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Quantum transport properties of the topological Dirac semimetal α-Sn
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We report on measurements of the electrical resistivity (ρ) and thermoelectric power (S) in a thin film of
strained single-crystalline α-Sn grown by molecular beam epitaxy on an insulating substrate. The temperature (T)
dependence of the resistivity of α-Sn can be divided into two regions: below T* ≈ 135 K ρ(T) shows metalliclike
behavior, while above this temperature, an increasing contribution from thermally excited holes to electrical
transport is observed. However, it is still dominated by highly mobile electrons, resulting in a negative sign of
the Seebeck coefficient above T = 47 K. In the presence of the magnetic field (B) applied along an electric field
or thermal gradient, we note negative magnetoresistance or a negative slope of S(B), respectively. The theoretical
prediction for the former (calculated using density functional theory) agrees well with the experiment. However,
these characteristics quickly disappear when the magnetic field is deviated from an orientation parallel to the
electrical field or the thermal gradient. We indicate that the behavior of the electrical resistivity and thermoelectric
power can be explained in terms of the chiral current arising from the topologically nontrivial electronic structure
of α-Sn. Its decay at high temperature is a consequence of the decreasing ratio between the intervalley Weyl
relaxation time to the Drude scattering time.
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I. INTRODUCTION

Over the past two decades, topological quantum materi-
als have gained significant attention due to their nontrivial
momentum-space topology [1–4]. For example, the Dirac
semimetals, which could be considered three-dimensional
(3D) analogs to graphene, host fourfold-degenerate Dirac
points protected by topological constraints [5–7]. Dirac nodes
split into two chirally distinct Weyl nodes when at least one
of the symmetries protecting the Dirac cone gets broken
[8–10]. Dirac semimetals exhibit unique and exciting fea-
tures such as ultrahigh mobility [11], large magnetoresistance
[11,12], and chiral magnetic effect [13,14]. These exotic phe-
nomena have been experimentally reported in a number of
topological Dirac semimetals, namely, Na3Bi [15,16], Cd2As3

[11,17,18], ZrTe5 [19,20], Bi1−xSbx [21], YbMnBi2 [22], and
TIBiSSe [12].

Recently, gray tin, or α-Sn, a zero-gap semiconductor, has
emerged as an exciting material due to its nontrivial band
topology [23–25]. It is the elemental candidate showing many
topological phases that can be tailored by various conditions,
such as changing the thickness, imposing the strain, and ap-
plying electric and magnetic fields [26,27]. The application
of the in-plane tensile strain transforms α-Sn into a robust
3D topological insulator with a large topological gap [24]
and a high Fermi velocity [28], whereas in-plane compressive
strain makes it a topological Dirac semimetal protected by
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fourfold rotational symmetry [26,27]. The in-plane compres-
sive strain, which modifies the electronic structure of α-Sn,
can be obtained experimentally by epitaxially growing a thin
film on a substrate with lattice constants that do not exactly
match those of gray tin. To obtain the Dirac semimetal phase,
the desired mismatch is achieved by selecting the appropriate
substrates, such as InSb(111) [29], InSb(001) [30], CdTe(111)
[31], and GaAs(001) [32]. The degeneracy of the Dirac cones
is lifted in the presence of an external magnetic field, turning
α-Sn into a Weyl semimetal (WSM). The presence of a pair
of Weyl points (WPs) in momentum space can lead to the
appearance of a peculiar phenomenon when the electric and
magnetic fields are applied parallel to each other. It is known
as a chiral anomaly and can be observed as a positive mag-
netoconductivity in real crystalline materials, as suggested by
Nielsen and Ninomiya [33]. Its origin is the charge pumping
between WPs of opposite chirality that occurs in a WSM
subjected to electric and magnetic fields applied in parallel
along the direction of the WP separation [13]. Such nega-
tive magnetoresistance has been reported by various groups
in topological Dirac and WSMs [14,15,20,34,35], but there
exist other mechanisms that could underlie this effect without
involving charge pumping between the Weyl nodes [36–38].
In this regard, measurements of the thermoelectric effects
offer an opportunity to complement electrical measurements
and gain valuable insight into electronic transport properties
[39–42].

In this paper, we investigate the electrical and thermoelec-
trical properties of a α-Sn thin film, which is a topological
Dirac semimetal when deposited on a CdTe/GaAs (001) sub-
strate. To ensure the best quality, the sample was grown using
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molecular beam epitaxy (MBE). We report on the quadratic
variation in the field dependencies of the electrical conduc-
tivity and thermopower, which can be explained because of
the chiral anomaly. We also calculated the ratio of intervalley
scattering time to mean free time, which indicates the role of
chiral Weyl fermions in the emergence of the negative longi-
tudinal magnetoresistance (NLMR) and the negative slope of
thermopower at the high magnetic field.

II. MATERIALS AND METHODS

Epitaxial film of 200-nm-thick α-Sn was grown by MBE
on (001) GaAs substrate with a 4 µm CdTe buffer layer. CdTe
buffer provides the necessary ∼0.1% compressive in-plane
strain to induce the Dirac semimetal phase in gray tin. Exten-
sive structural characterization confirmed the high quality of
the obtained film without any inclusions of the metallic β-Sn
phase as well as the value of the strains. More details about
the growth procedure as well as the structural characterization
of the studied film can be found in Ref. [32].

To perform the electric transport measurements, we cut the
sample with a length (a axis) of 2.2 mm and a width (b axis) of
0.6 mm. This reasonable aspect ratio of the sample was chosen
to minimize the geometric effects on our experimental data.
We measured the resistivity using the standard four-probe
method. The electrical contacts were made with 25-µm-thick
gold wires and DuPont 4929 silver paint. The current contacts
were made along the entire width of a sample to minimize the
possibility of the current jetting effect occurrence [43]. The dc
electrical current was applied using a Keithley 6221 current
source, and voltages along the sample were measured with a
Keithley 2182A nanovoltmeter.

To measure the thermoelectric properties, the sample was
mounted between the two phosphor bronze clamps with two
Cernox thermometers attached. These were used to determine
the thermal gradient along the sample generated by a Micro-
Measurements strain gage heater (10 k� resistance), which
was connected to a Keithley 6221 current source. Thermo-
electric voltage data were collected by an EM Electronics
A20a DC subnanovolt amplifier working in conjunction with a
Keithley 2182A nanovoltmeter. The temperature dependence
of thermoelectric power was measured with the heater off and
on method, while for the magnetic field (±14.5 T) sweeps, the
heater was continuously turned on.

The electronic structure calculations were carried out with
the projector augmented-wave approach within the density
functional theory (DFT) framework, utilizing VASP [44]. A
plane-wave energy cutoff of 650 eV was employed in this
paper. We have performed the calculation using a meta-
generalized gradient approximation approach, which is based
on the modified Becke-Johnson (MBJ) exchange potential
together with local density approximation for the correla-
tion potential scheme with the parameter CMBJ = 1.215
to get the experimental band ordering [45]. The calcula-
tions of electronic structures were performed with a 12 ×12
×10 Monkhorst-Pack k mesh [46], incorporating the spin-
orbit coupling (SOC) self-consistently. The VASPWANNIER90
interface was employed in this paper, and we utilized s
and p orbitals of Sn atoms to generate an ab initio tight-
binding Hamiltonian without performing the procedure for

FIG. 1. Temperature dependences of the resistivity (ρ) and the
thermoelectric power (S) of 200-nm-thick α-Sn thin film where the
current (J) or thermal gradient (∇T ) is applied parallel to the a axis.
Inset shows low-temperature thermoelectric power data.

maximizing localization [47,48]. The calculation of the sur-
face state was performed using the semi-infinite Green’s
function approach incorporated in WANNIERTOOLS [49,50].

III. RESULTS AND DISCUSSIONS

The thermoelectric power (S) and electrical resistivity (ρ)
were measured, respectively, with the thermal gradient (�T)
or electrical current ( j) applied along the a axis of the α-Sn
thin film. Figure 1 presents the temperature dependence of
resistivity in zero magnetic field (B) measured in the tem-
perature range 2–300 K. The entire ρ(T) dependence can be
divided into two temperature regions, namely, for T�135K,
we observe semiconducting behavior that can be attributed
to the increasing temperature contribution to electrical trans-
port from thermally excited holes [51]. Those holes originate
from the thermally driven transitions between valence and
conduction parts of the �+

8υc band as well as from the indi-
rect transition L+

6c − �+
8υc found in the calculated electronic

structure of α-Sn [52]. In the latter, the magnitude of the band
gap in the epitaxially stretched α-Sn thin film is temperature
dependent and becomes larger as the temperature decreases
[53]. In consequence, thermal hole excitation is prevented for
T �135 K, and ρ(T) behaves in a metalliclike manner. This
is due to the electrons in the vicinity of � bands dominating
the transport features of α-Sn at low temperatures [51]. Inter-
estingly, even at a very low temperature, some contribution to
the electronic transport from holelike charge carriers is still
present [32].

It appears that the temperature dependence of the ther-
mopower is also affected by the presence of two types of
charge carriers. In almost the entire temperature range, the
thermopower is negative, reflecting a dominating role of
highly mobile electrons. The absolute value of S reaches its
maximum of 22.5 µV/K at T ≈ 150 K. The upturn in S(T)
above this temperature likely reflects the above-discussed in-
creasing contribution from the thermally excited holes. For
a multiband conductor, the total thermoelectric power is a
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FIG. 2. (a) Normalized magnetoresistance vs magnetic field of α-Sn for selected temperatures when both magnetic field and current are
applied parallel to the a axis (B || j). Magnetothermopower of α-Sn measured with the configuration of applied thermal gradient and magnetic
field parallel to the a axis (∇T ||B), (b) at low temperatures, and (c) at high temperatures.

sum of individual band contributions weighted by the re-
spective conductivities. Within the two-band model, this can
be expressed as S = (Seσe + Shσh)/σ , where σ = σe + σh,
where subscripts e and h denote contributions from elec-
trons and holes, respectively. Therefore, at high temperatures,
the increasing positive participation from thermally excited
holes will result in a decreasing absolute value of negative
S dominated by electrons. Below T ≈ 50 K, the Seebeck
coefficient becomes <1 µV/K and attains a positive value in
the low temperature limit (see inset of the Fig. 1), which can
be also seen in the S(B) dependences presented in Fig. 2(b).
This may be due to phonon drag but also contribution from
the low-mobility holes, which were recently reported to be
present at low temperatures in α-Sn thin films [32]. For the
former, S(T) should exhibit a maximum at the temperature
of about θD/5 [54], where θD is the Debye temperature. In
gray tin θD ≈ 260 K [55], but the maximum we observe is
at the temperature somewhat lower than the expected T ≈
50 K. However, this is only an estimated position, which may
also be effectively shifted by the contribution from diffusive
thermopower. Nevertheless, this positive contribution appears
to be weakly dependent on the magnetic field, so does not
affect our analysis.

The magnetoresistance of α-Sn was measured at different
temperatures in the parallel configuration of the electrical
current and magnetic field ( j||B); the results are presented in
Fig. 2(a). Below T ≈ 100 K, a Landau quantization occurs,
leading to the appearance of pronounced Shubnikov–de Haas
(SdH) effect in high magnetic field. The resulting strong os-
cillations in ρ(B) are shown in Fig. S1(a) in the Supplemental
Material (SM) [56] after subtraction of slowly varying back-
ground (third-order polynomial). The fast Fourier transform
(FFT) spectrum (see Fig. S1(b) in the SM [56]) reveals a
single slow frequency F∼ 12 T, that can be assigned to a bulk
Dirac point near the Fermi level of Alpha-Sn, in agreement

with the previous study [32]. The SdH oscillations can be
described by the Lifshitz-Kosevich theory [57]:


ρ ∝ RT RDRS cos

[
2π

(
F

B
− 1

2
+ β ± δ

)]
. (1)

The three damping factors are the thermal reduction factor
RT = χ

sinh(χ ) , the Dingle damping factor RD = exp(−χ TD
T ) (TD

is the Dingle temperature), and the spin-splitting term RS =
cos( pπ

2
gm∗
me

). The parameter χ = 2π2kBT m∗/me

eh̄B , where kB =
1.381 × 10−23 J K−1 is the Boltzman constant, e = 1.602 ×
10−19 C and me = 9.108 × 10−31 kg are the electron charge
and mass, h̄ = 1.054 × 10−34 J s is the reduced Planck’s con-
stant, and m∗ is the cyclotron mass of the charge carrier.
Within the RS term, g is the Landé factor, and p is the harmonic
order. Under the cosine function in Eq. (1), F is the frequency
of quantum oscillations (QOs), 2πβ is the Berry phase, and
δ = ± 1

8 is the phase shift related to the dimensionality of the
electronic structure of a 3D system.

The effective mass can be calculated from the temperature
dependence of the amplitude of the oscillations described by
the thermal reduction factor RT (see Fig. S1(c) in the SM
[56]), and the resulting small effective mass m∗ ≈ 0.01 me is
close to that previously reported [32]. The frequency of the
QOs is directly related to the Fermi surface cross-section area
via the Onsager relation: F = ( h̄

2πe )AF , where AF is the Fermi
surface cross-section area. Since the Fermi momentum kF =√

AF
π

, we have deduced the Fermi velocity vF = h̄kF
m∗ and the

Fermi energy EF = m∗v2
F under the assumption that charge

carriers have linear energy dispersion [58]. The estimated vF

and EF are ∼2.2 × 106 m/s and 277 meV, respectively. Figure
S1(d) in the SM [56] shows that the experimental data can be
well modeled with Eq. (1) from which another parameter that
can be obtained from the analysis of QO is the Dingle temper-
ature, which was estimated to be TD = 11 K at 9.9 K, again in

245135-3



MD SHAHIN ALAM et al. PHYSICAL REVIEW B 109, 245135 (2024)

good agreement with results reported in Ref. [32]. From the
Dingle temperature, we can calculate the quantum lifetime
τq = h̄

2πkBTD
and quantum mobility μq = eτq

m∗ [59], which are

τq ≈ 1 × 10−13 s and μq ≈ 5900 cm2 V−1 s−1, respectively.
Such a high value of μq confirms the excellent transport
properties of α-Sn.

Next, we will focus on a nonoscillatory component in ρ(B)
of α-Sn, which for j||B exhibits a large NLMR at high field
and low temperature. With increasing temperature, NLMR
decreases and vanishes above T ≈ 200 K. Intriguingly, the
presence of NLMR for j||B was also reported in early studies
of QOs in bulk single crystals of α-Sn [60]. Furthermore,
the authors observed an additional 1

8 phase shift of the SdH
oscillation, which is the expected result for the extra Berry
phase of carriers from a 3D band with linear dispersion [61].
These experimental facts initially remained uninterpreted but
have recently been linked to the presence of Dirac cones [26].
This is interesting because α-Sn in its pristine form should
be, as mentioned above, a semiconductor with conduction and
valence bands touching each other at the vertices. Perhaps
even a small perturbation, such as the presence of an internal
strain or a strain applied unwillingly during the experiment,
can slightly shift the electronic bands, creating a nontrivial
electron structure in the bulk sample [62].

The appearance of NLMR was reported for many Dirac and
WSMs [15,20,34,35,63], and it has been ascribed to pumping
of the chiral charge between the Weyl nodes. On the other
hand, questions were also raised as to whether the effect could
be due to extrinsic mechanisms [36,38]. The current jetting
contribution in highly mobile WSMs caused concerns about
the detection of the chiral current in electrical measurements
[43]. Therefore, the complementary measurements of other
phenomena, such as the thermoelectric power, can provide
a unique opportunity to investigate the effects of the chiral
anomaly without a current jetting artifact [41,43].

Figure 2(b) presents the magnetic field dependences of
the thermopower (with B || �T) for selected temperatures.
As mentioned above, in addition to the negative ther-
mopower attributable to electrons, we also observe a roughly
field-independent positive contribution to the Seebeck co-
efficient. This appears in the S(B) data in Fig. 2(b) as a
temperature-dependent vertical shift that does not affect the
field-dependent part. At low magnetic field, S initially in-
creases with B—such a dependence was also observed in
other topological Dirac semimetals, and it was attributed to the
process of Weyl node creation [43,64]. Below T ≈ 50 K, we
see a small peak in S(B) at B ≈ 5.2 T, which can be attributed
to the QOs. For the frequency obtained from the SdH effect
(F = 12 T), the next peak in S(B) is expected at B ≈ 8.8 T,
which coincides with the maximum that occurs at B ≈ 9 T.
The contribution from QO to the total value of S at the max-
imum can be calculated using the Lifshitz-Kosevich formula
and is presented in Fig. S2 in the SM [56]. At T ≈ 30 K, the
peak value of the QO from the baseline is ≈ 0.026 μV K−2,
which is ≈ 33% of the total weight of S at B ≈ 9 T. However,
the calculated contribution from QO significantly decreases
with increasing temperature. For example, this becomes ∼8%
at T ≈ 50 K and vanishes completely above T � 55 K, while
the peak of S(B) linked to formations of WPs is still present

in the data. The maximum in S(B) shifts to higher mag-
netic fields and, at B ≈ 12 T, is clearly visible even at T ≈
150 K [see Fig. 2(b)]. Thus, it is unlikely that the negative
slope of S(B) observed at high magnetic field originates from
QOs, and alternatively, this type of anomalous field depen-
dence was indicated as a manifestation of the chiral anomaly
in several Dirac and WSMs [43].

To support our experimental observation, we have per-
formed first-principles calculations using VASP [44] and
WANNIER90 [47]. Figure 3(a) shows the electronic band struc-
ture in the presence of SOC, where most of the electronic
bands are contributed by the s and p orbitals of Sn atoms. We
observe a fourfold-degenerate band crossing along the � →
Z direction with camelback features [65,66] [see Fig. 3(b)].
The Dirac points are located 9 meV above the Fermi level
EDirac = E f − 0.009 eV at (0, 0, ±kz), where kz = 0.398 Å−1,
although it should be mentioned that DFT calculations can
overestimate or underestimate the Fermi energy.

The pair of Dirac points can be shown in the electronic
band structure in the two-dimensional (2D) plane shown in
Fig. 3(d). The application of magnetic field gives rise to a
negative magnetoresistance demonstrated in the calculations
when θ = 0°, as shown in Fig. 3(e), which is consistent with
experimental observation. Furthermore, we demonstrate the
Dirac semimetal phase by investigating the band structure
projected in Fig. S3 in the SM [56], (a) along the (100)
direction and (b) along the (001) direction. The presence of
the topological surface state is evident with bulk band crossing
points. In addition, we calculate the Fermi surface projected
on (100) and (001) surfaces in the bottom panel of Fig. S3
in the SM [56]. The Fermi surface along (100) shows the
presence of a close topological Fermi arc ky − kz plane. These
are C4z rotational symmetry-protected Dirac nodes that are
against gap formation. In the presence of a finite Zeeman field
that breaks time-reversal symmetry, each Dirac node separates
into two Weyl nodes with the opposite chirality. Notably, these
paired Weyl nodes are still aligned with the high-symmetry
direction protected by the crystal symmetry C4z. The develop-
ment of the chiral anomaly is facilitated by the combination
of this property and the chiral nature of their lowest Landau
level [27,43].

If the negative slopes of ρ(B) and S(B) in the high field
are in fact signs of the chiral anomaly, they should disappear
when the magnetic field is tilted away from being parallel to j
or �T, respectively. The angular dependences of longitudinal
transport coefficients at T = 60 K are presented in Fig. 4.
In the measurement of the magnetoresistance [Fig. 4(a)], we
observed the maximal NLMR when θρ = 0 ◦ (θρ is the angle
between B and j), whereas rotation of the magnetic field from
in-plane to out-of-plane (from the a axis toward the c axis)
quickly causes the dip in ρ(B) to vanish. Similar behavior has
been previously observed in topological semimetals, owing
to the presence of a chiral current in the system [15,63,67].
The positive magnetoresistance for θρ � 2.5◦ is due to the
vanishing of the chiral anomaly influence and restoration of
the orbital effect induced by the Lorentz force. Remarkably,
the chiral anomaly appears to affect the magnetothermopower
[Fig. 4(b)] in a similar manner. Namely, the negative slope of
S(B) that occurs at a high magnetic field when θS = 0◦ (θS
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FIG. 3. (a) The electronic band structure of α-Sn in the presence of spin-orbit coupling using density functional theory (DFT) over the full
Brillouin zone (BZ); the BZ is shown in (c); the closer look along M → � → Z is shown in (b). (d) The two-dimensional (2D) band structure
in the (kx − kz) plane illustrates the position of two Dirac points at (0,0, ±kz). (e) Magnetoresistance at θ = 0° magnetic field orientations,
influenced by Fermi surface topology.

is the angle between B and �T) becomes positive when B is
away from �T. The threshold for θS , which is ∼10°, is larger
than that of θρ , possibly because the relative contribution from
out-of-plane positive magnetothermopower is not as large as
that from orbital magnetoresistance.

The magnetic field breaks the time-reversal symmetry,
leading to the formation of Weyl nodes in α-Sn through the
degeneracy of the Dirac nodes. In the presence of parallel
electric and magnetic fields, the imbalance in the number of
Weyl fermions of different chirality leads to the generation
of an additional current that contributes to the total elec-
trical conductivity. In the semiclassical regime, this can be
expressed as [68,69]

σ (B) = σ (0) + σ (0)
1

3

τi

τ

B2

B2
q

, (2)

where σ (0) is the Drude conductivity, Bq = 2E2
F

3eh̄v2
F

is the quan-

tum magnetic field, and τi
τ

is the ratio of intervalley scattering
time to the mean free time of charge carriers. The correspond-
ing influence of the chiral anomaly on the thermoelectric
power can be calculated using the Mott relation, which should
obey if the chemical potential is larger than kBT and the
scattering is dominated by elastic processes [41]. If the mean
free time is assumed to be independent of energy, the equation
reads [68,69]

S(B) = S(0) − S(0)2
τiB2

3τB2
q

, (3)

where S(0) is the background thermopower unrelated to the
chiral anomaly. Since the magnetic field can change the dis-
tance in k space between Weyl cones, e.g., Ref. [70], the

FIG. 4. (a) Resistivity (ρxx) in function of magnetic field (B) of Dirac semimetal α-Sn for selected angles (θ , where θ is the angle between
j and B) at a constant temperature 60 K. (b) Magnetothermopower [Sxx (B)] of α-Sn for selected angles (θ , where θ is the angle between ∇T
and B) at a constant temperature 60 K.
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FIG. 5. (a) Conductivity (σ ) in function of square of magnetic field (B) of α-Sn for several temperatures. For the sake of clarity, starting
from σ (B2) for T = 38 K, the curves are successively shifted vertically by 102 �−1 cm−1 each for sake of clarity. (b) Normalized thermopower
S(B) of α-Sn for selected temperatures. The dashed line in both panels shows the fit as calculated from Eqs. (2) and (3).

intervalley scattering time can in principle be expected to be
field dependent. On the other hand, the model we used to
describe the experimental data assumes τi to be field inde-
pendent, which appears to be a sufficient approximation in
the high field limit. Moreover, this agrees with optical studies
of the Dirac semimetal Cd3As2, which concluded that chiral
relaxation shows little field dependence [71]. Equations (2)
and (3) describe the behavior of the nonoscillatory part of
the respective signal, but this appears to be difficult to extract
from field dependences of conductivity at low temperatures.
This was done by simulating the SdH oscillations using the
Lifshitz-Kosevich formula (see Fig. S4 in the SM [56]) up
to B = 8 T and then extrapolating the oscillatory signal to
higher fields. Finally, we subtract the oscillations to obtain
the nonoscillatory part of σ (B), However, the results of ex-
trapolation were not perfect below T = 100 K; hence, we
have chosen to restrict the upper limit of the fit to 10 T.
As shown in Fig. 5(a), σ (B) at this intermediate field fol-
lows a quadratic dependence on B expected for the chiral
anomaly [41,68,69] and can be approximated with Eq. (2).
Remarkably, the thermopower at a high magnetic field also
appears to be well described by the model involving the chiral
anomaly. Equation (3) predicts that the negative slope of the
magnetothermopower is a B2-dependent component, which in
fact appears in S(B) dependences, see Fig. 5(b). From the fit-
ting of the magnetoresistance and magnetothermopower with
Eqs. (2) and (3), we can estimate the ratio of the intervalley
lifetime to the transport lifetime τi

τ
, which is the parameter

that defines whether an electronic system is in fact in the chiral
limit [72]. The essential condition that must be met to observe
the pumping of Weyl fermions from one node to another is
τi > τ . Figure 6 presents the temperature dependences of τi

τ

calculated from σ (B) and S(B), the latter multiplied by a
prefactor 3

2 ; the reason for that will be discussed later. The
agreement between these two independent experimental re-
sults is good, i.e., the ratio τi

τ
decays with temperature, but

both τi
τ

(T ) do not coincide exactly. Similar behavior was also
reported for the topological Dirac semimetal ZrTe5 [68]. For
α-Sn, the relaxation time ratio from thermoelectric data as
calculated with Eq. (3) is smaller than one calculated from the
electrical measurements. A likely reason for this discrepancy

may be the approximations made to derive Eq. (3). The first
assumption is the energy (E) independent of carrier lifetime
[68,69], which is usually not the case for real materials. The
term in the Mott relations d ln τ (E )

dE has significant contributions
to the diffusion thermoelectric power [54]. For example, for
metals at high temperature, the relation is expected to be
τ (E ) ∝ E3/2 [73]. We include the 3

2 factor in the relaxation
time ratio calculated from thermoelectric data, but our ex-
perimental results suggest even stronger energy dependence.
This in fact was suggested to be significantly enhanced in the
Dirac material SnTe [74]. Another important assumption in
Eq. (3) was the strict validity of the Mott relation [68]. Since
the thermopower is measured under the condition of an im-
balanced number but possibly also the energy of chiral Weyl
fermions [75], some deviations from the Mott relation can be
expected. An actual reason will be an interesting subject of
further investigation.

FIG. 6. The ratio of intervalley Weyl scattering time to Drude re-
laxation time (τi/τ ) of the α-Sn sample as a function of temperatures
with the current ( j) or thermal gradient (∇T ) along with the magnetic
field applied parallel to the a axis.
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IV. CONCLUSIONS

We studied the transport properties of the Dirac semimetal
α-Sn in the configuration where the magnetic field is
nonorthogonal to the electric field or thermal gradient. At
high field, we observed the NLMR and magnetothermopower,
which also shows a negative slope. Both features, which vary
with field like B2, can be attributed to the chiral anomaly
and disappear at high temperatures. Further, a hint that we
see manifestations of the chiral anomaly in α-Sn is a strong
angular variation of the thermopower and resistivity. The cal-
culated ratio of the intervalley scattering time to the mean free
time satisfies the conditions for the chiral limit. We conclude
that both the electrical and thermoelectric data indicate the
presence of a Weyl system, which forms the chiral anomaly in
the magnetic field.
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paper are available from the corresponding author upon rea-
sonable request.
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