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Trapping hard-core bosons in flat-band lattices
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We investigate one-dimensional (1D) and 2D cross-stitch lattices with hard-core bosons and analytically
construct exact ground states that feature macroscopic degeneracy. The construction relies on the presence of
a flat band in the single particle spectrum and the orthogonality of the associated compact localized states (CLS).
Up to filling fraction ν = 1/2, the ground state is constructed by occupying the CLS. Exactly at ν = 1/2, the
ground state becomes a Wigner crystal. For higher filling fractions, the ground state is constructed by filling
the CLS sites completely one by one. Macroscopic degeneracy arises from the multiple choices available when
occupying or filling the CLS sites. An occupied CLS acts as an impenetrable barrier for bosons both in 1D
and 2D, leading to Hilbert space fragmentation. A similar phenomenology also holds for hard-core bosons on
the diamond chain and its higher dimensional generalizations. We also discuss the mapping of these hard-core
models onto spin models with quantum many-body scars.
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I. INTRODUCTION

Recently, systems with macroscopic degeneracies have
attracted considerable interest. This attention is due to the
fragility of the degeneracies that are easily lifted even by
weak perturbations, often resulting in unconventional corre-
lated phases with interesting properties. One particular class
of such systems are flat-band models [1–3]: translationally in-
variant tight-binding networks featuring dispersionless Bloch
bands, E (k) = E , with zero group velocity and macroscopic
degeneracy. For short-range Hamiltonians, flat bands fea-
ture compact localized states (CLSs)—eigenstates confined
to a finite number of sites [4,5]. The CLS results from de-
structive interference caused by the network geometry and
their experimental observations have been reported in various
settings [6].

The extreme sensitivity of flat bands due to their macro-
scopical degeneracy to perturbations and interactions gives
rise to a plethora of interesting phases: flat-band ferro-
magnetism [7], nonconventional Landau levels [8], frus-
trated magnetism [9,10], unconventional Anderson localiza-
tion [11–13], nonperturbative metal-to-insulator [14,15] or
critical-to-insulator [16–18] transitions, and superconductiv-
ity [19–26] and quantum geometry effects [27–30], among
others.

Typically, adding interactions to a flat band induces trans-
port [31] via two body interaction channels; however, details
of the flat band, corresponding lattice symmetries [32–35],

*Contact author: scott430@naver.com
†Contact author: aalexei@ibs.re.kr
‡Contact author: tsedrakyan@umass.edu
§Contact author: sflach@ibs.re.kr

and the interaction are important. By adding a fine-tuned
interaction one can observe a variety of phenomena: caging
[36–39] and ergodicity breaking [40–42], including quantum
scars [43,44]. An interesting question is the fate of interacting
bosons loaded in a flat band. Additionally, Bose condensation
[45], topological order [46], and quantum chaos and informa-
tion scrambling [47,48] are predicted to occur in the presence
of flat bands. In three-dimensional systems, Mott insulating
phase and Bose-Einstein condensation can exist [49]. How-
ever, in general, hard-core bosons can condense. For instance,
the Néel order of s = 1/2 magnets represents a condensate
ground state of hard-core bosons [50]. Achieving true con-
densation at zero temperature is known to be unattainable
for one-dimensional (1D) hard-core bosons [51–53]. Instead,
quasicondensates at finite momentum may emerge due to the
presence of a quasi-long-range order in the system [54,55].
Moreover, the violation of ETH has been observed in cer-
tain configurations of the Bose-Hubbard model in flat-band
lattices [41,56,57]. Similarly, ETH violation has been inves-
tigated in frustrated spin systems [58,59]. Nevertheless, what
happens when the ground state of the single particle problem
exhibits massive degeneracy is much less clear.

Thermalization has fascinated physicists as it describes
the evolution of quantum many-body systems from reversible
microscopic dynamics toward equilibrium. Comprehensive
details of this topic can be found in Ref. [60] and the ref-
erences therein. One intriguing aspect is the tendency of all
pure states within a specific energy shell to exhibit thermal-
like behavior [61]. In search of an explanation, an eigenstate
thermalization hypothesis (ETH) [62] has been proposed:
thermalization in isolated quantum systems can be attributed
to the assumption that every eigenstate possesses thermal
properties. The concept of the ETH has received extensive
attention and testing and has been confirmed in multiple
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settings. Weaker forms of ETH were also proposed: weak
ETH, or weak thermalization, where most but not all eigen-
states exhibit thermal properties [63]. It should be noted that
weak thermalization alone cannot definitively establish the
presence or absence of thermalization for physically realistic
initial states [63]. Nevertheless, weak thermalization ensures
the thermalization of initial states with negligible overlap
with rare athermal states. Weak thermalization remains signif-
icant across diverse translation-invariant systems, irrespective
of their integrability [64,65]. At the same time, the study
of weak thermalization, including phenomena like quantum
many-body scars and Hilbert space fragmentation, has been
studied actively (for details, we refer to Ref. [66] and the
references therein). A unified theory of local quantum many-
body dynamics was developed [67–69].

While Buca [68,69] has established a well-constructed the-
oretical framework for understanding the time evolution of
quantum information and the spread of correlations, our study
takes a distinct approach by emphasizing the role of individual
eigenstates, namely CLSs in flat-band systems. Our objective
is to offer a different perspective on the significance of CLSs
concerning weak thermalization. To achieve this, we delve
into the thermalization characteristics of hard-core bosons
within the one- and two-dimensional cross-stitch lattices. The
presence of macroscopic degeneracy in the flat-band energy
allows for the amplification of the effects of interactions and
perturbations. Then, our specific focus lies in the intricate
interplay between CLSs and the infinite limit of strong re-
pulsion enforced by hard-core constraints. Our findings reveal
the emergence of band-insulating and Wigner crystal phases
and Hilbert space fragmentation. The nonergodic behaviors
manifest even in the absence of disorder through CLSs, high-
lighting strictly nonergodic excited states and truncation of the
Hilbert space.

The paper is organized as follows. The second section de-
fines both one- and two-dimensional cross-stitch lattices and
briefly mentions the properties of hard-core bosons. In the
third section, we explore the process of site filling to obtain
the band-insulating phase and the Wigner crystal. Moving
on to the fourth and fifth sections, we investigate nonergodic
excited states in the presence of a closed CLS barrier. Finally,
we conclude our work in the last section.

II. MODEL

We consider hard-core bosons that obey the following set
of mixed commutation relations: [âi, â†

j ] = δi j (1 − 2â†
i âi ) for

all i �= j. The commutation relations correspond to bosons
with infinite on-site repulsion. Consequently, states with more
than one particle occupying the same site are not allowed.
The hard-core bosons Hamiltonian of the one-dimensional
cross-stitch chain with the nearest neighbor hopping and a
vertical hopping denoted by t can be expressed as follows:

H = −
∑
n∈�

[ĥn + ĥ†
n + t (v̂n + v̂†

n )], (1)

ĥn = (â†
n + b̂†

n)(ân+1 + b̂n+1), v̂n = â†
nb̂n. (2)

�⊆Z denotes the set of unit cell indices. The chain and the
spectrum are shown in Fig. 1 for a specific value t = −5. In
what follows, we refer to the pair of sites linked by the vertical

FIG. 1. Left: schematic of the 1D cross-stitch lattice with two
sites per unit cell. The vertical hopping is marked by red dashed lines.
Right: the corresponding band structure for the vertical hopping t =
−5.

hopping t as a dimer. The tight-binding version of the above
Hamiltonian features an orthogonal flat band whose position
in the spectrum depends on the value of t [12]. For t < −2,
the flat band becomes a ground state. The eigenstates of a flat
band can be organized into compact localized states (CLS)
[2,70]. For an orthogonal flat band the CLSs form a complete
orthonormal set.

III. GROUND STATE

In this section, we demonstrate the construction of the
ground state for the one-dimensional cross-stitch lattice (1) for
arbitrary filling fractions. We start with a generic observation:
whenever the flat band is a single particle ground state, one
constructs a many body ground state by filling nonoverlapping
CLS up to a critical filling fraction νc, where all the nonover-
lapping CLS are filled with one boson each. This prescription
is generic and applies to any flat band featuring a CLS [45,71–
73]. However, specific models might allow for constructions
extending to higher filling fractions [46]. In the case of the
cross-stitch model, we illustrate that fully filled dimers do not
contribute to the overall ground state eigenenergy and allow
for an analytical construction of a ground state up to filling
fraction 1.

A. ν � 1/2: Filling the nonoverlapping CLS

Consider a CLS in the one-dimensional cross-stitch lattice
located at the mth unit cell:

|CLS〉m = â†
m − b̂†

m√
2

|∅〉. (3)

|∅〉 is a vacuum state. Direct inspection shows that

ĥn|CLS〉m = ĥ†
n|CLS〉m = 0,

(v̂n + v̂†
n )|CLS〉m = −δnm|CLS〉m. (4)

We use the generic ansatz of nonoverlapping CLS: since the
flat band is orthogonal, we can place bosons in each unit cell
independently. We consider a set of CLS FFB and place bosons
in the respective CLS:

|GS(FFB)〉 =
∏

n∈FFB

|CLS〉n. (5)

Using Eq. (4), we see that the above is an eigenstate and it is
a ground state since it has the same energy per particle as the
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single particle ground state, the flat band:

EGS = t |FFB| = 2tνL, (6)

where ν = N/2L is a filling fraction which is ν < 1/2, N is
the number of bosons, and L is a total number of unit cells.
Moreover, thus constructed ground states are macroscopically
degenerate due to multiple ways,

(L
N

)
, to distribute N bosons

over L unit cells. For ν = 1/2, all CLS are occupied by a
boson resulting in the Wigner crystal [74].

B. 1
2 � ν � 1: Filling the an, bn dimers

When the number of hard-core bosons exceeds the critical
filling fraction νc, e.g., the maximum number of nonoverlap-
ping CLS giving rise to the flat-band-induced Wigner crystal,
the above ground state construction fails and the ground state
can change drastically. A single additional particle can pair
up with one of the existing CLS and lead to transport, as
previously discussed in Refs. [75–77]. However, in our case,
adding extra particles above the critical filling fraction νc does
not destroy the structure of the ν � 1/2 ground state: rather
CLS are gradually replaced with fully filled dimers, thanks to
the following identity for the hard-core bosons:

â†(â† − b̂†) ∝ â†b̂† ∝ b̂†(â† − b̂†). (7)

Therefore, we can replace some of the occupied CLSs, that
are denoted as Pd , with fully filled dimers. The ground state is
given by

|GS〉 =
∏
k∈Pd

â†
k b̂†

k|GS(FFB)〉, (8)

where the sets Pd and FFB are mutually disjoint and every unit
cell belongs to only one of the sets. The size of the set Pd is
related to the filling fraction ν where 1/2 < ν � 1 as follows:

|Pd | = (2ν − 1)L, (9)

where N is the total number of unit cells. The above state is an
eigenstate since the following relations hold for any n ∈ Pd :

ĥn|GS〉 = ĥ†
n|GS〉 = 0, (10)

v̂n|GS〉 = v̂†
n |GS〉 = 0. (11)

Therefore, a fully filled dimer gives a zero contribution to the
total energy and EGS is determined solely by the contribution
of CLSs,

EGS = t (N − |Pd |) = 2tN (1 − ν), (12)

and exhibits macroscopic degeneracy due to the multiple pos-
sible choices,

( L
2L−N

)
, for positions of the filled dimers. For

1/2 � ν � 1 the ground state is a mix of fully filled dimers
and the Wigner crystal.

IV. NON-ERGODIC EXCITATIONS

The ground state construction outlined above also has im-
portant implications for the rest of the spectrum. Namely, it is
straightforward to check using the identities (10) that a boson
placed next to a filled CLS cannot pass through the CLS and
the latter acts as an impenetrable barrier (see Appendix A for
details). This implies that a single CLS acts as an impenetrable

barrier for hard-core bosons due to destructive interference.
An immediate consequence is the presence of multiple non-
ergodic eigenstates in the spectrum: indeed, bosons placed
between a pair of filled CLS are forever trapped. Therefore,
filling a set of CLS on the rungs of the cross-stitch ladder
according to some pattern would produce subspaces of Hilbert
space where the memory of initial conditions is never fully
lost. Further details can be found in Appendix A. Similar
results but using a different language were also proposed in
Refs. [68,78].

Mapping to the spin-1 XY chain

The above cross-stitch model has a connection with the
previously introduced spin-1 XY model that features quantum
many-body scars [79]. To demonstrate that, we construct a
mapping from hard-core bosons to spins and singlets. We
define dimer n in the original cross-stitch chain as a site of a
spin chain. For every such state (cross-stitch dimer), we define
three triplet states |±, 0t 〉 corresponding to spin-1,

|+〉n � |Sn = 1, mn = +1〉 = |∅〉,

|0t 〉n � |Sn = 1, mn = 0〉 = â†
n + b̂†

n√
2

|∅〉, (13)

|−〉n � |Sn = 1, mn = −1〉 =
√

2â†
nb̂†

n|∅〉,
and 1 singlet state |0s〉 that corresponds to the CLS in the hard-
core boson language:

S−
n |CLS〉n = 0 = S+

n |CLS〉n. (14)

Therefore, the local Hilbert space dimension of every site in
the chain is 4. The spin-1 operators are defined as follows in
the hard-core boson language:

S−
n = â†

n + b̂†
n, S+

n = ân + b̂n, Sz = 1 − (a†
nan + b†

nbn).
(15)

This mapping to spin-1 is not unique: one can swap |0t 〉n and
|CLS〉n or even construct an entire single parameter family of
such mappings by adding a phase factor to the bn operators.
It is straightforward to check that they satisfy the usual spin
commutator algebra. In this notation the cross-stitch Hamil-
tonian (1) becomes the following spin-1 Hamiltonian (see
Appendix B):

H = −
∑
n∈�

S−
n S+

n+1 + S−
n+1S+

n + t (S−
n S+

n + Sz
n − 1) (16)

= −
∑
〈i, j〉

(
Sx

i Sx
j + Sy

i Sy
j

) + t
∑
n∈�

[(
Sz

n

)2 − 1
]
. (17)

Here, we omitted the part of the Hamiltonian describing the
action on the singlet states and mixed singlet-spin-1 states:
the mixed part is zero since singlets/CLS act as barriers for
hard-core bosons, while on singlet states this Hamiltonian is
diagonal and equal to t , as can be verified by substituting
back the definitions of the spin operators in terms of hard-
core bosons. Otherwise, this spin-1 Hamiltonian is exactly the
Hamiltonian from Ref. [79] (see the derivation in Appendix B
for details).

The results for the ground state obtained in the previous
section are easily translated into the new representation. The
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FIG. 2. Time evolution of the initial wave function with four
hard-core bosons on the one-dimensional cross-stitch lattice is plot-
ted. Here, we set t = −5. At time zero, two CLSs are located at the
second and the 11th unit cells (yellow) with two hard-core bosons
positioned at the seventh and the 15th sites (red). The CLSs are fixed
as time evolves and two hard-core bosons are strictly confined.

triplets only state | + · · · +〉 corresponds to every site be-
ing empty in the original cross-stitch chain, so that H| +
· · · +〉 = 0| + · · · +〉. Placing some singlets corresponds to
filling the CLS in the bosons language. For the all singlets
state |0s · · · 0s〉, which corresponds to the filled CLSs in every
unit cell of the cross-stitch chain (1), we find Eq. (6) for
ν = 1/2:

H|0s · · · 0s〉 = tN |0s · · · 0s〉. (18)

The nonergodic excited states discussed for the bosons also
appear naturally in the spin-singlet language. States | + · · · +
0s,�, 0s + · · · +〉 with � denoting generic spin state form an
invariant subspace of the Hilbert space under the action of H
(17). We also point out that our hard-core bosons model is
equivalent to the spin-1/2 XYZ Creutz ladder model studied
in Ref. [68].

The model (16) features quantum many-body scar
states |Sn〉 [66,69,79] that express in the hard-core boson
language as

|Sn〉 ∝
∑
En

[
(−1)φ(En )

∏
m∈En

âmb̂m

] ∏
j∈�

â†
j b̂

†
j |∅〉. (19)

The En is a subset of unit cell indices En =
{ j1, . . . , jn}, where j1 �= · · · �= jn, and the summation runs
over all the possible En. The phase factor φ(En) is a sum of
elements of En, e.g., of unit cell indices from En. We point out
that the scars |Sn〉 are unrelated to CLSs, but only involve |∅〉
and â†

nb̂†
n|∅〉, which correspond to the triplet states in spin

language. Moreover, it is also known to have Hilbert space
fragmentation [66,68,69]. CLSs play a significant role by
partitioning the Hilbert space into separate Krylov subspaces,
resulting in the emergence of a truncated system, as shown
in Fig. 2. However, it is important to note that the trapped
bosons within the CLS barriers in Fig. 2 do not constitute
a quantum many-body scar because the state is a linear
combination of triplet and singlet states, while the true tower
of quantum many-body scars is generated from triplet states
only [79]. Instead, their presence gives rise to localizedlike
states induced by the CLS singlet state.

FIG. 3. 2D generalization of the cross-stitch chain. Varying the
vertical hopping (red links) moves the flat band in the spectrum.
White capsules are compact localized states of the two-dimensional
cross-stitch lattice. Purple spheres inside the loop are hard-core
bosons, each residing at specific sites. These bosons are restricted
from moving beyond the loop, remaining constrained within the
boundaries.

V. EXTENSION TO 2D

The results for the cross-stitch chain generalize straight-
forwardly to 2D, as shown in Fig. 3, which displays the 2D
generalization of the cross-stitch chain. The corresponding
generalization of the 1D cross-stitch Hamiltonian for hard-
core bosons with nearest-neighbor hopping reads

H = −
∑
n,m

[ĥn,m + ĥ†
n,m + t (v̂n,m + v̂†

n,m)],

ĥn,m = (â†
n,m + b̂†

n,m)(ân+1,m + b̂n+1,m)

+ (â†
n,m + b̂†

n,m)(ân,m+1 + b̂n,m+1),

v̂n,m = â†
n,mb̂n,m. (20)

Here t is again the vertical hopping link indicated by red
lines in Fig. 3. The tight-binding version of this Hamiltonian
also features an orthogonal flat band that can be freely moved
around the spectrum by varying the value of t . The flat band
becomes the ground state for t � −4.

The results for the 1D cross-stitch extend directly to this
2D model and we only outline them here. We consider N hard-
core bosons on L2 unit cells of the 2D lattice. The ground state
can be constructed analytically by repeating and adapting the
steps of Sec. III to 2D. First, for ν < 1/2, we again follow
the generic prescription and N bosons are distributed among
L2 unit cells by filling CLSs. The degeneracy of the ground
state is (L2

N ). For half-filling ν = 1/2, the ground state becomes
the Wigner crystal. For 1/2 < ν � 1, additional particles are
distributed over dimers/unit cells that become fully filled with
two bosons. The ground state is a mix of fully filled dimers
and the Wigner crystal.

Similarly, the filled CLS acts as a blocking barrier for other
bosons inducing Hilbert space fragmentation and allowing
the construction of nonergodic eigenstates. The corresponding
derivation is a straightforward extension of the 1D cross-stitch
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lattice. However, due to the 2D nature of the lattice, the
resulting fragmentation is richer and more interesting. For
instance, unlike the 1D case, the barriers of filled CLS can
now be organized into differently shaped loops. Importantly,
such a barrier is impenetrable for bosons even if the filled CLS
are not nearest neighbor but are second nearest neighbor (on
the square lattice of unit cells), e.g., placed diagonally next to
each other.

It is also possible to generalize the spin-to-boson mapping
using the same definitions (15). This yields the following
Hamiltonian [79]:

H =
∑
〈n,m〉

S−
n S+

m + S−
n S+

m −
∑

n

t
(
S−

n S+
n + Sz

n − 1
)
, (21)

where n and m are unit-cell indices and the left sum runs over
nearest neighbors. The nonergodic excitation has the same
interpretation in this representation as in the 1D case. Namely,
dynamics inside any loop S of |0s〉 is isolated from the rest of
the lattice.

VI. CONCLUSIONS

In this work, we studied hard-core bosons in the one- and
two-dimensional cross-stitch lattices. The ground states in
these systems admit an analytical construction by first filling
the CLS of the single particle flat band and then filling the
CLS up to dimers. The half-filled case corresponds to the
Wigner crystal, while higher fillings are described by a mix
of Wigner crystal and fully filled dimers. The crucial property
underlying this construction is that the filled CLS acts as an
impenetrable barrier for bosons. As a consequence, any pair of
filled CLS in 1D and any closed loop of filled CLS in 2D act as
traps for bosons inside, ensuring nonergodic eigenstates in the
spectrum and Hilbert space fragmentation. We demonstrate
similar phenomenology in the diamond chain and its higher
dimensional generalizations, as can be straightforwardly veri-
fied. This highlights the unique properties of these models in
terms of the connection of the ground states’ properties and
nonergodicity.

This raises a question about the properties of other flat-
band models with interacting bosons. First, we point out
that replacing hard-core bosons with repulsively interacting
bosons breaks our construction. Second, not all flat-band mod-
els have such nice properties. For instance, our ground state
construction breaks for the Lieb and kagome lattices, as can be
verified explicitly. It is therefore an interesting open problem:
for which classes of flat bands does one find a phenomenology
similar to the cross-stitch? One immediate suggestion is that
one needs orthogonal flat bands with CLS occupying two
sites.

Note added. Recently, we became aware of related works
[80,81].
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APPENDIX A: HARD-CORE BOSON CANNOT
PENETRATE A FILLED CLS

In this Appendix, we demonstrate that a boson cannot
penetrate a filled CLS. For that, we consider a boson placed
in unit cell 0 next to a filled CLS in unit cell ß1, giving the
state â0

†|CLS〉. We placed the boson on site a in the unit cell
0. The only term relevant to us in Eq. (1) is h†

0, which moves
bosons from the cell 0 to the cell 1. All the other terms in the
Hamiltonian affect other unit cells and are not relevant to our
problem. Therefore, we compute

h†
0â†

0|CLS〉 ∝ (â†
1 + b̂†

1)(â0 + b̂0)â†
0(â†

1 − b̂†
1)|∅〉

= (â†
1 + b̂†

1)(â†
1 − b̂†

1)â0â†
0|∅〉 = 0

due to destructive interference. The argument is the same for
bosons placed in b̂0 and also in the 2D model, where the
interference happens independently in the space directions.

APPENDIX B: MAPPING OF SPINS ONTO HARD-CORE
BOSONS

We provide here the details of the mapping from hard-
core bosons to spins. It is more convenient to work out the
mapping from spin to bosons. We also demonstrate how the
Hamiltonian of Ref. [79] maps onto our problem. The Hamil-
tonian H for the spin-1 chain, as given in Ref. [79], consists
of two components: H=Hhop+Hloc, the nearest-neighboring
interaction term Hhop and the local field term Hloc. They are
defined as

Hhop = J
∑
〈i, j〉

Sx
i Sx

j + Sy
i Sy

j , (B1)

Hloc = h
∑
n∈�

Sz
n + D

∑
n∈�

(
Sz

n

)2
. (B2)

We first inspect the nearest-neighboring interaction term. Us-
ing the definition of the ladder operators (13) and Eq. (15), we
recover the intercell hopping term of the cross-stitch lattice,

Hhop = J
∑
n∈�

(
Sx

nSx
n+1 + Sy

nSy
n+1

) + (
Sx

n+1Sx
n + Sy

n+1Sy
n

)

= J
∑
n∈�

[(
Sx

n − iSy
n

)(
Sx

n+1 + iSy
n+1

)

+(
Sx

n+1 − iSy
n+1

)(
Sx

n + iSy
n

)]
= J

∑
n∈�

S−
n S+

n+1 + S−
n+1S+

n

= J
∑
n∈�

[(â†
n + b̂†

n)(ân+1 + b̂n+1)

+ (â†
n+1 + b̂†

n+1)(ân + b̂n)]. (B3)
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FIG. 4. (Left) Schematic of the 1D diamond lattice. Three sites
per unit cell. (Right) Energy bands of 1D diamond lattice. Here we
set t = −5.

Next, we investigate the local field term. For spin-1, S · S = 2I
holds. Similarly, we derive the on-site potential and the intrau-
nit cell hopping term of the cross-stitch lattice using the ladder
operators (13) and Eq. (15),

Hloc = h
∑
n∈�

Sz
n + D

∑
n∈�

(
2 − S−

n S+
n − Sz

n

)

= (h − D)
∑
n∈�

(1 − (â†
nân + b̂†

nb̂n))

+ D
∑
n∈�

(2 − (â†
n + b̂†

n)(ân + b̂n))

=
∑
n∈�

[(h + D) − D(â†
nb̂n + b̂†

nân) − h(â†
nân + b̂†

nb̂n)].

(B4)

Choosing J = −1, h = 0, and D = −t , the spin-1 XY chain is
reduced to the model derived in Eq. (17), which is expected to
have quantum many-body scars. Moreover, with the consid-
eration of CLSs, we also observe the phenomenon of Hilbert
space fragmentation.

APPENDIX C: 1D DIAMOND CHAIN

Another model displaying properties similar to the cross-
stitch chain is the 1D diamond chain, see Fig. 4, with nearest-
neighbor hoppings and vertical hopping t (red dashed line on
Fig. 4):

H = −
∑

n

ĥn + ĥ†
n + t̂ (v̂n + v̂†

n ), (C1)

ĥn = (â†
n + ĉ†

n )(b̂n + b̂n+1), v̂n = â†
nĉn. (C2)

For t < −2 the flat band is the ground state in the single
particle model and the flat-band energy, EFB = t , is gapped
away from the other bands. The flat band is also orthogonal
and different CLS do not overlap.

Now, we briefly summarize the results for the ground
state and its energy. The construction of the ground state
follows closely the procedure of the one-dimensional cross-
stitch lattice for the one-dimensional diamond lattice outlined
in Sec. III. First, CLSs are gradually filled up to filling fraction
ν = 1/3 (since the unit cell contains three sites in this model).
For ν = 1/3, we obtain again the Wigner crystal. For 1/3 �
ν � 2/3, we fill the bottleneck sites with connectivity 4. This
is possible since the filled CLS act as impenetrable barriers,
similarly to the cross-stitch case. Beyond ν = 2/3, CLSs are
gradually replaced with fully filled dimers, just like in the

FIG. 5. Time evolution of the initial wave function with four
hard-core bosons on the 1D diamond lattice is plotted. Here, we set
t = −5. At time zero, two CLSs are located at the second and the
seventh unit cells (yellow) with two hard-core bosons positioned at
the 10th and the 16th sites (red). The CLSs are fixed as time evolves
and two hard-core bosons are strictly confined.

ν > 1/2 case of the cross-stitch. The ground state energy EGS

is determined by the contribution of the CLSs only:

EGS =
⎧⎨
⎩

3tνN, ν � 1/3,

tN, 1/3 � ν � 2/3,

3tN (1 − ν), 2/3 � ν � 1.

(C3)

This implies macroscopic degeneracies, which follow also
from the freedom in filling the CLS, the bottleneck sites, or
the dimers in the above construction of the ground state.

Since filled CLS act as impenetrable barriers, the diamond
chain also possesses nonergodic excitations like the cross-
stitch model. An example of configuration that leads to caging
is shown in Fig. 5: the two filled CLS marked in yellow trap
two hard-core bosons placed in between.

Unlike the cross-stitch case, there is no well-defined map-
ping to spin-1 in the case of the diamond lattice. Instead, the
1D diamond chain maps onto the spin-1-spin-1/2 (hard-core
boson) model,

H = −
∑

n

T̂ −
n (b̂n + b̂n+1) + (b̂†

n + b̂†
n+1)T̂ +

n

−
∑

n

t
(
T̂ −

n T̂ +
n + T̂ z

n − 1
)
, (C4)

where T̂ −
n = â†

n+ĉ†
n and T̂ +

n = ân+ĉn. The CLSs correspond to
singlet states. The CLS at the nth unit cell for the diamond
chain is defined as

|CLS〉n = â†
n − ĉ†

n√
2

|∅〉. (C5)

APPENDIX D: 1D DIAMOND CHAIN
WITH MAGNETIC FLUX

The diamond chain with no vertical hopping, t = 0, also
retains a flat band in the presence of a magnetic field. How-
ever, the flat band is no longer orthogonal: eigenstates |CLS〉n
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occupy two unit cells and overlap nontrivially:

H = −
∑

n

(b̂†
n + b̂†

n+1)ân + (b̂†
n + e−iφ b̂†

n+1)ĉn + H.c.,

(D1)

|CLS〉n = 1√
4

(â†
n − ĉ†

n + e−iφ â†
n+1 − ĉ†

n+1)|∅〉. (D2)

The flat-band energy EFB is precisely zero and no longer
corresponds to the ground state energy. One can still construct
a many-body eigenstate by filling nonoverlapping CLS, up to
filling fraction ν = 1/6. The Wigner crystal is obtained for
ν = 1/6:

|EIG〉 =
N/2∏
n=1

|CLS〉2n or
N/2∏
n=1

|CLS〉2n−1. (D3)

The next question is whether it is possible to fill up the empty
bottleneck sites in CLSs and keep an eigenstate. The answer is
no; doing so does not yield an eigenstate of the Hamiltonian.
This is easily verified by a straightforward calculation starting
with the following state:

|ψ〉 =
N/2∏
j=1

|ψ〉2 j, |ψ〉2 j = b̂†
2 j |CLS〉2 j−1. (D4)

Acting with H on |ψ〉, we obtain a different state due to non-
trivial hopping. Therefore, hard-core bosons are not trapped,
as they can escape through the bottleneck sites and there are
no nonergodic excited states.
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