance of
quantum fluctuations and the collective nature of tunneling.

Rather surprisingly, we find that the presence of other par-
ticles increases the tunneling amplitude rather than reducing
it. Indeed, in typical tunneling problems the presence of envi-
ronment leads to a suppression of tunneling due to Anderson’s
orthogonality catastrophe [64,65]. The physics behind this
latter phenomenon is that the motion of one (test) particle
influences the wave function of all other particles, too, which
therefore act back and suppress the motion of aforementioned
particle. In our case, however, collective quantum fluctuations
of the electron chain seem to play a much more important role:
they facilitate the motion of the innermost electron, which
is mostly responsible for the tunneling. This effect is very
similar to the one found in the case of infinitely long one-
dimensional chains, where quantum fluctuations can strongly
suppress the strength of a pinning center, even in the limit of
very strong interactions, rs � 1, where pinning is a strongly
relevant perturbation [66,67].

Quite astonishingly, the experimental data as well as our
theoretical curves exhibit a universal scaling collapse. At a
first sight, this seems quite natural: one can identify a sin-
gle collective coordinate within the instanton theory, which
moves in an effective double-well potential and is responsible
for the tunneling of the tiny crystal. This would support the
emergence of a universal tunneling curve—apart from some
overall scaling factors. However, the remaining degrees of
freedom renormalize the tunneling amplitude for N � 3 par-
ticles by a renormalization factor that has an intrinsic gate
voltage dependence. Apparently, the latter renormalization
factor, although without an obvious reason, does not spoil the
aforementioned universal scaling within our computational
accuracy.

Finally, let us discuss the role of spin and chiral degrees
of freedom in the strongly interacting regime, studied here.
Electrons or holes in a nanotube possess chirality and spin
quantum numbers. For the nanotubes used in the experiments
in Ref. [30], the large SO coupling freezes spins and chiral
spins into a single composite spin below a few Kelvins [47].
We performed DMRG calculations for N = 3 particles, where
we incorporate the effect of this composite spin. We find
that this composite SU(2) spin plays an important role for
moderate interactions, η ≈ 5, in agreement with the results
of Ref. [39], and there it modifies the structure of avoided
level crossings, i.e., the tunneling process. In the strongly in-
teracting regime studied experimentally in Ref. [30], η ≈ 20,
however, we find that spins behave as “spectators,” and the
tunneling process is well described simply in terms of charge
degrees of freedom and spinless particles. Neglecting the spin
degrees of freedom is therefore well justified when analyzing
the experiments in Ref. [30].

In two-dimensional experiments, a strong magnetic field
is often applied to shrink the cyclotron orbitals and aid
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the formation of a Wigner crystal [8,11,68,69]. In contrast,
a one-dimensional systems such as carbon nanotubes, the
magnetic field does not compress the orbitals. Rather, it cou-
ples to the chirality and the spin of the electrons or holes
via the Zeeman coupling, and splits spin and chirality de-
generacies [47]. Transport experiments through the Wigner
crystal in the cotunneling regime in a magnetic field could
unveil the spin and chirality structure of the ground and
excited states.

At very low temperatures or smaller interactions, however,
exchange processes may become important, and disregarding
the spin sector entirely is not quite appropriate [48,70]. This
may be further complicated by the presence of spin-orbit
coupling, especially in larger diameter nanotubes: spin-orbit
interaction couples spin and chiral degrees of freedom, and
leads to the freezing of the charge carriers’ SU(4) spin. The
description of the residual SU(2) degrees of freedom [47] and
their impact on the tunneling process at low temperatures as
well as the role of the SU(4)→SU(2) crossover is an open
and very challenging problem, which requires further investi-
gation.
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APPENDIX: COMPUTATION OF THE
INSTANTON PREFACTOR

Performing the Gaussian integral in Eq. (11), one finds [45]

K (χ′
0,χ0) = e−SE

√
2SE

π

[
det′

(−∂2
ϑ + V ′′

0 (ϑ )
)

det
(−∂2

ϑ + ω2
soft

)
]−1/2

×
[

det′
(−∂2

ϑ1 + �2(ϑ )
)

det
(−∂2

ϑ1 + �2
0

)
]−1/2

. (A1)

Here the first line represents the propagator’s classical con-
tribution, whereas the second line denotes the contribution
arising from quantum fluctuations.

The softest vibrational mode at the base of the classi-
cal trajectory χcl (τ ) has a frequency ωsoft, and det′ denotes
the functional determinant, computed by excluding the zero
eigenvalue in the energy spectrum of the tunneling.

The (N − 1) × (N − 1) matrix �0 represents the eigenfre-
quencies around the equilibrium position, χ0. The (N − 1) ×
(N − 1) matrix �(ϑ ) is computed using the vibrational eigen-
vectors along the instanton trajectory. Technically, to compute
the contribution coming from the quantum fluctuations is
a delicate issue. We followed the approach introduced in
Ref. [45] and introduce the Jacobian fields through [−∂2

ϑ1 +
�2(ϑ )]J(ϑ ) = 0 which is related with the derivative of
the instanton κ(ϑ ) ∝ χ̇(ϑ ). Introducing a function �(ϑ ) =
κ̇(ϑ ) κ(ϑ )−1 that satisfies a differential equation, �̇=�/

(1−ϑ2)[�2(ϑ ) − �2(ϑ )], with the boundary condition that
the particles behavior is of a harmonic oscillator, we can
express the tunnel splitting in a compact form.

An essential aspect of this calculation is the introduction
of a coordinate basis transformation on the N-dimensional
trajectory. The new basis consists of one parallel and N − 1
perpendicular unit vectors with respect to the trajectory, as
opposed to N coordinates that describe the independent parti-
cles. It is found that the trajectory’s direction is parallel to the
eigenvector of the softest vibrational eigenmode.

In this description the trajectory and subsequent cal-
culations can be simplified to an arc-length parametrized
effectively one-dimensional description. This takes place in
the effective potential, that is created by the collective motion
of particles as in Fig. 3. This enables us to calculate the
quantity P[χcl (s)] as a one-dimensional equation. This renor-
malization constant depends on the momentum-like quantity
p0 = (2[vmax

N − vmin
N ])1/2

P[χcl (s)] = exp

{∫ 0

−1
dϑ

�

(1 − ϑ2)

(
ωsoft − ∂ p0(s)

∂s

)}
.

(A2)

This arc-length parametrized picture makes it possible to
express � by the curvature of the trajectory parametrized
either by imaginary time or arc-length, although the two de-
scriptions yield the same results. Solving numerically the set
of differential equations �̇ = �/(1 − ϑ2)[�2(ϑ ) − �2(ϑ )]
with the appropriate boundary conditions that states, that in-
deed for times close to ϑ = ±1 the particles behave like a
collective harmonic oscillator.

The renormalization factor R0(α, N ) then can be
expressed as

R0(α, N )

=
√

det �0

det �(0)
exp

{∫ 0

−1
dϑ

�

(1 − ϑ2)
Tr(�0 − �(ϑ ))

}
.

(A3)
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