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Strong nonlocal tuning of the current-phase relation of a quantum dot based Andreev molecule
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Recent realization of minimal Kitaev chains brought a breakthrough in Majorana research, which made
arrays of quantum dots coupled by superconductor spacers the most promising synthetic quantum material for
topological quantum architectures. In this paper, we investigate the basic building block of this platform—two
dots coupled via a superconductor (referred to as an Andreev molecule)—in a configuration where two super-
conducting (SC) loops are created to tune the SC phase difference across the dots. This enables us to consider
Coulomb interactions which was not possible in previously studied systems. We demonstrate that the Andreev
molecule shows a strong nonlocal Josephson effect: As the dot in one junction is tuned, the current-phase relation
(CPR) of the other dot is modified. This architecture hosts 0-π transitions and shows a tunable anomalous ϕ0

phase shift, nonlocally controlled in both cases, without relying on spin-orbit interaction or Zeeman fields used in
previous studies. In addition, a significant SC diode effect and π -periodic CPRs can be observed. The presented
nonlocal CPR can be used as a signature of the formation of an Andreev molecular state and in general to
introduce ways to tune quantum architectures.
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I. INTRODUCTION

Hybrid superconductor-semiconductor structures are the
subject of surging fascination since they can serve as synthetic
quantum materials hosting non-Abelian excitations [1–5] and
provide topological protection in quantum computational ap-
plications [6,7]. One of the most promising synthetic quantum
materials is the Kitaev chain [8], shown in Fig. 1(a), consisting
of a chain of quantum dots (QDs) coupled by superconducting
(SC) spacers. The smallest version of such a chain is two QDs
connected to an SC link, a minimal Kitaev chain hosting states
referred to as poor man’s Majorana states [9–11]. A similar
minimal setup is also used for splitting Cooper pairs (CPs)
[12–18], where the SC-QD coupling is usually weak. How-
ever, when a QD is coupled to an SC, so-called Andreev bound
states (ABSs) form, which have been widely studied [19–35].
When two sites hosting such ABSs are closely spaced, the
ABSs hybridize and form an Andreev molecular state, as
described in weak links [36,37], coupled QDs [38], and even
in multiterminal SC devices [39–41]. Recent advancements
of nanofabrication allowed the demonstration of signatures
of such Andreev molecules [41–43], and very recently, the
observation of poor man’s Majorana modes has also been
shown [11].

In this paper, we study the minimal Kitaev chain coupled to
two outer SC leads, as shown by the red dashed rectangle in

*Corresponding author: matyaskocsis@edu.bme.hu

Fig. 1(a). This configuration allows the application of phase
biases (ϕL, ϕR) on the two QDs as well as modifying the
level position (εL, εR) of the dots [see Fig. 1(b)], enabling us
to examine the role of Coulomb interactions in an Andreev
molecule. We will show that the presence of the Andreev
molecular state induces a strong nonlocal current-phase rela-
tionship (CPR) on the dots.

Specifically, we study a device shown in Fig. 1(b), two
QDs (black) embedded in one SC loop (blue) each, where the
two loops share a side. Two flux lines (green) can be used
to apply arbitrary magnetic flux into the SC loops to control
the SC phase differences across the QDs (ϕL, ϕR). Adding
two side gates (orange) allows us to electrostatically control
the on-site energy of the two QDs separately (εL, εR). This
control is not possible if the Josephson junctions (JJs) behave
as noninteracting transport channels [36,37]. As we will show,
this distinction leads to interesting behavior in our system.

In the following sections, we show how this device behaves
in different parameter regimes and what robust signatures of
the Andreev molecular states can be observed. The Andreev
molecular states are observed through the presence of the
nonlocal Josephson effect, where the supercurrent flowing
through one dot is influenced by tuning the parameters of the
other QD. We demonstrate 0-π and large ϕ0 phase shifts even
in the absence of ground-state (GS) change. Here, π -periodic
CPRs are also demonstrated for certain parameter configura-
tions. Unlike previous systems [44–53], ours does not rely on
spin-orbit interaction (SOI) or a Zeeman field. This makes
such devices especially suited for applications where ϕ0
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FIG. 1. (a) A chain of quantum dots (QDs) connected by super-
conductors can host Majorana fermions. Three superconducting (SC)
sites connected by QDs (dashed red line) can be thought of as a basic
building block of such a system. (b) The proposed circuit for studying
Andreev molecules, two SC quantum interference devices (SQUIDs)
with a QD in each Josephson junction, which allow phase biasing
(ϕL, ϕR) across either dot. By gating the QDs, and phase-biasing
the loops separately, we have four individually tunable variables.
The gray arrows show the currents flowing in the SC loops. (c)
Five-site model used in our calculations. We set the SC phase of
the middle site to ϕM = 0 in all cases. For simplicity, we keep all t
hopping terms equal, and set UL = UR = U = 1 as our energy scale,
with � = 0.4U in all calculations.

junctions have been considered, such as phase batteries
[54,55]. We also demonstrate a considerable nonlocally tun-
able SC diode effect.

II. METHODS

The phase-biased Andreev molecule system was modeled
with a chain of five sites, as shown in Fig. 1(c), denoted as
SCL–QDL–SCM–QDR–SCR, with all sites coupled to their
nearest neighbors. The left and right QDs are labeled with
L and R, while the SC sites are labeled L, M, and R for the
left, middle, and right site respectively. The coupling strength
between nearest neighbors (t) is kept the same across the
system, it is scaled with the Coulomb energy of the dots
(U = UL = UR = 1), and so are the on-site energies of the
dots (εR, εL).

The Hamiltonian describing the system can be written as

H = HQD + HSC + HNN, (1)

where HQD contains the terms related to the QDs, HSC the
terms related to the SC sites, and HNN describes the nearest-
neighbor tunnel couplings.

We assume that the level spacing of the QDs are large, so
each QD can be modeled with a single spinful orbital. The

QDs are treated according to the Anderson model:

HQD =
∑

α=QDL,QDR

εα n̂α + Uα n̂α,↑n̂α,↓, (2)

where εα is the on-site energy, and Uα is the on-site Coulomb
repulsion energy. For the number operator of the QDs, n̂α =∑

σ=↑,↓ n̂α,σ , where n̂α,σ = ĉ†
α,σ ĉα,σ , the operators ĉα,σ and

ĉ†
α,σ are the annihilation and creation operators on site α.

When describing the SC leads, we approximate the full
BCS Hamiltonian using the zero-bandwidth (ZBW) approx-
imation [56,57], where an SC site can only host a single
quasiparticle (QP) at energy ±�. We use the ZBW approx-
imation, as it has been shown to yield results that compare
quantitatively with the outcome of numerical renormalization
group (NRG) calculations, when care is taken in choosing
the scale of the SC gap and the couplings, describing QDs
attached to SCs [56–58]. The ZBW Hamiltonian of the SC
sites takes the form:

HSC ≈ HZBW =
∑

α=SCL,
SCM,SCR

�(exp(iϕα )ĉ†
α,↑ĉ†

α,↓ + H.c.), (3)

where � is the SC gap, and ϕα is the SC phase of the site.
Since the SC phase is transferable from one SC site to another
via simple gauge transformations, we set the SC phase on the
middle SC site to zero, ϕM = 0.

The nearest-neighbor coupling is expressed as

HNN =
∑

〈α,β〉
tα,β (ĉ†

α,↑ĉβ,↑ + ĉ†
α,↓ĉβ,↓ + H.c.), (4)

where tα,β describes the strength of the coupling between
neighboring sites.

We only consider terms diagonal in spin, representing spin-
conserving tunneling, as the system we consider lacks SOI.
How SOI could be incorporated into the model is discussed in
Ref. [38]. For simplicity, we use tα,β = t for all α and β. In
general, our findings are applicable even if the values of tα,β

are not precisely matched; asymmetries in the coupling are
discussed in Appendix A.

To make sure that the use of the ZBW approximation is
valid, we always set t < � < U . Unless indicated otherwise,
in all calculations, t = 0.2U and � = 0.4U . By using Eq. (3)
instead of a full BCS Hamiltonian to describe the SC sites,
Eq. (1) becomes finite dimensional, so it can be diagonalized
numerically.

In similar systems with only one QD, the current is cal-
culated using the derivatives of the free energy [57]. In our
case, however, there are two different supercurrents of inter-
est, shown by the light gray arrows in Figs. 1(c) and 1(b).
Here, JR flows in the right loop through the right SC site, and
JL flows in the left loop through the left SC site. Once the
energy spectrum and the eigenstates of the full Hamiltonian
are calculated, we consider a stationary solution, where the
incoming and outgoing flows of particles add up to zero on
every site, so

ih̄∂t n̂α = [n̂α, H] = 0. (5)

Applying these formulas to the SC site on the right, we get

ih̄∂t n̂SCR = [
n̂SCR, H

] = [
n̂SCR , HZBW

] + [
n̂SCR , HNN

]
. (6)
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FIG. 2. Stability diagrams at different coupling strengths. The
colors show the overall particle number as a function of the
on-site energy of the two quantum dots (QDs), εL, εR. The parity of
the ground state is indicated by hatching; the solid black line denotes
the singlet-doublet boundary. (a) Weaker coupling, t = 0.1U . The
cyan dotted line shows the singlet-doublet boundary without any
coupling; labels show the occupation numbers of left and right QDs.
With nonzero coupling, the regions with the same parity hybridize.
The former (1,1) region shrinks due to the coupling. (b) Stronger cou-
pling, t = 0.2U . The hybridized regions expand; the region where
(1,1) is the dominant particle number configuration shrinks further.
The blue dotted line shows the singlet-doublet boundary when a
magnetic flux is inserted into the left loop, ϕL = π . In all other cases,
no magnetic flux is present, ϕL = ϕR = 0.

The terms in Eq. (6) are also shown in Fig. 1(c) and can be
thought of as the particle current flowing into the SC site from
the CP reservoir [right blue vertical arrow in Fig. 1(c)] de-
scribed by the term containing HZBW and the particle current
flowing into the site through the coupling to the neighboring
QD [right dark gray horizontal arrow in Fig. 1(c)] described
by the term containing HNN. According to Eq. (5), these cur-
rents should be equal with opposing signs:

[
n̂SCR, HZBW

] = −[
n̂SCR , HNN

] = ih̄ĴR, (7)

where ĴR is the operator of the current flowing through the
right SC site. This enables us to study JR and JL separately
as well as the CPRs of our system and show signatures of the
Andreev molecular state. We neglect HQD in these equations,
as it does not influence the SC sites.

In this paper, we consider the GS of the system, which can
be divided into even and odd phases, depending on the total
number of electrons on the QDs. This particle parity gives a
useful tool to explore how the stability diagram of our system
is influenced by the strength of the coupling between sites. It
is important to note that we always consider the whole system;
thus, if both QDs have odd occupancy, the system as a whole
is still considered to be in an even state.

III. RESULTS

A. Phase diagram

First, let us illustrate [see Fig. 2(a)] how the localized
ABSs residing on separate dots hybridize into a molecular one
by studying the charge stability diagram of the system with
relatively weak t = 0.1U coupling. The two axes correspond

to the on-site energy of the left and right QDs, the colors show
the number of particles in the whole system consisting of two
QDs, which can range from 0 to 4. We label the different
regions with particle numbers of the left and right QD (nL, nR)
which, in the absence of couplings (i.e., t = 0), would be ex-
act. Region boundaries of the noninteracting case are marked
by the dotted cyan lines in Fig. 2(a). With nonzero coupling
strength, we still have regions where the labeled states are
good approximations of the GS; however, the boundaries are
shifted as marked by the solid lines. The hatching denotes the
odd and even particle parity regions, as discussed in Sec. II.
For example, the top right region corresponds to both dots
being empty, hence the (0,0) label, and the hatching denotes
the even states. Since we do not apply any Zeeman field and
the system has no SOI, the energy levels of the QDs are spin
degenerate. For example, the state (0,↑) has the same energy
as (0,↓). The even-parity GS is always a singlet, while the
odd-parity GS is a spin-degenerate doublet, so we use the
words singlet (doublet) and even (odd) interchangeably to
describe the different regions.

In Fig. 2(a). there are small regions around the corners
of the (1,1) charge region where we can see the effects of
coupling the QDs to the SC sites as avoided crossings. This
coupling shrinks the doublet regions, e.g., the solid borders
of the (1,0), (0,1) regions are shifted inward from the dotted
lines, where they meet. This is also true for the (2,1) and
(1,2) regions since single occupancy of the QDs becomes less
favored due to the presence of SC correlations on the QDs
[59,60]. Regions with the same parity start hybridizing, e.g.,
the (0,0), (1,1), and (2,2) regions of even parity are connected,
while the odd (1,0) state connects with the (2,1) state. This is
the consequence of crossed Andreev reflection (CAR), where
a CP from the middle SC site is split up, and one electron
enters the left and right QDs each. This process couples the
localized ABSs residing on the separate dots to form the
molecular Andreev states.

As the strength of the coupling increases, the doublet re-
gions shrink further, while the hybridized regions expand, as
shown in Fig. 2(b) for t = 0.2U . Comparing the solid lines on
the lower part (εR < U ) of the two panels of Fig. 2, we see
that the doublet region contracted from spanning the middle
half of the axis (εL ≈ −1U to ε ≈ 0) to less than a third,
while the hybridized region of the former (1,2) and (0,1) states
expanded significantly.

So far, no SC phase difference was present across the
junctions (ϕL = ϕR = 0); however, our systems allow for in-
dividually phase-biasing each junction. To demonstrate the
effect of flux-biasing one of the JJs, we show the singlet-
doublet boundary for the ϕL = π, ϕR = 0 case with a dashed
blue line in Fig. 2(b), where the changes are the most pro-
nounced. Examining the lower part of Fig. 2(b) again, we see
that the doublet region has expanded along εL, as ϕL = 0 → π

In contrast, the vertical extension of the (0,1) doublet region
at εL = 0.5U (right side of the panel) is not affected. Thus,
remarkably, in some regions (e.g., at the point marked with
a red ×), a quantum phase transition can be induced, i.e., a
GS parity change can be induced by tuning the SC phase.
Similar quantum phase transitions, tuned by the SC phase,
have been recently observed in simpler SC-QD-SC systems
[60]. In addition to investigating the GS properties of the
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Andreev molecular states, we also evaluated its excited state
spectra, which is described in Appendix D.

While the charge stability diagrams are useful for under-
standing the behavior of the system, experimentally detecting
nonlocal effects is most straightforward by measuring the
supercurrent flowing through one of the QDs. In the follow-
ing, we will focus on the CPR of the right QD and show
experimental signatures of the molecular state. We will refer
to ϕR and εR parameters as local, while referring to ϕL and
εL as nonlocal. The same effects could also be observed with
the roles reversed. For detailed comparisons of JL and JR, see
Appendix B.

First, we will discuss the case when the nonlocal QD is
off-resonant and our device resembles the simpler SC-QD-
SC devices [60]. This yields a 0-π transition when the GS
changes parity, very similar to the one in the SC-QD-SC setup.
We then move on by tuning the nonlocal QD to resonance
and showing a 0-π phase shift of the CPR, in the absence of
GS parity change. Then we present how this 0-π phase shift
appears whenever the SC phase across the nonlocal junction
is an integer multiple of π (ϕL = kπ ). Along the way, we
will find that the system can be tuned such that π -periodic
CPRs can be observed. Finally, the case of arbitrary ϕL is also
considered, where we find a tunable ϕ0 phase shift.

B. CPRs

1. Off-resonance case

The left QD is tuned far from hybridization between the
QDs by tuning εL so that the left QD is deep in blockade.
The green arrows in Fig. 2(b) show one such value for εL,
equidistant from both resonances at εL = −0.5U . The CPR
for some values of εR is shown in Fig. 3(a), while Fig. 3(b)
shows the same for a wide region of εR. The particular values
of εR, where the line cuts of Fig. 3(a) are taken, are indicated
by arrows.

The orange and blue curves of Fig. 3(a) show a near
sinusoidal CPR corresponding to a conventional 0 junction
(skewness and higher harmonic components of the CPRs are
addressed in Appendix C), taken at εR = −1.396U and εR =
−1.018U , respectively. In this region, the GS is a doublet
state, as opposed to SC-QD-SC systems where the 0 junction
is in the singlet region [60]. This is due to the single electron
occupying the off-resonance nonlocal QD, which does not
influence the local current but is counted when determining
the particle parity of the whole system, as discussed in Sec. II.

The green (εR = −0.737) and red (εR = −0.496) curves
show CPRs which are shifted by π in ϕR corresponding to a
π junction. The 0-π transition is driven by the GS transition,
yielding a parity change [as demonstrated by the coincidence
of the blue-red color transition and the solid black phase
boundary in Fig. 3(b)]. This means that we need to add or
remove a QP to/from the system to observe the 0-π transition.
As expected, these results show the same qualitative behavior
as a single SC-QD-SC system [60] since the left QD is in
blockade.

2. Hybridization, ϕL = 0

Tuning the nonlocal QD toward the hybridization region
has very striking effects on the CPRs, for example, by setting

FIG. 3. Current-phase relation (CPR) of the local quantum dot
(QD). The left column shows curves at some given local on-site
energy εR; the right shows CPR dependence on the on-site energy.
Colors represent the local supercurrent JR; hatching indicates the sin-
glet and doublet regions; and solid lines indicate the phase boundary.
Arrows indicate the values of εR where the curves on the left were
taken. (a) and (b) Nonlocal QD is deep in blockade. Blue and green
curves show a 0-π transition, the parity of the ground state (GS)
changes. (c) and (d) Nonlocal QD is on resonance and ϕL = 0. Blue
and green curves show a 0-π transition, surprisingly without the need
for parity change in the GS. (e) and (f) Nonlocal QD is on resonance,
with ϕL = π . The blue and green curves show a 0-π transition, with-
out GS parity change like the case above. Singlet and doublet phases
are inverted; the transition still takes place in the singlet region. (g)
and (h) Nonlocal QD is on resonance, its superconducting (SC) phase
is a noninteger multiple of π (ϕL = 0.8π ). Curves show a ϕ0 phase
shift; the maximum is continuously shifted with local on-site energy
εR. This ϕ0 transition relies only on the nonlocal phase tuning and
does not require spin-orbit interaction.

εL = −0.87U , as shown by the magenta arrow in Fig. 2(b).
Figure 3(c) shows some CPR curves taken at this position.
Comparing the red and green curves, we see a 0-π transition
which is accompanied with a GS parity change, as before.
Comparing the blue and green curves, we see that a 0-π phase
shift takes place. However, in strong contrast to the previ-
ous example, it is not accompanied by a GS parity change.
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Figure 3(d) shows the phase shift between the blue and green
arrows taking place entirely in the singlet sector, which is a
direct consequence of the Andreev molecular state spanning
the two QDs. Whenever 0-π phase shifts take place without
a change in GS parity, CPR curves with dominant higher
harmonic elements can be observed, as shown by the orange
curve of Fig. 3(c). Similar behavior has been predicted and
measured in asymmetric 0-π Josephson junctions consisting
of two parallel junctions [47,48] or in balanced SC quantum
interference devices (SQUIDs) [61–63]. In contrast to these
devices, which were only tunable by changing the device
geometry or by a Zeeman field, in our case, the phase shift
is tuned by local gating.

By choosing all parameters carefully, the CPR can take
a close-to-π -periodic form in ϕR, as shown by the orange
curve of Fig. 3(d), and can serve as a unique signature of
Andreev molecular states. Recently proposed protected qubits
are based on systems with cos 2ϕ CPRs [64]. Tuning our
system such that the first harmonic part of the CPR is totally
suppressed, thus leading to an ideal π -periodic junction, is
also possible. The details of such π -periodic CPRs and pro-
tected qubits are discussed in Appendix C.

Interestingly, the other GS parity change around εR � 0 is
not accompanied by a 0-π transition; rather, a 0-0′ transition
is taking place, with a significant drop in the amplitude of JR

entering the singlet sector.

3. Hybridization, ϕL = π

By tuning the nonlocal flux to ϕL = π , we see a dramatic
shift of the CPRs from that of Figs. 3(d)–3(f). Such dramatic
dependence of the local CPR on the nonlocal flux is also a
characteristic signature of the Andreev molecular state. To
understand how this change manifests, we come back to the
stability diagram.

When comparing the blue dashed line of Fig. 2 correspond-
ing to ϕL = π , with the solid lines corresponding to ϕL = 0,
we see that the singlet and doublet regions have flipped. Now
the central region is a singlet hybrid of the (2,2) and (1,1)
states, and the outer regions are in doublet GSs. This inversion
of the parity regions is most notable when comparing the
hatching of Figs. 3(d) and 3(f). The CPR curves in Fig. 3(e)
show the same 0-π phase shift without a GS transition as
discussed earlier (see blue and green curves). The orange
curves of Figs. 3(c) and 3(e) show similar close-to-π -periodic
CPRs in the singlet sector.

4. ϕ0 phase-shift

In all cases discussed so far, the nonlocal phase was either
0 or π ; however, tuning ϕL to noninteger multiples of π can
yield exciting features. This is demonstrated in Figs. 3(g)
and 3(h) for ϕL = 0.8π , where instead of a 0-π phase shift,
the phase of the CPRs in the singlet region is shifted by an
arbitrary phase ϕ0.

Josephson junctions in which the critical current takes on
an anomalous phase, such that Jc = J0 sin(ϕ + ϕ0), have been
studied both theoretically and experimentally [44–51] and are
great candidates for the creation of phase batteries [54,55].
In some cases, the value of ϕ0 is even tunable [52,53,55].
However, in all cases, SOI or a Zeeman field is required. In our

case, neither SOI nor external fields are required to produce
this anomalous phase shift and tune the value of ϕ0. This
tunable phase shift in the absence of SOI or external fields
is a strong indicator of the presence of Andreev molecular
states.

In systems with a single junction, time-reversal symme-
try (TRS) dictates that J (ϕ) = −J (−ϕ), which implies that
J (ϕ = 0) = 0. The presence of an anomalous Josephson cur-
rent J (ϕ = 0) 
= 0 can only occur if SOI is present and TRS
is broken, for example, by a Zeeman field [51].

For our double-junction system, TRS dictates that
J (ϕL, ϕR) = −J (−ϕL,−ϕR) [36], which in the case of ϕL =
kπ simplifies to J (ϕR) = −J (−ϕR). The vertical white bands
in the middle of Figs. 3(b), 3(d) and 3(f) at ϕR = 0 show this
symmetry. If ϕL is set to an arbitrary value, J (ϕR = 0) = 0
no longer holds true. This effect is demonstrated in Figs. 3(g)
and 3(h) for ϕL = 0.8π , where a ϕ0 phase shift is observed
in the singlet region. The anomalous phase ϕ0 is also strongly
tunable by local gating.

Having a noninteger multiple of π as the nonlocal phase
also introduces significant changes in the shape of the CPR
curves. The CPR curves shown up to now all had symme-
try where the absolute value of the minimal and maximal
supercurrent was equal |max[JR(ϕR)]| = |min[JR(ϕR)]| [see
Figs. 3(a), 3(c) and 3(e)]. For the curves of Fig. 3(g), how-
ever, |max[JR(ϕR)]| 
= |min[JR(ϕR)]|, with the green curve
showing the strongest effect (with the absolute value of the
minimum and maximum showing a 28% difference). This
effect is referred to as the SC diode effect [44,65–73], which is
observed in systems where both inversion symmetry and TRS
are broken. In our system, the TRS is broken by phase biasing,
and the spatial symmetry is broken from the perspective of
QDR. These symmetry breaks are nonlocal due to the spatial
extension of the GS wave function over the two dots [72].

5. Nonlocal phase tuning

All three effects discussed so far are signatures of the
Andreev molecular states formed in the QDs. Since tuning the
nonlocal phase has such a fundamental effect on the system,
we will study the ϕ0 and 0-π phase shifts in more detail as a
function of the nonlocal phase. We then show a third scenario
where the nonlocal phase drives a singlet-doublet transition.

By fixing the on-site energies to the values indicated in
Fig. 2 by a red dot, we can study how the nonlocal phase ϕL

tunes the ϕ0 shift of the local CPR. Figure 4(a) shows a few
selected CPR curves at different values of ϕL, demonstrating
the ϕ0 junctionlike behavior. The exact phase shift can be
tuned in a wide range by the nonlocal phase. When both
local and nonlocal phases are zero, the current is completely
suppressed.

Mirroring Fig. 4(b) around the ϕL = 0, ϕR = 0 point and
inverting the colors yields the original figure. This is a
consequence of TRS mentioned earlier, which implies that
J (ϕL, ϕR) = −J (−ϕL,−ϕR) [36].

A π phase shift controlled by the nonlocal phase is also
achievable by tuning the dots such that εL = εR, as shown
by the red + in Fig. 2. Figures 4(c) and 4(d) show the lo-
cal current reversal by nonlocal phase. The nonlocal phase
switches the junction from a 0 to a π phase shift, as the blue
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FIG. 4. Current-phase relation (CPR) of the local quantum dot
(QD), as a function of the nonlocal superconducting (SC) phase ϕL.
The nonlocal phase tuning of the local supercurrent is the nonlocal
Josephson effect. The on-site energies where the CPRs are taken are
marked with corresponding red marks in Fig. 2. The left column
shows curves at some given nonlocal SC phase values ϕL, while the
right column shows how CPR depends on the nonlocal SC phase in
a continuous window. (a) and (b) ϕ0 phase shift, tuned by nonlocal
phase. The curves are continuously shifted by the nonlocal phase.
The absolute value of the minimum and maximum current differs for
each curve, showing the SC diode effect. This is true for all on-site
energy configurations shown here. (c) and (d) 0-π phase shift, tuned
by nonlocal phase, without requiring the change of ground state (GS)
parity. Close to the transition, the CPR is strongly nonsinusoidal. (e)
and (f) The quantum phase transition of the GS from the singlet to the
doublet state is driven by the nonlocal phase. Within the same parity
regions, ϕ0 phase shift is observable, while 0-π transitions take place
along the singlet-doublet boundary.

and purple curves show, without changing the parity of the
GS. The change from the ϕ0 to the 0-π regime is detailed in
Sec. IV.

It is also possible to drive GS transition between the sin-
glet and doublet GSs by nonlocal flux tuning, as shown in
Figs. 4(e) and 4(f). To achieve this, we set the on-site energies
of the QDs close to the boundary, as shown in Fig. 2 by a
red ×. The GS switch also means a 0-π transition, while
within a given GS, the nonlocal phase has a ϕ0-like behavior.
Comparing the red and green curves of Fig. 4(e), we see that
the SC diode effect has the same strength, but the polarity is
flipped. This means that, in this regime, the system can be
used as an SC diode in which the strength and the polarity of
the effect is easily tunable.

IV. DISCUSSION

Let us now compare our QD-based Andreev molecule
with a system with the same geometry but where the JJs are
modeled as noninteracting channels [36,37]. There are three
phenomena discussed in this paper that are also present in the
noninteracting-channel-based model. These are the breaking
of the JR(ϕR = 0) 
= 0 symmetry, the SC diode effect, and the
tunable ϕ0 phase shift. In addition to being able to control the
ϕ0 shift of the transition via the nonlocal phase ϕL [Figs. 4(b)
and 4(f)], our system allows it to be controlled via the local
gate voltage (on-site energy) εR [Fig. 3(h)] as well, in stark
contrast with the noninteracting case. It is important to note
that our model does not consider the distance between the two
junctions, which is an important parameter of the experimen-
tal realization.

The 0-π phase shift without changing GS parity is absent
in the noninteracting model; it is unique to our QD-based
one. These are markedly different from 0-π transitions where
the GS parity changes: There exists a central region between
the 0 and π phases where the CPR is nonsinusoidal and
the amplitude of the supercurrent is low, as opposed to the
sharp changes characteristic of GS-changing transitions. This
holds true whether the transition is tuned by the local on-site
energy εR [Figs. 3(d) and 3(f)] or the nonlocal phase ϕL

[Fig. 4(d)].
In this paper, we have studied a QD-based Andreev

molecule between SC leads. We explored its characteristics
for different level positions of the dots and different phase
biasing of the JJs, which led to unusual and strongly varying
CPRs due to the molecular hybridization.

Our proposed circuit can be fabricated from state-of-the-art
semiconductor-superconductor nanostructures, like nanowires
with an epitaxial Al shell that is etched away to form the
QDs or 2DEG systems proximitized with an epitaxial Al
layer. Both platforms have been used experimentally to cre-
ate similar devices [42,74–77], showing the feasibility of the
realization of the device concept under investigation. The
semiconductor can be depleted by local gating, which allows
the characterization of a single JJ at a time. Local gating can
tune the energy level of the QD in the presence of Coulomb
interactions, which has been crucial in many recent experi-
ments as well [42,74,75]. The supercurrents can be measured
using high-frequency techniques, commonly used in measur-
ing similar devices [60,74,76,78]

We demonstrated how tuning the nonlocal QD away from
Coulomb blockade results in 0-π or ϕ0 phase shift of the CPR
of the local JJ. The nonlocal Josephson effect is demonstrated
by showing how the nonlocal flux can influence the behavior
of the local current. This yields 0-π and ϕ0 phase shifts as
well. Contrary to the single-dot case, the nonlocally controlled
0-π and ϕ0 phase shifts can occur without QP parity changes,
and a significant and highly tunable SC diode effect is also
demonstrated.

Unlike devices that show similar behavior, our system does
not rely on Zeeman fields or SOI. Our results show that these
effects can be observed in a wide parameter range. This makes
the system valuable for studying both the SC diode effect and
the applications of a programmable ϕ0 junction. The strong
nonlocal tuning of the CPR is a hallmark of the Andreev
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FIG. 5. Local current JR as a function of the local phase ϕR and the local on-site energy εR, at the same nonlocal phase ϕL and nonlocal
on-site energy εL values as Fig. 3. Each row represents a parameter setting, with the couplings tα,β randomized within a ±20% range five times.
The main features discussed in the main text are conserved even for randomized couplings; they are not a consequence of symmetric values of
tα,β . The color scales of each panel are normalized individually; the colors of different panels are not comparable.

molecular state, which is promising for future quantum archi-
tectures, like protected qubits.

In this paper, we studied the GS properties of the sys-
tem. Studying the excitation spectrum may reveal further
experimentally observable features of the Andreev molecular
state.

Note added. It has come to our attention that, due to high
interest in the field, during the preparation of this manuscript,
multiple studies have been carried out [72,79–82].

All data are available upon request from the author.
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APPENDIX A: ASYMMETRIC COUPLING

So far, we have assumed that all coupling strengths are
equal, tα,β = t . In practice, matching all couplings exactly
might not be feasible; thus, it is important to investigate
that our findings hold for systems with different couplings.
We reproduced Fig. 3 with the couplings randomly varied
in a window ±20% of the original t = 0.2 value shown in
Fig. 5. The coupling terms tα,β are numbered left to right,
as shown by the double-sided gray arrows in Fig. 1(c). Here,
t1 (t2) determines the coupling strength between the left QD
and the left SC (middle SC), while t3 (t4) represents the

FIG. 7. The current of the nonlocal junction JL and the local
junction JR, as a function of the local (ϕR) and nonlocal (ϕL) phase.
For each row, the on-site energies are the same as for the same row of
Fig. 4. The on-site energies where the current-phase relations (CPRs)
are taken are marked with corresponding red marks in Fig. 2.

coupling between the right QD and the middle SC (right SC).
Each row of Fig. 5 corresponds to a row of Fig. 3, with
the same on-site energy and phase settings, but each panel
of the row is generated with randomized values for tα,β ; the
exact values are shown above the panels. The color scale
of each panel is normalized to that single panel to make all
features visible. This makes the colors of different panels
incomparable.

The first row shows the SC-QD-SC-like behavior, with two
π phase shifts when the GS changes parity. We expect that the
role of the SC phase between the two SC sites (ϕR between the
middle and right SC site) will have a stronger effect when the
coupling between the SC sites and the QD is stronger. Since
the left QD is not on resonance, we only have to consider t3
and t4, the coupling of the right QD to the two neighboring
SC sites. When the couplings are strong, i.e., Fig. 5(b), we
see that the local phase has a strong effect on the width of the
doublet region; it is much narrower at ϕR = 0 than at ϕR = π .
When the couplings are weak, i.e., Fig. 5(d), the width of the
doublet region is much less affected by the phase, but the two
cases are qualitatively the same.

The second row shows the case where the left dot is
on resonance, with no phase applied to the nonlocal QD
ϕL = 0. Here, we see the π phase shift in the doublet re-
gion around εR = −0.8U , discussed earlier, appear for all
couplings.

The third and fourth rows show the cases where a finite
phase is applied to the nonlocal QD, ϕL 
= 0. Here, again,
we see the same features of Fig. 3, with the exact positions
of the features shifting but still showing good qualitative
agreement.
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FIG. 8. Reproduction of Fig. 3, with the first and second harmonic parts of the current-phase relation (CPR) highlighted. The third column
shows the first, the fourth column the second harmonic signal, with the black solid lines denoting the amplitude (bottom scale), the cyan lines
the phase (top scale) of the signal. The lines are not continuous, where changing ϕR induces a ground state (GS) change, such as around εR = 0
and −1 in the first row.

APPENDIX B: SUPERCURRENT OF THE NONLOCAL QD

So far, we only concerned ourselves with the supercurrent
flowing through the local QD JR; however, the roles of local
and nonlocal QDs were arbitrarily set, and the roles could be
easily reversed. In this section, we reproduce Figs. 3 and 4
with both JR and JL shown.

Figure 6(a) shows JL when the left QD is not on resonance.
Comparing the color bars of Figs. 6(a) and 6(b), we see that
JL is much smaller than JR, as expected. The supercurrent in
the left QD is also suppressed when the SC phase is set to kπ ,
as shown in Figs. 6(c) and 6(e). If the left QD were not part
of a larger system but the single QD of a SC-QD-SC system,
we would expect the SC current to be zero. The fact that there
is a finite current and its amplitude is tuned by the parameters
of the other QD (ϕR, εR) is further evidence of the Andreev
molecular states.

Figures 7(a) and 7(b) show that, when the on-site energies
are tuned to the values shown by the red dot of Fig. 2, both
QDs show the ϕ0 phase shift discussed in the main text.
When comparing Figs. 7(a) and 7(b), we must remember that,

if we wanted to reverse the roles of the local and nonlocal
QDs of Fig. 7(a), in essence. we must exchange the ϕL and
ϕR axes, which would mean mirroring the image along the
ϕL = ϕR diagonal. This is even more obvious for Figs. 7(c)
and 7(d), where εL = εR, as shown by the red + of Fig. 2,
and correspondingly, there is no distinction between the dots;
mirroring one panel yields the other.

APPENDIX C: HIGHER HARMONICS
OF THE SUPERCURRENT

In this section, we show how the first and second har-
monic components of JR are tuned separately. This helps
us gain a deeper insight into the π -periodic CPRs as well
as the ϕ0 phase shifts shown in the main text. We are
only concerned with the first two Fourier components, as
the amplitude of higher harmonics is negligible. This means
that we can write the supercurrent as JR � JR,ω1 + JR,ω2 =
|JR,ω1 | sin(ϕR + ∠JR,ω1 ) + |JR,ω2 | sin(2ϕR + ∠JR,ω2 ).

As mentioned earlier, protected qubits based on systems
with cos 2ϕ CPRs have been proposed [64]. This protection
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FIG. 9. Reproduction of Fig. 4, with the first and second harmonic parts of the current-phase relation (CPR) highlighted. The third column
shows the first, the fourth column the second harmonic signal, with the black solid lines denoting the amplitude (bottom scale), the cyan lines
the phase (top scale) of the signal. The lines are not continuous, where changing ϕR induces a ground state (GS) change, such as around εR = 0
and −1 in the first row.

requires that Jω1 = 0 and Jω2 
= 0. However, if the suppression
of the first harmonic signal is linear in a given parameter,
Jω1 (α) � α, it will be sensitive to the noise of that parameter,
and the protection is lost. Ideally, in a protected state, the first
harmonic component is suppressed at least quadratically in all
parameters, Jω1 (α) � α2. Thus, we will look for such points
in the parameter space.

Figure 8 is a reproduction of Fig. 3, with the addition
of panels (i)–(p). The colors of the axes correspond to the
value of εL shown in Fig. 2; the labels in the first column
show the value of εL. The first column shows selected CPR
curves and the supercurrent JR (left scale) as a function of the
local phase ϕR (bottom scale). The second column shows the
supercurrent JR as the function of the local phase ϕR (bottom
scale) and local on-site energy εR (right scale). The third
column corresponds to the first harmonic part of the CPR;
the solid black line shows the amplitude (bottom scale), the
cyan line the phase (top scale). The fourth column is like
the third but shows the amplitude (black, bottom scale) and
phase (cyan, top scale) of the second harmonic component of
the signal.

1. Off-resonance case

The simplest case is that of the 0-π phase transition, when
the nonlocal dot is off-resonance, as shown in the first row.
Starting at the bottom of Fig. 8(b) [εR < −1U , blue and or-
ange curves of Fig. 8(a)], we see that the phase of the first
harmonic signal is 0. Above εR � −1U the CPR, JR(ϕR),
curve shows jumps as singlet-doublet phase transitions are
triggered when sweeping ϕR, so the Fourier decomposition
of the CPR is not directly usable. This is why the curves of
Figs. 8(i) and 8(j) are not continuous for values of εR, where
changes in ϕR can trigger singlet-doublet transitions. Above
εR � −0.75U [green curve and arrow in Figs. 8(a) and 8(b)],
we see no jumps, but the CPRs are shifted by π , as shown
by the jump in the red curve of Fig. 8(i). Around ϕR � 0, we
see a similar 0-π phase transition. The Fourier analysis of the
first harmonic signal shows that the phase shift is indeed π , as
described in the main text. This shows that decomposing the
CPR signal is a good tool to determine the exact phase shift.

We also note that, while there is a nonnegligible second
harmonic signal even in the off-resonant case, its amplitude
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FIG. 10. Reproduction of Fig. 3, extended with the phase dependence of the energy of the lowest few levels (right column). For each
spectra (each color), the minimum of the ground state energy was set to zero; �E is measured from this energy. Different colors denote spectra
taken at different values of εR, as shown by the arrows of the same color on the middle column. Singlet states are shown with dashed lines,
while degenerate (doublet or triplet) states are shown with a solid line.
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is always smaller than that of the first harmonic part; thus, it
only leads to the skewing of the signal.

2. Hybridization

The second and third rows of Fig. 8 show the nonlocal QD
on resonance, and the nonlocal phase is 0 of π . In Secs. III B 2
and III B 3, we describe how a 0-π phase shift occurs without
a singlet-doublet transition. Figures 8(k) and 8(m) show that
the first harmonic singlet indeed has a π phase jump, when
the amplitude goes to 0. Examining the same locations in
Figs. 8(l) and 8(n), we see that the second harmonic signal has
local maxima close to where the first harmonic goes to zero.
This explains why the orange curves of Figs. 8(c) and 8(e)
seem to be π periodic. The amplitude of the second harmonic
signal is higher in the case of the red curve of Fig. 8(d), but
since the first harmonic signal is not zero, it only manifests
as the skewness of the CPR. The purple curve of the same
panel has an even higher first harmonic component, while the
second harmonic is zero, leading to a pure sinusoidal signal.

Here, we see that JR,ω1 = 0 and JR,ω2 
= 0 [e.g., close to
εR = −1U in Figs. 8(m) and 8(n)]; however, the first har-
monic signal depends linearly on εR close to its minimum,
thus making the system susceptible to gate noise, in contrast
with the protection requirement of the cos 2ϕ qubit.

3. ϕ0 phase shift

The fourth row of Fig. 8 details the case of the ϕ0 phase
shift tuned by εR, when ϕL = 0.8π . Figure 8(o) shows how
the exact value of the ϕ0 phase shift of the CPR depends upon
εR. It is also noteworthy that, unlike in the case of ϕL = 0, π ,
the amplitude of the first harmonic component of the CPR
never goes to 0. Even though the amplitude of the second
harmonic signal still has a local maximum at the minimum
of the first harmonic signal since the latter does not go to 0, it
only manifests as the skewness for the CPR curves.

4. Nonlocal phase tuning

For completeness, we also reproduce Fig. 4, extended with
the amplitude and phase of the first and second harmonic
signals, in Fig. 9 to help us further explore the effects of phase
tuning. Here, we also see that, when the first harmonic signal
disappears [see Fig. 9(i)], it does so linearly in ϕL, thus making
the system susceptible to phase noise also.

APPENDIX D: ENERGY SPECTRA

While the main text of this paper focuses on the GS
properties, the methods outlined can be used to calculate the
excitation spectrum as well. The right column of Fig. 10
shows the energy spectra for the cases of Fig. 3. The spec-
tra for different εR values are plotted as a function of ϕR

with different colors, as indicated in the middle column
by the arrows of the same color. For each spectrum (each
color), the minimum of the GS energy was set to zero;
�E is measured from this energy. We choose to show the
same region of �E so that the details of the lower-energy
states are still visible as well as some of the higher-energy
states.

In Fig. 10(c), the GS of the blue and orange spectra are
doublets (indicated by solid lines), while the red and green
GSs are singlets (indicated by dashed lines), in accordance
with the hatching of Fig. 10(b). One can also observe that,
close to the 0-π flip, the singlet and doublet states are close to
crossing, at ϕR = 0 for the green spectra and ϕR = π for the
orange. For the red and green cases, a third triplet state is also
visible at higher energies.

In Fig. 10(f), we can see that the lowest blue (dashed) and
red (solid) lines are close to overlapping, as are the CPRs of
the two states shown in Fig. 10(d). It is also interesting to
contrast the green and blue dotted lines of Fig. 10(f), where the
phase dependence of the energy levels shifts by π while still
being a singlet state. This is a consequence of the molecular
state forming in the system, as we have discussed when we
observed π transition of the current without parity change in
the main text. The green cut was taken just below the value of
εR, where the doublet state becomes the GS around ϕR = 0,
which can also be seen by the dotted and solid green lines
almost touching at ϕR = 0 in Fig. 10(f).

Comparing Figs. 10(f) and 10(i), one can see that there
is a significant dependence on ϕL. The two panels show the
spectra taken at the same values of εR, yet they are drastically
different. This strong dependence on the nonlocal phase is
also an indication of the molecular state encompassing both
QDs.

Introducing an arbitrary phase difference in the left loop,
e.g., ϕL = 0.8π as show in Fig. 10(l), introduces a ϕ0 phase
shift in the spectra, like the one observed in JR(ϕR) in
Fig. 10(j).
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