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We present a comparative analysis of the validity of Eliashberg theory for the cases of fermions interacting
with an Einstein phonon and with soft nematic fluctuations near an Ising-nematic/Ising-ferromagnetic quantum-
critical point (QCP) in two spatial dimensions. In both cases, Eliashberg theory is obtained by neglecting
vertex corrections. For the phonon case, the reasoning to neglect vertex corrections is the Migdal “fast elec-
tron/slow boson” argument because the phonon velocity is much smaller than the Fermi velocity, vF . The same
argument allows one to compute the fermionic self-energy within Eliashberg theory perturbatively rather than
self-consistently. For the nematic case, the velocity of a collective boson is comparable to vF and this argument
does not work. Nonetheless, we argue that while two-loop vertex corrections near a nematic QCP are not small
parametrically, they are small numerically. At the same time, perturbative calculation of the fermionic self-energy
can be rigorously justified when the fermion-boson coupling is small compared to the Fermi energy by effectively
invoking the fast electron/slow boson argument, this time because bosons are Landau overdamped. Furthermore,
we argue that for the electron-phonon case Eliashberg theory breaks down at some distance from where the
dressed Debye frequency would vanish, while for the nematic case it holds all the way to a QCP. From this
perspective, Eliashberg theory for the nematic case actually works better than for the electron-phonon case.
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I. INTRODUCTION

Migdal-Eliashberg (ME) theory has been developed to de-
scribe electron-phonon interaction in the normal state and
phonon-induced superconductivity [1,2]. Over the years, it
has been successfully applied to numerous electron-phonon
systems [3–8]. The theory, as formulated by Eliashberg [2],
consists of a set of three coupled self-consistent one-loop
equations for the normal and anomalous fermionic self-
energies and the phonon polarization. These equations can
be derived either diagrammatically or from the variational
Luttinger-Ward functional [9], assuming that vertex correc-
tions can be neglected. ME argued that vertex corrections are
small in the ratio of the dressed Debye frequency ωD to the
Fermi energy EF . The physical reasoning, due to Migdal [1],
is that in processes leading to vertex corrections a fermion
is forced to vibrate at the phonon frequency, which for small
ωD/EF is far from its own resonance. In mathematical terms,
the strength of vertex corrections is governed by the dimen-
sionless Eliashberg parameter λE = g2/(ωDEF ), where g is
an effective fermion-boson interaction, which we define be-
low (it depends on the bare Debye frequency ωD,0, but not
on the dressed ωD). The parameter λE is different from the
dimensionless coupling λ = g2/ω2

D, which determines mass
renormalization: λE = λ(ωD/EF ) � λ. By this reasoning, the
one-loop theory remains under control not only at weak cou-
pling, where λ < 1, but also at strong coupling, where λ > 1,
as long as λE < 1 [i.e., at ωD < g < (ωDEF )1/2]. Still, when
the Debye frequency softens, λE eventually becomes large and
the one-loop description breaks down. At larger λE , higher

loop processes become relevant and eventually lead to a pola-
ronic description.

In recent years, a similar description has been applied
to metals in which electron-electron interaction (screened
Coulomb repulsion) gives rise to long-range particle-hole or-
der either in the spin or charge channel [10–42]. Near the
onset of such an order, i.e., near a quantum-critical point
(QCP), it is natural to assume that the low-energy physics
is described by an effective model with fermion-fermion in-
teractions mediated by soft fluctuations of the bosonic order
parameter that condenses at the QCP. The theory near a
QCP is based on the same set of coupled equations that
Eliashberg obtained for the electron-phonon case and bears
his name.

The validity of Eliashberg theory for a system near a QCP
has been questioned, however, on the grounds that the “fast
fermion/slow boson” argument, used to justify the neglect of
vertex corrections, is not applicable anymore because collec-
tive excitations are made out of fermions and their velocity
is of order vF (see, e.g., Ref. [43]). The counterargument
[19] is that soft collective excitations are Landau overdamped
and for this reason do behave as slow modes compared to
fermions, i.e., Migdal’s reasoning is still valid, albeit for a
different reason.

The aim of this paper is to settle the issue of applicability of
the Eliashberg (one-loop) theory for a quantum-critical metal
near a QCP. We compare the criteria for applicability of the
Eliashberg theory for fermions interacting with a soft Einstein
phonon with ωD � EF and with soft nematic fluctuations near
an Ising-nematic/Ising-ferromagnetic QCP. We argue that the

2469-9950/2024/109(24)/245132(16) 245132-1 ©2024 American Physical Society

https://orcid.org/0000-0003-0730-9089
https://orcid.org/0000-0003-0088-4259
https://ror.org/017zqws13
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.245132&domain=pdf&date_stamp=2024-06-24
https://doi.org/10.1103/PhysRevB.109.245132


ZHANG, RAINES, AND CHUBUKOV PHYSICAL REVIEW B 109, 245132 (2024)

criteria for these two cases are somewhat similar, but not
identical.

Below we focus on the case of two spatial dimensions (2D)
and restrict our analysis to the normal state at T = 0. This is
a putative ground state as the true one is a superconductor in
both cases. However, for spin-singlet pairing, the criterion for
validity of the Eliashberg theory for a superconductor is actu-
ally weaker than that for the normal state as singular quantum
corrections to the self-energy cancel in the gap equation like
contributions from nonmagnetic impurities [15,44,45]. For
this reason, if ME theory is applicable in the putative normal
state, it is also applicable to a superconductor. Restriction
to T = 0 is essential because thermal fluctuations do not fit
into ME reasoning and may destroy ME theory at a finite T
faster than quantum fluctuations at T = 0 (see Refs. [8,46] for
more detail).

We also do not discuss here logarithmic singularities
in the fermionic self-energy in the Ising-nematic/Ising-
ferromagnetic case that emerge at three-loop and higher
orders [47–50]. Most likely, these corrections generate an
anomalous dimension for the fermionic propagator, but the
branch cut in the Green’s function remains at the same place
as in the Eliashberg theory.

Finally, for the electron-phonon case, we do not discuss
here the proposals [51–54] that the transition to polarons may
be first order and happen already at λ = O(1) due to singular
behavior of n-loop contributions to the self-energy with n � 1
(Ref. [54]). In this paper we restrict the analysis of the self-
energy to two-loop order.

A. Summary of the results

As we said above, for the electron-phonon case, the
smallness of vertex corrections to the electron self-energy is
controlled by the Eliashberg parameter λE = g2/(ωDEF ) =
λωD/EF . This parameter is small at weak coupling, when
λ < 1, but remains small also at strong coupling, λ > 1, as
long as λ < EF /ωD. At larger λ vertex corrections become
parametrically large and Eliashberg theory breaks down. This
happens at a finite ωD, unless one takes the double limit
EF → ∞ and ωD → 0 while maintaining g2 � ωDEF [45,55].
If EF is kept finite, as we do in this paper, λE = O(1) is
reached at a finite ωD.

For the Ising-nematic/Ising-ferromagnetic case, vertex cor-
rections are small at weak coupling, when the corresponding
λ∗, defined via λ∗ = limωm→0 ∂�/∂ωm, is small. In the strong
coupling regime λ∗ > 1, vertex corrections are not small para-
metrically. However, they remain of order one and are small
numerically (of order 10−2). This behavior holds all the way
up to the QCP, where vertex corrections remain numerically
small.

There is more. The two Eliashberg equations for the
dynamical fermionic self-energy and bosonic polarization,
obtained from the Luttinger-Ward functional, are coupled
self-consistent one-loop equations. The one for the bosonic
polarization accounts for Landau damping of the bosons. For
the electron-phonon case the same parameter λE < 1 that
justifies the neglect of vertex corrections also allows one to
simplify these equations in the following way: (i) neglect the
Landau damping, (ii) neglect momentum dependence of �(k),

i.e., approximate �(k) by �(ωm), and (iii) replace the self-
consistent one-loop equation for �(ωm) by the perturbative
one-loop formula, in which the self-energy is expressed in
terms of the bare fermionic propagator. We argue that these
simplifications are possible because typical fermionic mo-
menta transverse to the Fermi surface are small compared to
typical momenta along the Fermi surface (λE kF vs kF ).

For the Ising-nematic/Ising-ferromagnetic case, Landau
damping is relevant but �(k) can again be replaced by �(ωm)
and the self-consistent one-loop Eliashberg equations can be
still reduced to the perturbative ones. This happens because
typical momenta transverse to the Fermi surface are again
smaller than typical momenta along the Fermi surface. This
smallness holds in λ∗

E , which is the ratio of the fermion-boson
coupling and the Fermi energy. This ratio must be small, as
otherwise the low-energy description would not be valid. The
value of λ∗

E does not depend on the distance to the QCP
and hence for the Ising-nematic/Ising-ferromagnetic case the
one-loop perturbation theory remains valid even at the critical
point.

The outcome of this analysis is the following. For the
electron-phonon case, the condition λE < 1 allows one to
rigorously neglect vertex corrections to Eliashberg theory and
at the same time simplifies the calculations within Eliashberg
theory, e.g., allows one to compute the fermionic self-energy
in one-loop perturbation theory rather than self-consistently.
Because λE is inversely proportional to ωD, both Eliashberg
theory and approximate treatment within it are valid only at
ωD above some critical value.

For the Ising-nematic/Ising-ferromagnetic case, Eliashberg
theory is not rigorously justified at strong coupling, but vertex
corrections remain O(1) and are small numerically even at a
QCP. At the same time, there exists another small parameter
λ∗

E (the ratio of the interaction to the Fermi energy), which
justifies the computation of the fermionic self-energy within
Eliashberg theory in a perturbative one-loop analysis rather
than self-consistently. This parameter also remains small at
a QCP.

From this perspective, Eliashberg theory near a Ising-
nematic/Ising-ferromagnetic QCP actually works better than
for fermions interacting with a soft Einstein phonon, despite
the fact that the velocity of collective bosons is of order vF .

The structure of the paper is the following. In the next sec-
tion we briefly review Eliashberg theory for electron-phonon
interaction [2,7,8] and discuss the strength of one-loop vertex
corrections. In Sec. III we discuss fermions near a nematic
QCP. In Sec. IV we compare the two cases and present our
conclusions.

II. ELIASHBERG THEORY FOR ELECTRON-PHONON
SYSTEM

For definiteness, we consider interaction with an Einstein
phonon; qualitatively similar considerations apply for acous-
tic phonons, but the functional form of the self-energy and
vertex corrections will differ from that presented below. The
Hamiltionian has a standard form: H = Hel + Hph + Hel-ph,
where Hel describes free electrons with dispersion εk, Hph

describes a phonon with a bare Debye frequency ωD,0, and
Hel-ph = g̃

∑
i,σ (c†

i,σ ci,σ + H.c.)(a†
i + ai ), where a†

i , ai are
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FIG. 1. Self-consistent one-loop electron self-energy (left panel)
and polarization bubble for Einstein phonon (right panel). Solid lines
indicate the renormalized electronic Green’s function G(k) and wavy
lines the renormalized Einstein phonon propagator χ (q).

creation and annihilation operators of a phonon at site i,
c†

I,σ , cI,σ are creation and annihilation operators of an electron
with spin polarization σ at site i, and g̃ is the electron-phonon
coupling with dimension energy over momentum.

Eliashberg theory for the normal state consists of the set of
two equations for the fermionic self-energy �(k) and phonon
polarization 	(q), where k ≡ (k, ω) and q ≡ (q,
). The
equations look simplest along the Matsubara axis where ω =
ωm = (2m + 1)πT and 
 = 
n = 2nπT . The full fermionic
Green’s function and the full phonon propagator are related to
� and 	 via

G−1(k) = G−1
0 (k) + i�(k), χ−1(q) = χ−1

0 (q) + 	(q),
(1)

where G0(k) and χ0(q) are electron and phonon propagators
in the absence of interaction. We include a factor of i in the
definition of � for notational convenience.

In analytical form

G0(k) = 1

iωm − εk
, χ0(q) = D0


2
n + ω2

D,0

, (2)

where D0 = 2ωD,0. Note that χ0(q) has dimension of in-
verse energy. For purely local self-energy, �(k) = �(ωm) and
G−1(k) = i[ωm + �(ωm)] − εk.

The self-consistent equations for � and 	 can be either
derived diagrammatically, see Fig. 1, or obtained as stationary
solutions of the Luttinger-Ward functional. Along the Matsub-
ara axis, they are

�(k) = ig̃2
∫

d2q d
n

(2π )3
G(k + q)χ (q), (3)

	(q) = 2g̃2
∫

d2k dωm

(2π )3
G(k + q)G(k). (4)

To simplify calculations, we assume a parabolic dispersion,
εk = (k2 − k2

F )/(2m). At T = 0, which we consider here,
both ωm and 
n are continuous variables. We also split 	(q)
into static and dynamic parts and incorporate the static part
into χ0(q). We assume that the momentum dependence of
static 	(q) can be neglected, in which case static 	(q) renor-
malizes bare ωD,0 into dressed ωD. We then redefine χ0(q) as

χ0(q) = 2ωD,0


2
n + ω2

D

. (5)

We will consider the regime in which ωD gets progressively
smaller, but ωD,0 remains finite. We will also introduce,

instead of g̃, the effective interaction with dimension of energy
g = (g̃2NF D0)1/2, where NF = kF /(2πvF ) is the density of
states at the Fermi level per spin component. We emphasize
that g depends on the bare Debye frequency rather than the
dressed one, ωD. We therefore consider g and ωD as indepen-
dent variables.

Out of ωD, g, and the Fermi energy EF = k2
F /(2m), one can

introduce two dimensionless ratios

λ = g2

ω2
D

, λE = g2

EF ωD
= λ

ωD

EF
. (6)

Eliashberg theory is constructed under the assumptions that
EF is the largest energy scale and λE � λ. The ME argu-
ment is that the strength of vertex corrections is determined
by the smaller λE , while fermionic mass renormalization is
determined by the larger λ. When both λ and λE are small, the
theory falls into the weak coupling limit with G and χ close to
their bare expressions. In the regime λ > 1, λE < 1, the mass
renormalization is large and the self-energy is larger than bare
ωm over a wide range of frequencies, yet vertex corrections
are still small.

We will be chiefly interested in the strong coupling regime
λ > 1, λE < 1. We go beyond previous work [8] and analyze
vertex corrections in 2D for all phonon momenta. We also
compute the two-loop self-energy with vertex correction in-
cluded. We show that the latter is small in λE and becomes
O(1) when λE ∼ 1.

ME found [1,2] that the same small parameter λE allows
one to simplify calculations within Eliashberg theory and
obtain a simple expression for the self-energy, �(E )(ωm) =
λωD arctan(ωm/ωD) [Eq. (13) below], which depends only on
frequency. Here we analyze the corrections to this expression,
both analytically and numerically. We show that Eq. (13)
can be rigorously justified only for frequencies ωm � EF . At
ωm ∼ EF , the expression is more complex [Eq. (14) below].
In particular, �(kF , ωm) becomes complex on the Matsubara
axis,1 similar to the self-energy in SYK-type models [56,57].

We also show that the momentum-dependent part of the
self-energy remains small as long as λE < 1. In the remainder
of this section, we first discuss the solution of the Eliashberg
equations and then use it to analyze the strength of vertex
corrections.

A. Solution of Eliashberg equations

The equations for �(k) and 	(q) are coupled and in prin-
ciple have to be solved together. We argue, however, that for
λE � 1 the two equations can be solved independently. To
demonstrate this, we make two assumptions and verify both a
posteriori. First, we assume that ∂�(k)/∂ωm scales as λ and is
large at strong coupling, while ∂�(k)/∂εk scales as λE and is
small when λE < 1. Accordingly, we approximate �(k, ωm)
by �(ωm). Second, we assume that �(ωm) is parametrically
smaller than EF .

1This does not violate Kramers-Kronig relations, but when
�(kF , ωm ) is complex, both �′(kF , ω) and �′′(kF , ω) on the real axis
have even and odd components in ω.
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Consider Eq. (4) for 	(q) first. Like we said, we express
	(q) = 	(q,
n) as a sum of static and dynamic pieces
	(q, 0) + δ	(q,
n) and incorporate the static part 	(q, 0)
into a redefinition of χ0(q). The static polarization generally
comes from high-energy fermions with excitation energies
of order EF . It renormalizes ωD,0 into the dressed ωD and
may also give rise to a momentum dependence of the phonon

propagator. For the purposes of this study we assume that
the momentum dependence induced by 	(q, 0) is weak and
does not affect the physics at small but still finite ωD, which
we consider here (for more discussions on this issue, see
Refs. [58] and [8]). The second, dynamical term comes from
fermions with low energies, comparable to 
n. For this term
we obtain, after integrating over the angle between phonon q
and fermionic k,

δ	(q) = −2ig̃2
∫

dωm

2π

∫
k dk

2π

1

i�̃(ωm) − εk

⎡
⎢⎣ sgn(ωm + 
n)√

(kq)2

m2 + [
�̃(ωm + 
n) + i

(
εk + q2

2m

)]2
− the same at 
n = 0

⎤
⎥⎦, (7)

where for brevity we have defined �̃(ωm) = ωm + �(ωm).
For ωm,
n � EF and a generic q ∼ kF , the terms �̃(ωm +

n) and εk under the square root in Eq. (7) are much
smaller than EF and can be neglected compared to the two
q-dependent terms, which are of order EF . Equation 7 then
simplifies to

δ	(q) = − 2ig̃2NF

∫
dωm

2π

∫
dεk

i�̃(ωm) − εk

× sgn(ωm + 
n) − sgn(ωm)

vF q
√

1 − (q/2kF )2
, (8)

where NF is the density of states at the Fermi level per spin
component. Integration over εk can now be extended to infi-
nite limits [up to terms of order �̃(ωm)/EF � 1] and yields∫

dεk/[i�̃(ωm) − εk] = −iπ sgn(ωm). Integrating then over
frequency, we obtain

δ	(q) = 2g̃2NF

n

vF q
√

1 − (q/2kF )2
. (9)

This expression is valid only for q < 2kF , which is the largest
momentum transfer on the Fermi surface. At small q, it re-
duces to conventional Landau damping. Substituting δ	 into
Eq. (1) and using Eq. (2), we obtain

χ (q,
n) = D0


2
m + ω2

D + γ
|
n|

q
√

1−(q/2kF )2

, (10)

where γ = 2g2/vF and, we remind, g2 = g̃2NF D0.
It is convenient to measure q in units of 2kF and 
n in

units of ωD. Introducing q̄ = q/(2kF ) and 
̄n = 
n/ωD, we
reexpress Eq. (10) as

χ (q,
n) = D0

ω2
D

1

1 + 
̄2
n + λE

2
|
̄n|

q̄
√

1−q̄2

. (11)

We see that the Landau damping term contains λE in the
prefactor and is therefore small compared to one of the two
other terms for all values of 
̄n provided that q̄ is not close to
either zero or one.

We now substitute χ (q,
n) from Eq. (11) into Eq. (3)
for the self-energy. We compute separately �(kF , ωm) and
�(k, 0). The calculation of �(kF , ωm), which we denote as
�(ωm) for brevity, parallels the one for δ	: we first integrate

over the angle between kF and q and obtain

�(ωm) = g2

NF

∫
d
n

2π

∫ 2kF

0

q dq

2π

1


2
n + ω2

D + γ
|
n|

q
√

1−(q/2kF )2

× sgn(ωm + 
n)√
(vF q)2 + (

�̃(ωm + 
n) + i q2

2m

)2
. (12)

We set ωm � EF and assume and verify a posteriori that (i)
typical q are of order kF and typical 
n are of order ωm and
(ii) �̃(ωm + 
n) is parametrically smaller than EF . We then
evaluate the integrals over q and 
n neglecting the Landau
damping term and �̃(ωm + 
n) under the square root. The
calculation is elementary and we obtain

�(E )(ωm) = λωD arctan

(
ωm

ωD

)
, (13)

where the index E denotes that this is the leading self-
energy in Eliashberg theory. The self-energy behaves as
λωm at small frequencies and saturates at higher frequencies
at (π/2)λωDsgnωm. We emphasize that Eq. (13) has been
obtained by neglecting the self-energy of an intermediate
fermion and therefore has the same form as if we used the
Green’s function for free fermions. The same holds for δ	(q).
In other words, to this accuracy, the one-loop self-consistent
theory becomes equivalent to the one-loop perturbation the-
ory. We plot �(E )(ωm) in Fig. 2 for ωm > 0. The self-energy
exceeds the bare ωm at ωm < ωc, where ωc ≡ (π/2)λωD =
(π/2)λE EF , and becomes smaller than ωm at higher frequen-
cies. As long as λE is small, ωc is parametrically smaller
than EF .

We next check the accuracy of approximations used to
obtain Eq. (13). One can straightforwardly verify that typical
q for the momentum integral are of order kF and typical 
n

for the frequency integral are of order ωm, as we assumed.
Further, the prefactor λωD in Eq. (13) can be equivalently
expressed as λE EF . We see that for small λE , �̃(ωm + 
n) �
EF , which is the value for a typical vF q. This justifies neglect-
ing the self-energy term in Eq. (12) and in the calculation of
δ	(q).
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FIG. 2. One-loop perturbative Eliashberg self-energy �(E )(ωm )
at λ � 1, but λE � 1. The self-energy is linear in ωm for ωm < ωD

and saturates at larger ωm. It is larger than the bare ωm for ωm < ωc ≡
(2/π )EF λE . For ωm < ωD, the system is in the Fermi liquid regime.
In between ωD and ωC , it displays strong coupling, non-Fermi liquid
behavior. At larger ωm the self-energy is smaller than ωm and the
system behaves as a Fermi gas.

B. Subleading terms in the self-energy

We now go beyond the leading term and estimate the sub-
leading terms in the self-energy. They are the corrections to
the dynamic piece of the self-energy, arising from keeping
the Landau damping term and �̃ in the right-hand side of
Eq. (12) and the static piece of the self-energy �(k, 0). Keep-
ing the Landau damping term in Eq. (12) leads to a relative
correction 1 + X (ωm), which is the largest at ωm ∼ ωD, where
X ∼ λE log2 λE . This is a small correction when λE � 1. The
leading correction from keeping �̃(ωm + 
n) in the integrand
in Eq. (12) comes from q ≈ 2kF . We label this correction
as δ�(ωm). Calculation shows that δ�(ωm) is a complex
function of Matsubara frequency. Similar behavior of �(ωm)
has been previously reported in SYK-type systems [56,57].
In our case the appearance of a complex �(ωm) reflects the
absence of particle-hole symmetry for a parabolic dispersion.
At |ωm| < ωD, the real part of δ�(ωm) is linear in ωm, like
�(E )(ωm), but with the prefactor λ

√
λE , which is smaller than

that in Eq. (13) by
√

λE . For ωD < |ωm| < EF ,

δ�(ωm) = −ωc

( |�̃(E )(ωm)|
EF

)1/2
1 + i sgnωm

π
. (14)

Substituting |�̃(E )(ωm)| ≈ |ωm| + ωc, we find that for |ωm| <

ωc, δ�(ωm) is smaller than �(E ) by (ωc/EF )1/2 ∼ λ
1/2
E . At

larger frequencies, δ� increases and at ωm ∼ EF becomes of
the same order as �(E )(ωm). We emphasize that this holds
even when λE is small. At even larger |ωm| > EF , the full
self-energy has to be reevaluated. We will not analyze this
frequency range here.

The computation of the static piece �(k, 0) proceeds in the
same way as the computation of of �(kF , ωm). After angular

integration, the static part of Eq. (3) becomes

�(k, 0) = g2

NF

∫
d
n

2π

∫ 2kF

0

q dq

2π

1


2
n + ω2

D + γ
|
n|

q
√

1−(q/2kF )2

× sgn(
n)√
(vF q)2 + [

�̃(
n) + i
(
εk + q2

2m

)]2
. (15)

Expanding in εk, we obtain

i�(k, 0) = εk
2g2

NF

∫
d
n

2π

∫ 2kF

0

q dq

2π

1


2
n+ω2

D+γ
|
n|

q
√

1−(q/2kF )2

× |�̃(
n)|
[�̃2(
n) + (vF q)2[1 − (q/2kF )2]]3/2

. (16)

The largest contributions to the momentum integral come
from small q and from q ≈ 2kF . Evaluating the contributions
from these two regions and performing the subsequent inte-
gration over frequency, we obtain

i�(k, 0) = λEεk. (17)

As a consequence, the εk term in the bare Green’s function
gets multiplied by the factor 1 − λE . This renormalization is
small when λE is small.

Summarizing, we find that the condition λE � 1 allows
us to (i) neglect the Landau damping term in the bosonic
propagator, (ii) neglect the momentum dependence of the
self-energy, and (iii) approximate �(ωm) by the one-loop
perturbative result Eq. (13). For the latter, the corrections,
which make �(ωm) complex, are parametrically small as long
as ωm remains below ωc ∼ λE EF . At larger frequencies, the
corrections get stronger and at ωm ∼ EF become of the same
order as �(E )(ωm). To the best of our knowledge, this last
result has not been presented earlier.

The smallness of corrections to the one-loop perturbative
�(E )(ωm) can be understood by comparing relative energy
scales and invoking the argument about slow phonons and
fast electrons, which typically is reserved for vertex cor-
rections. Indeed, the argument implies that, for the same
frequency, fermionic momenta are far smaller than phonon
momenta. In our case, typical phonon momenta are of order
kF , while typical fermionic momenta are of order �̃(ωm)/vF .
For |ωm| < ωc, where Eq. (13) for �(E )(ωm) is rigorously
justified, typical fermionic momenta are smaller by λE . In
practical terms, this separation allows one to approximate∫

d2k in the Eliashberg formula for the self-energy for a
generic χ (q) by 2πNF

∫
dεk′dθ , where k′ = k + q and θ is

the angle between k and k′, with both set on the Fermi surface.
Equation (3) then reduces to

�(k, ωm) = �(ωm)

= ig̃2NF

∫
d
n

2π
χL(
n)

∫
dεk′G(k′, ωm + 
n)

= g2
∫ ωm

0
d
nχL(
n), (18)

where we have defined χL(
n) = (1/2π )
∫

dθχ (
n, θ ). For
our choice of phonon propagator χ (q) this reduces to the
Eliashberg result Eq. (13). On the real frequency axis, the

245132-5



ZHANG, RAINES, AND CHUBUKOV PHYSICAL REVIEW B 109, 245132 (2024)

FIG. 3. One-loop electron self-energy for EF = 500ωD, λE =
0.06, and λ = 30. (a) Numerical solution of the self-consistent equa-
tion (3) vs the perturbative expression � (E )(ωm ) from Eq. (13).
The numerical results obtained with and without Landau damping
are shown as red and blue curves, respectively. The right panel in
(a) displays the self-energy at larger frequencies, comparable to EF .
Both Re[�(ωm )] and Im[�(ωm )] evolve with frequency (Im[�(ωm )]
is a constant at small ωm and is not shown in the left panel). (b) A
comparison between � (E )(ωm ) − Re[�(ωm )] and Re[δ�(ωm )] from
Eq. (14). (c) The verification of the scaling relation (�(E )(ωm ) −
Re[�(ωm )])/ωD ∝ √

λE for an example ωm/ωD  9.

same consideration yields �′′(ω) = −g2
∫ ω

0 χ ′′
L (
)d
. In the

literature, g2χ ′′
L (
) is often denoted α2F (
) [7,59].

This analytical analysis of leading and subleading terms in
the ME self-energy is supported by the numerical solution of
the Eliashberg equations. The numerical results are obtained
by solving the self-consistent equations iteratively, where the
momentum integrations are carried out without making extra
approximations. At frequencies below ωD, �(ωm) exhibits
Fermi liquid behavior. The self-energy then saturates for an in-
termediate frequency range up to ωc and eventually decreases
at larger frequencies. We see that the imaginary part of �(ωm)
remains weakly frequency dependent up to ωm ∼ EF . The
implication is that in the whole range |ωm| � EF it can be ab-
sorbed into the renormalization of the chemical potential. The
difference between Re[�(ωm)] and the one-loop perturbative
result �(E )(ωm) is shown in Fig. 3(b). The main contribution
to this difference is captured by Eq. (14). In particular, we ver-
ified in Fig. 3(c) that, for ωm > ωD, Re[�(ωm)] − �(E )(ωm)
scales as λ

1/2
E , in agreement with Eq. (14).

C. Vertex corrections

The one-loop vertex correction is shown graphically in
Fig. 4(a) and the associated two-loop self-energy with vertex
renormalization is shown in Fig. 4(b). The relative strength
of the two-loop self-energy compared to the one-loop one

FIG. 4. Relevant diagrams: (a) one-loop vertex correction,
(b) two-loop electron self-energy with vertex correction included,
and (c) ladder series for the vertex.

determines the validity of Eliashberg theory. The one-loop
vertex correction and the two-loop self-energy in 2D have
been discussed previously in Ref. [8]. Here we reproduce
earlier results and add additional details.

For external fermionic k = (kF , ωm) and phononic q =
(q,
n), the analytical expression for the one-loop correction
to g is

�g(k, q)

g

= −i
g2

2π

∫
dω′

m

(ωm − ω′
m)2 + ω2

D

∫
dεk′

i�̃(ω′
m) − εk′

× sgn(ω′
m + 
n)√

(vF |q|)2 + (�̃(ω′
m + 
n) + i(εk′ + q2/2m))2

.

(19)

For q = 0, the vertex correction is not small even if λE is
small, as the full vertex function gfull(ωm,
n, q = 0) must
satisfy the Ward identity associated with the conservation of
the total density:

gfull(ωm,
n, q = 0)

g
= �̃(ωm + 
n) − �̃(ωm)


n
. (20)

At small ωm, �̃(ωm) ≈ ωm(1 + λ); hence by the Ward iden-
tity we should have gfull(ωm,
n, q = 0)/g = 1 + λ � 1. We
show below that this indeed holds. Putting q = 0 in Eq. (19)
and setting 
n > 0 for definiteness, we perform the εk′ inte-
gration to obtain the one-loop vertex correction in the form

�g(ωm,
n, q = 0)

g
= g2

∫ 0

−
n

dω′
m

(ωm − ω′
m)2 + ω2

D

× 1

�̃(ω′
m + 
n) − �̃(ω′

m)
. (21)
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For small ωm,
n < ωD, this gives �g(ωm,
n, q = 0)/g =
λ/(1 + λ), which approaches 1 in the strong coupling limit
λ � 1. In this situation, we need to include higher-order ver-
tex corrections. A simple experimentation shows that, at large
λ, relevant diagrams for the full vertex gfull(ωm,
n, q = 0)
form a ladder series, shown in Fig. 4. The corresponding
integral equation at arbitrary ωm and 
n is

gfull(ωm,
n, q = 0)

g
= 1 + g2

∫ 0

−
n

dω′
m

(ωm − ω′
m)2 + ω2

D

× gfull(ω′
m,
n, q = 0)/g

�̃(ω′
m + 
n) − �̃(ω′

m)
. (22)

For small ωm,
n � ωD, gfull(ωm,
n, q = 0) = gfull(q = 0)
is independent of frequency and Eq. (22) yields

gfull(q = 0) = g + λ

1 + λ
gfull(q = 0), (23)

i.e., gfull(q = 0) = 1 + λ, consistent with the Ward identity.
Going beyond the low frequency limit, we note that

gfull(ωm,
n, q = 0), given by (20), is the solution of Eq. (22)
for arbitrary ωm and 
n, i.e., the ladder series of vertex
corrections reproduce the Ward identity associated with the
conservation of the total density, no matter what ωm and

n are.

For q ∼ kF the result is different. Integrating over εk′ in
Eq. (19) in infinite limits we now obtain

�g(k, q)

g

= g2

2

∫
dω′

m

1 − sgn(ω′
m + 
n)sgn(ω′

m)

(ωm − ω′
m)2 + ω2

D

× 1√
(vF q)2 + (�̃(ω′

m + 
n) − �̃(ω′
m) + iq2/(2m))2

(24)

≈ g2

4EF q̄
√

1 − q̄2

∫
dω′

m

1 − sgn(ω′
m + 
n)sgn(ω′

m)

(ωm − ω′
m)2 + ω2

D

,

(25)

where q̄ = |q|/(2kF ). In the second line in (24) we have used
the fact that �̃(ω′

m + 
n) − �̃(ω′
m) is much less than vF q

or q2/2m for a generic q ∼ kF and typical frequencies much
smaller than EF . Evaluating the remaining frequency integral,
we find

�g(k, q)

g
= λE

4q̄

1√
1 − q̄2

[
arctan

(
ωm + 
n

ωD

)

− arctan

(
ωm

ωD

)]
. (26)

We see that for generic ωm ∼ 
n ∼ ωD, �g(k, q)/g ∼ λE , as
long as q̄ is not too close to either 0 or 1.

There is a caveat here: the vertex correction in Eq. (26)
decreases at ωm,
n > ωD. On a more careful look, we found
that this is an artifact of integrating over εk′ in Eq. (19) in
infinite limits instead of introducing the lower cutoff at −EF .
Repeating the integration with this lower cutoff we find that,

FIG. 5. Numerical results for one-loop vertex correction �g/g as
a function of bosonic frequency 
n and momentum q for λ = 30,
λE = 0.06, and external fermionic frequency ωm = 0.1ωD. Panels
(a) and (b): the results of the calculations using infinite cutoff in
the integration over dispersion,−∞ < εk < ∞, and a finite cutoff
−EF < εk < ∞, respectively. Note that vertex correction is large
near q = 0 and also increases near 2kF , in agreement with our an-
alytical treatment

even at ωm,
n > ωD, the vertex correction remains of the
form

�g(k, q)

g
= C(q)

λE

4

1

q̄
√

1 − q̄2
, (27)

where C(q) = O(1).
We plot the one-loop vertex correction as a function of q

and 
n ∼ ωD in Fig. 5. We show the results obtained using
both an infinite energy cutoff (−∞ < εk < ∞) and a finite
energy cutoff (−EF < εk < ∞). The two results for �g/g do
differ, most notably at |q| ∼ kF , but both remain of order λE

for a generic |q|.
We next substitute �g(k, q) into the two-loop diagram

for the self-energy, Fig. 4(b). We label this contribution as
�(2)(ωm). Analyzing the integral over phononic q, we find
that it is singular at |q| close to 0 and 2kF , where the vertex
correction is enhanced, but the singularity is only logarith-
mic. Evaluating the full integral, we find, in agreement with
Ref. [8],

�(2)(ωm) ∼ λE | log λE |�(E )(ωm). (28)

We see that, as long as λE is small, the two-loop �(2)(ωm) is
parametrically smaller than the Eliashberg self-energy, despite
the fact that the integral comes from q where the vertex cor-
rection is singular. This singularity only accounts for | log λE |
in the prefactor.

In Fig. 6 we present the result of numerical evaluation of
�(2)(ωm) using an infinite cutoff in the integration over εk′ .
We see that the ratio �(2)/�(E ) is approximately constant at
ωm � ωD and as a function of λE does scale as λE | log λE |.
The drop of the ratio �(2)/�(E ) at larger frequencies is likely
an artifact of an infinite cutoff. In any case, the ratio �(2)/�(E )

is small at small λE . For completeness we computed this ratio
at λE = 1 and found that it still remains numerically small
over the wide range of ωD < ωm < EF (�(2)/�(E )  0.062 at
ωm = ωD).

For comparison with the Ising-nematic/Ising-
ferromagnetic case below, we analyze how �g/g depends
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FIG. 6. (a) Blue line—the two-loop electron self-energy, ob-
tained using infinite cutoff for integration over fermionic dispersion.
The parameters are the same as in Fig. 3: λ = 30 and λE = 0.06.
Brown line—the ratio � (2)/(λE� (E ) ). The ratio approaches a con-
stant at ωm → 0 and evolves at ωm ∼ ωD. The drop of the ratio at
larger ωm is likely an artifact of using infinite cutoff for the integra-
tion over the dispersion. (b) Numerical verification of the scaling of
� (2)(ωm )/� (E )(ωm ) ∼ λE |logλE | at small ωm.

on characteristic momenta and frequencies. For definiteness
we set k = kF , 
n ∼ ωD and vary ωm, q⊥, and q‖, which
are typical momentum components transverse and along the
Fermi surface. At ωD < ωm < ωc = (π/2)λE EF , where the
self-energy �(ωm) exceeds bare ωm, we found after a simple
experimentation

�g(k, q)

g
∼ ωc

ωc + vF q⊥ + q2
‖

2m

. (29)

Typical vF q⊥ are of order ωc; typical q2
‖/(2m) are of order EF .

For these momenta,

�g(k, q)

g
∼ vF qtyp

⊥

vF qtyp
⊥ + (qtyp

‖ )2

2m

. (30)

The “fast electrons/slow bosons” criterion requires typical q⊥
to be much smaller than typical q‖. This holds for λE � 1
because typical qtyp

⊥ ∼ λE kF , while qtyp
‖ ∼ kF . The strength of

the vertex correction in Eq. (30) is, however, determined by
the ratio of typical energies vF qtyp

⊥ /[(qtyp
‖ )2/2m] rather than

typical momenta. In general, the ratios of typical energies
and typical momenta are not the same, but in the electron-
phonon case, vF qtyp

⊥ /[(qtyp
‖ )2/2m] ∼ λE is the same as

qtyp
⊥ /qtyp

‖ because qtyp
‖ ∼ kF . As a consequence, the single

parameter λE allows one to simplify the Eliashberg equa-
tions and keep vertex corrections small.

For larger ωm, we found

�g(k, q)

g
∼ ωc

ωm + vF qtyp
⊥ + (qtyp

‖ )2

2m

. (31)

Now typical vF q⊥ are of order ωm, while typical q2
‖/(2m) are

still of order EF . For these momenta,

�g(k, q)

g
∼ ωc

ωm + EF
∼ λE

1

1 + ωm
EF

. (32)

We see that the vertex correction remains of order λE .

D. Summary of Sec. II

There are three energy scales in the electron-phonon
problem: the bosonic energy ωD, the dimension-full electron-
phonon coupling g, and the Fermi energy EF . This allows
one to introduce two dimensionless ratios λ = g2/ω2

D and
λE = g2/(EF ωD) = λωD/EF . The latter is a small parameter
for the Eliasberg theory. The strong coupling regime occurs
at λ � 1, λE � 1. In this regime, the system displays Fermi
liquid behavior at ω < ωD, non-Fermi liquid behavior at ωD <

ωm < ωc, with almost frequency independent �(ωm) ≈ ωc =
(π/2)λωD = (π/2)λE EF , and Fermi-gas behavior at larger
frequencies.

The three key results for the electron-phonon system,
which we will later use for comparison with the behavior near
a nematic QCP, are the following.

First, Eliashberg theory is rigorously justified even at
strong coupling λ � 1, as long as the Eliashberg parameter
λE � 1. The two-loop vertex correction to self-consistent
one-loop Eliashberg theory is small in λE for all frequencies
ωm.

Second, the same small parameter λE also simplifies the
calculations within Eliashberg theory: the Landau damping of
phonons can be neglected in the calculation of the self-energy
and the self-energy �(k, ωm) can be approximated by the
local �(ωm) and computed perturbatively rather than self-
consistently. This holds for ωm < EF . At larger ωm, the fast
electron/slow boson criterion is not valid and the Eliashberg
equation (3) has to be reanalyzed.

Third, vertex corrections to Eliashberg theory become O(1)
at λE = O(1) and become parametrically large at λE > 1,
except for the smallest frequencies ωm < ωD/λE , where they
remain small. Because λE = g2/(ωDEF ), this result implies
that one cannot extend the Eliashberg theory of electron-
phonon interaction to ωD = 0. For a finite EF , Eliashberg
theory is valid only when ωD exceeds a certain value. At
smaller ωD, a new description is required.

We summarize the results for an electron-phonon system
in Fig. 7.

III. QUANTUM CRITICAL METAL

We now analyze the validity of an Eliashberg-type
description of a system of electrons interacting with soft col-
lective bosons representing order parameter fluctuations. For
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FIG. 7. Illustration of the applicability of Eliashberg theory for
electron-phonon interactions at different energy scales: (a) λ � 1,
λE � 1; (b) λ � 1, λE ∼ 1; (c) λ � 1, λE � 1.

definiteness, we focus on the system near a q = 0 Ising-
ferromagnetic or Ising-nematic instability (see, e.g., Ref. [41]
and references therein). The two cases differ by the form
factor for fermion-boson coupling (it has d-wave form in the
Ising-nematic case). We verified that the form factor does not
play a critical role in our considerations and can be safely set
to one (see also Ref. [39]). We do not consider the SU (2)
ferromagnetic case as the ordering transition there is affected
by nonanalytic corrections to the spin susceptibility [60].

The set of Eliashberg-type equations is the same as Eqs. (3)
and (4). Like for the electron-phonon case, it can be either
derived diagrammatically [14,61] as self-consistent one-loop
equations or obtained as stationary solutions of the Luttinger-
Ward functional [41]. The bare fermionic Green’s function is
the same as in Eq. (2). For the bare bosonic propagator we
choose the conventional Ornstein-Zernike form

χ0(q) = D∗
0

ξ−2 + |q|2 , (33)

where D∗
0 has dimension of mass2 times energy and the

propagator χ0(q) has dimension of mass. We will define a
related frequency scale ω∗

D = vF ξ−1. The full generic χ0(q)
also contains a dynamical (
n/vF )2 term; however, this term
only becomes relevant at frequencies above the upper limit

of quantum-critical behavior (see below). For this reason, we
neglect the 
2

n term in χ0 in our analysis.
For χ0(q) given by (33), the fermion-boson coupling g̃ has

the dimension of inverse mass. Accordingly, we introduce the
effective interaction g∗ = g̃2D∗

0 with dimensions of energy.
Like in the electron-phonon case, there are three energy scales
in this model: the effective coupling g∗, the bosonic energy
ω∗

D, and the Fermi energy EF . We again assume that EF is
the largest scale in the problem, i.e., set EF � ω∗

D, g∗. Like
before, one can construct two dimensionless ratios out of these
couplings. We choose them to be

λ∗ = g∗

4πω∗
D

, λ∗
E = g∗

EF
. (34)

By construction, λ∗
E � 1, but λ∗ can be either small or large.

We will see that the self-energy at the lowest ωm is � = λ∗ωm,
i.e., λ∗ ∼ 1 separates weak coupling (λ∗ < 1) and strong cou-
pling (λ∗ > 1) regimes, respectively, analogous to λ for the
electron-phonon interaction.

A. Solution of Eliashberg equations

The analysis of the Eliashberg equations for fermions
near a q = 0 QCP has been done before in various contexts
[11,19,32–39,41]. We list the existing results and present
some new ones that will allow a direct comparison with the
electron-phonon case.

We first discuss the calculation of the fermionic self-energy
and bosonic polarization. Like for the electron-phonon case,
we assume and then verify that the self-energy �(k, ω) can be
approximated by a local �(ωm). For such a self-energy, ear-
lier calculations found that for vF |q| � |
n|, and both much
smaller than EF , the polarization can be written as a sum of
static and dynamic terms 	(q,
n) = 	(q, 0) + δ	(q,
n),
where δ	(q,
n) has the form of Landau damping:

δ	(q,
n) = g∗kF

D∗
0πv2

F

|
n|
|q| . (35)

This is similar to the electron-phonon polarization, Eq. (9)
at q � kF . Like there, the prefactor for the Landau damp-
ing term does not depend on the fermionic self-energy, i.e.,
Eq. (35) has the same form as for free fermions. We incor-
porate the static 	(q, 0) into χ0(|q|) by defining ξ as the
renormalized correlation length and absorbing the velocity
correction to the definition of D∗

0, like we did for the electron-
phonon case. The full bosonic propagator reads

χ (q) = D∗
0

ξ−2 + |q|2 + α
|
n|
|q|

, (36)

where α = g∗kF

πv2
F

. Because relevant q are much smaller than
kF , the dynamical Landau damping term in χ (q) becomes
relevant when 
n exceeds the scale

ω∗ = (ω∗
D)3

g∗EF
∼ ω∗

c

(λ∗)3
, (37)

where ω∗
c ∼ EF (λ∗

E )2 [the exact definition with the prefactor
is in Eq. (42) below]. Because we consider λ∗

E to be small,
we have ω∗

c � EF . We will see that, at strong coupling, when
λ∗ > 1, ω∗ is the upper edge of Fermi liquid behavior, while
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ω∗
c > ω∗ is the upper edge of quantum-critical non-Fermi

liquid behavior. This identification implies that the Landau
damping term in Eq. (36) is essential outside of the Fermi
liquid regime. This distinguishes this case from the electron-
phonon one, where the Landau damping term is irrelevant for
all frequencies, as long as λE is small.

We now substitute χ (q) from Eq. (36) into the formula for
the self-energy, Eq. (3). As before, we assume and verify that
�(k, ωm) ≈ �(kF , ωm) = �(ωm) with corrections controlled
by the small parameter λ∗

E . The self-consistent equation for
�(ωm) is

�(ωm) = g∗
∫

d
n

2π

∫
d2q
4π2

1

ξ−2 + |q|2 + α
|
n|
|q|

× 1

i�̃(ωm + 
n) − εkF +q
, (38)

where, as before, �̃(ωm) = ωm + �(ωm). A straightforward
analysis of the relevant scales in this equation shows that rel-
evant 
n ∼ ωm, relevant εkF +q ∼ �̃(ωm), and relevant |q| ∼
ξ−1 for ωm < ω∗ and |q| ∼ (α|ωm|)1/3 for ωm > ω∗. For the
fermionic dispersion εkF +q we will be using

εkF +q = vF q⊥ + q2
‖

2m
, (39)

where q⊥ and q‖ are momentum components perpendicular
and parallel to the Fermi surface (along kF and perpendicu-
lar to kF , respectively). Comparing relevant scales, we find
(see below) that, for λ∗

E � 1, relevant q‖ are much larger
than q⊥ as long as ωm < ωmax ≡ (g∗EF )1/2 ∼ ω∗

c/(λ∗
E )3/2 ∼

EF (λ∗
E )1/2. This indicates that the fast electrons/slow bosons

condition is effectively realized even through the velocity of a
bare boson is comparable with Fermi velocity. For frequencies
below ωmax we then can factorize the momentum integra-
tion, i.e., reexpress d2q as (1/vF )dεkF +qdq‖ and integrate the
fermionic propagator over εkF +q and bosonic χ (|q|,
n) ≈
χ (|q‖|,
n) over q‖. Using∫

dε

i�̃(ωm + 
n) − ε
= −iπ sgn(ωm + 
n), (40)

we find that the right-hand side of Eq. (3) does not depend on
the self-energy, i.e., has the same form as for free fermions.
Completing the integration, we obtain

�(E )(ωm) = λ∗ωmF
(ωm

ω∗
)
, (41)

where F (x) is a crossover function. In the two limits F (0) = 1
and F (x � 1) = [(4π )1/3/

√
3]/x1/3. One can obtain the full

analytical formula for F (x), but it is rather cumbersome and
not particularly enlightening so we do not present it here. We
plot �(E )(ωm) in Fig. 8.

At small frequencies, �(E )(ωm) has the Fermi liquid
form, �(E )(ωm) = λ∗ωm. For large λ∗, �(E )(ωm) � ωm.
In this regime, relevant q‖ ∼ ξ−1, while relevant q⊥ ∼
(ωm/ω∗)(ω∗

D/EF )ξ−1 are far smaller. In this regime we also
have q2

‖/kF ∼ (ω∗
D/EF )ξ−1 � q⊥. This will be relevant to our

analysis of vertex corrections below.
At larger ωm > ω∗, the self-energy crosses over to a non-

Fermi liquid, quantum-critical form �(E )(ωm) = ω2/3
m (ω∗

c )1/3,

FIG. 8. One-loop perturbative Eliashberg self-energy �(E )(ωm )
at λ∗ � 1, but λ∗

E � 1. The self-energy is linear in ωm for ωm < ω∗

and crosses over to ω2/3
m behavior at larger ωm. It is larger than the

bare ωm for ωm < ω∗
c , where ω∗

c ∼ ω∗(λ∗)3 � ω∗. For ωm < ω∗ the
system is in the Fermi liquid regime. In between ω∗ and ω∗

c it displays
a non-Fermi liquid behavior. At larger ωm the self-energy is smaller
than ωm and the system behaves as a Fermi gas.

where

ω∗
c = 1

16π2
√

27

(g∗)2

EF
= 1

16π2
√

27
EF (λ∗

E )2
. (42)

In terms of ω∗
c ,

ω∗ =
√

27

8

ω∗
c

(λ∗)3
, ωmax = 16π2

√
27

ω∗
c

(λ∗
E )3/2

. (43)

In the quantum-critical regime, relevant q‖ ∼ (αωm)1/3 and
relevant q⊥ ∼ ω2/3

m ω
1/3
0 /vF . These can be reexpressed as q‖ ∼

kF (ωm/ω∗
c )1/3λ∗

E and q⊥ ∼ kF (ωm/ω∗
c )2/3(λ∗

E )2. We see that
relevant q‖ are again larger than q⊥. However, relevant values
of q2

‖/kF are now comparable to relevant q⊥. We will discuss
below how this affects vertex corrections.

At even larger ωm > ω∗
c , the self-energy becomes smaller

than ωm, although it still preserves its ω2/3
m form. In this

last regime relevant q‖ ∼ (αωm)1/3, like before, but rel-
evant q⊥ ∼ ωm/vF . These can be reexpressed as q‖ ∼
kF (λ∗

E )1/2(ωm/ωmax)1/3 and q⊥ ∼ kF (λ∗
E )1/2(ωm/ωmax). The

fast electrons/slow bosons criterion q‖ � q⊥ is again satisfied,
as long as ωm < ωmax. We label this frequency regime as
“Fermi gas” as electrons in this regime behave almost like
free particles.

At ωm > ωmax the criterion of “fast electrons and slow
bosons” is no longer valid and, as a result, one cannot factorize
the momentum integration. In this regime, however, the 
2

n
term in the bare χ0(q) cannot be neglected. We do not analyze
this high-frequency regime here.

B. Subleading terms in the self-energy

As for the electron-phonon case, the corrections to the
perturbative one-loop self-energy �(E )(ωm) come from (i) the
momentum dependence of the static part �(k, 0), (ii) from
nonfactorization of momentum integration, and (iii) from
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keeping �̃(ωm + 
n) in the right-hand side of Eq. (38). The
momentum dependent part of the self-energy is �(k, 0) ∼
εk(8λ∗

E )1/2 [33]. It gives a small renormalization of the dis-
persion at λ∗

E � 1. The correction from nonfactorization of
momentum integration is of the order of the ratio of relevant
scales (q⊥/q‖)2. In the quantum-critical regime this yields a
relative correction to the self-energy of order (ω/ω∗

c )2/3(λ∗
E )2,

which is at most O((λ∗
E )2). In the Fermi liquid regime, the cor-

rection is even smaller. In the Fermi gas regime the correction
increases and becomes of order one at ω ∼ ωmax, which, we
remind, is the largest frequency up to which the concept of
fast electrons/slow bosons is applicable.

The correction δ�(ωm) from keeping �̃(ωm + 
n) is of
order ωm(λE )1/2 for all ωm < ωmax. We verified that it comes
from internal 
n ∼ ωmax and from q⊥ ∼ q‖ ∼ kF (λ∗

E )1/2. For
such 
n, �̃(ωm + 
n) ≈ ωm + 
n, i.e., the actual self-energy
of an internal fermion is irrelevant. In explicit form we find

δ�(ωm) = −ωm(λE )1/2J, (44)

where

J = 1

2π2

∫ ∞

0
dx

∫ ∞

0
dy

x2y

(4x2 + y2)3/2
(
x3 + y

4π

) ≈ 0.084

(45)

and the integration variables are x = q/[kF (λ∗
E )1/2] and y =


n/ωmax. We caution, however, that at y = O(1), i.e., at 
n ∼
ωmax, the (
n/v

2
F ) term in χ (q), which we neglected, becomes

comparable with the Landau damping and this may change the
value of J . Still, it remains a number of order one and δ�(ωm)
is much smaller than �(E )(ωm).

In Fig. 9, we show the numerical result for the self-energy
for a small but finite λ∗

E . The solid line is �(E )(ωm) at k = kF

and the blue squares are the full self-consistent numerical
result �(ωm) = �(E )(ωm) + δ�(ωm). In the limit λ∗

E → 0,
the full numerical �(ωm) reduces �(E )(ωm), as expected. The
difference, δ�(ωm), is linear in ωm and the prefactor scales
as (λ∗

E )1/2, as in (44). The numerical data matches Eq. (44)
very well.

C. Vertex correction

Vertex corrections to Eliashberg theory have been dis-
cussed in detail in [11,33]. We reproduce earlier results and
present several new results below.

The lowest order vertex correction is given by the diagram
in Fig. 4(a). In explicit form

�g(k, q)

g
= g∗

∫
d
′

nd2q′

(2π )3

1

i�̃(ωm + 
′
n) − εk+q′

× 1

i�̃(ωm + 
′
n + 
n) − εk+q′+q

1

|q′|2 + α
|
′

n|
|q′|

,

(46)

where, we recall, q = (q,
n) is the external bosonic momen-
tum and k = (k, ωm) is the external fermionic momentum.

Like for the electron-phonon case, the vertex correction at
q = 0 has to obey the Ward identity, Eq. (20), associated with
the conservation of the particle number. We show that this
indeed holds.

FIG. 9. Numerical results for the self-energy in Eliashberg the-
ory for λ∗

E = 0.29 at (a) intermediate coupling λ∗ = 1.35 and
(b) infinitely strong coupling λ∗ = ∞ at a QCP. The solid line is the
perturbative expression � (E ), Eq. (41), obtained by factorizing the
momentum integration and squares are the numerical solutions of the
full equation (38) for �(ωm ). (c) The difference between �(ωm ) and
� (E )(ωm ) at the QCP (λ∗ = ∞). Red solid line is the analytic result,
Eq. (44). (d) Verification of the scaling relation �(ωm ) − � (E )(ωm ) ∝
(λ∗

E )1/2 (red line) at a particular ωm.

In the Fermi liquid regime at ωm < ω∗, an explicit calcula-
tion of �g(k,
n, q = 0)/g yields

�g(k,
n, q = 0)

g
= λ

1 + λ
. (47)

At large λ, the one-loop vertex correction is close to one.
To get the full vertex gfull(k,
n, q = 0) one has to sum the
series of ladder vertex correction diagrams, just as we did for
the electron-phonon case. The summation yields the expected
result

gfull(k,
n, q = 0)

g
= 1

1 − λ
1+λ

= 1 + λ, (48)

which is equal to [�̃(ωm + 
n) − �̃(ωm)]/
n in the FL fre-
quency regime and thus satisfies the Ward identity, Eq. (20).

In the quantum-critical regime, the one-loop vertex correc-
tion is again of O(1), but has a more complicated structure.
Introducing dimensionless variables x = ωm/
n and x′ =
−(ωm + 
′

n)/
n and setting both ωm and 
n to be positive,
we find the one-loop vertex correction in the form

�g(x,
n)

g
= 2

3

∫ 1

0

dx′

|x′ − x|1/3

× 1

(1 − x′)2/3 + (x′)2/3 + (

n
ω∗

c

)1/3 . (49)
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The ladder series of vertex corrections in this situation can be
reexpressed as an integral equation for gfull(x,
n):

gfull(x,
n)

= 1 + 2

3

∫ 1

0

dx′

|x′ − x|1/3

gfull(x′,
n)

(1 − x′)2/3 + (x′)2/3 + (

n
ω∗

c

)1/3 .

(50)

This is an integral equation in the variable x, while 
n just
acts as a parameter. One can easily verify that the solution of
Eq. (50) is

gfull(x,
n) =
(

ω∗
c


n

)1/3
[

(1 − x)2/3 + x2/3 +
(


n

ω∗
c

)1/3
]
.

(51)

In the original variables, Eq. (51) explicitly reproduces the
Ward identity, Eq. (20),

gfull(ωm,
n) = 1 + [(ωm + 
n)2/3 − (ωm)2/3]ω2/3
0


n

= �̃(ωm + 
n) − �̃(ωm)


n
. (52)

For finite q, the result is more involved. The one-loop ver-
tex correction for k on the Fermi surface is a scaling function
of five variables

�g(k, q)

g
= �

(
ωm


n
,

vF q⊥
�̃(ωm)

,
q2

‖/2m

�̃(ωm)
,

ωm

�̃(ωm)
,

(ω∗
D)2

EF �̃(ωm)

)
.

(53)

In the Fermi liquid regime at ωm < ω∗, typical vF q⊥ ∼
�(ωm) = λ∗ωm and typical (q2

‖/2m)/�(ωm) ∼ ω∗/ωm. We
verified numerically that in this case � is of order ωm/ω∗ �
1, i.e., �g(k, q)/g ∼ ωm/ω∗ � 1.

In the quantum-critical regime the last two variables in
Eq. (53) can be set to zero. The scaling function of the other
three variables, �(x, y, z, 0, 0), is

�(x, y, z, 0, 0) = 33/4

4π

∫ 1

0
dr

∫ ∞

0

ds

s3/2 + 33/4|r + x|

×
[

1

(1 − r)2/3 + r2/3 + i(y + z + 2
√|z|s)

+ 1

(1 − r)2/3 + r2/3 + i(y + z − 2
√|z|s)

]
.

(54)

The scaling function � in Eq. (54) is generally complex and
can be parametrized as � = |�|eiψ� . We plot |�| and ψ�

in Fig. 10 for several values of parameters. We see that in
general � is of order one, but not particularly close to one,
in distinction to the case q = 0. In this situation, we expect
that higher-order vertex corrections remain of order one, but
do not change substantially the value of �g/g compared to the
one-loop result.

Finally, in the Fermi gas regime ω∗
c < ωm < ωmax, we

have for typical q, and 
n ∼ ω∗
D, q2

‖/(2m)/�̃(ωm) � 1,
(ω∗

D)2/[EF �̃(ωm)] � 1, vF q⊥/�̃(ωm) ∼ 1, and

FIG. 10. Scaling function �(x, y, z, 0, 0) = |�|eiψ� , describing
the one-loop vertex correction in the quantum-critical regime [cf.
Eq. (54)]. The functions |�| and ψ� are plotted in the (y, z) plane
for x = −0.5 (a), (b) and in the (x, y) plane for z = 0 (c), (d).

ωm/�̃(ωm) ≈1. In this situation, we find � ∼ �(ωm)/ωm ∼
(ω∗

c/ω)1/3 � 1 and hence �g(k, q)/g � 1.
For qualitative analysis we do the same as for the electron-

phonon case and estimate �g(k, q)/g by using typical values
of internal momenta and frequency. A simple experimentation
shows that by order of magnitude

�g(k, q)

g
∼ �(ωm)

�̃(ωn) + vF qtyp
⊥ + (qtyp

‖ )2

2m

. (55)

In the Fermi liquid and Fermi gas regimes the vertex cor-
rection is small because either (qtyp

‖ )2/(2m) � �(ωm) or
�̃(ωn) � �(ωn). In the quantum-critical, non-Fermi liquid
regime all parameters in Eq. (55) are of the same order and
�g(k, q)/g is generally of order one, despite that typical q‖
are much larger than typical q⊥.

The quantitative measure of the strength of the vertex
correction is the magnitude of the two-loop contribution to
the self-energy with the vertex correction included, �(2)(ωm),
compared to the one-loop �(E )(ωm). We show the correspond-
ing diagram in Fig. 4(b). In the Fermi liquid and Fermi gas
regimes, we find that �(2)(ωm) � �(E )(ωm), consistent with
the smallness of �g/g. In the quantum-critical regime, earlier
order of magnitude studies [11,33,47,48,62] have found that
�(2)(ωm) is of the same order as �(E )(ωm), unless one extends
the theory to large N or assumes that the prefactor for q2

‖ in
εkF +q is much larger than vF /kF .

We confirmed these results, but went further and computed
�(2)(ωm) numerically with the prefactor. We found

�(2)(ωm)  0.038�(E )(ωm). (56)

We see that, while by order of magnitude �(2)(ωm) is com-
parable to �(E )(ωm), it is far smaller numerically. It has been
argued [47–50,63] that self-energies with higher-loop order
vertex corrections included contain logarithmic singularities.
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FIG. 11. Two-loop fermionic self-energy with vertex correction
included, � (2)(ωm ) [see Fig. 4(b)]. Left axis: � (2)(ωm ) in units
of the characteristic frequency ω∗

c (the upper edge of non-Fermi
liquid behavior). Right axis: the ratio of �(2)(ωm ) and the full
one-loop Eliashberg self-energy �(ωm ) = � (E )(ωm ) + δ�(ωm ) (see
Sec. III B).

We did not compute these terms explicitly, but based on
Eq. (56) we expect them to contain small prefactors and
remain small down to very small frequencies, before log-
arithmical singularities become relevant. We recall in this
regard that the ground state near an Ising-nematic/Ising-
ferromagnetic transition is a superconductor; hence in practice
the behavior at the lowest frequencies is relevant only if for
some reason superconductivity does not develop.

For completeness, we also present results at weak coupling,
when both λ∗ and λ∗

E are small. There are two weak coupling
regimes: λ∗ � (λ∗

E )1/2 � 1 and (λ∗
E )1/2 � λ∗ � 1. We fo-

cus on the second regime as it borders the strong-coupling
regime at λ∗ = O(1). In this regime, ω∗

c � ω∗, i.e., there is
no range of non-Fermi liquid behavior, although the self-
energy still interpolates between λ∗ωm at small frequencies
and (ωm)2/3(ω∗

c )1/3 at higher frequencies (the relation between
all characteristic frequencies is ω∗

c < ω∗ < ω∗
D < ωmax). A

simple calculation shows that in this case typical qtyp
⊥ are para-

metrically larger than qtyp
‖ for all ωm < ωmax [see Fig. 12(a)

for their values] and the two-loop vertex correction is also
small in λ∗. Hence Eliashberg theory is applicable and the
self-energy within the theory can be computed within the
perturbative one-loop approximation (See Fig. 11).

D. Summary of Sec. III

Like for the electron-phonon system, there are three energy
scales in the problem: the bosonic energy ω∗

D, the coupling g∗,
and the Fermi energy EF . This allows one to introduce two
dimensionless ratios λ∗ = g∗/(4πω∗

D) and λ∗
E = g∗/EF . The

latter is a small parameter in our theory. The strong coupling
regime occurs at λ∗ > 1. In this regime, the system displays
Fermi liquid behavior at ω < ω∗ ∼ ω∗

Dλ∗
E/(λ∗)2, quantum-

critical, non-Fermi liquid behavior with �(ωm) ∝ ω2/3
m at

ω∗ < ωm < ω∗
c , where ω∗

c ∼ g∗λ∗
E , and Fermi-gas behavior at

larger frequencies.

FIG. 12. Illustration of the applicability of Eliashberg theory
near Ising-nematic/Ising-ferromagnetic critical point in a metal in
(a) a weak coupling regime at some distance from a critical point
and (b) a strong coupling regime near and at a critical point.

The three key results for the system near an Ising-
nematic/Ising-ferromagnetic QCP are the following.

First, Eliashberg theory is rigorously justified at strong
coupling λ∗ � 1 in the Fermi liquid and Fermi gas regimes,
but not in the quantum-critical regime. In the latter, the lead-
ing vertex correction is O(1) even when λ∗

E is small. It is
nevertheless small numerically, as evidenced by numerical
smallness of the two-loop self-energy with vertex correction
included.

Second, the small parameter λ∗
E simplifies the calculations

within Eliashberg theory: the self-energy �(E )(k, ωm) is well
approximated by the local �(E )(ωm) and the momentum inte-
gration in the computation of �(E )(ωm) can be factorized by
invoking the Migdal fast electron/slow boson criterion. This
factorization is rigorously justified at all ωm up to ωmax ∼
ω∗

c/(λ∗
E )3/2 � ω∗

c . In this respect, λ∗
E plays the same role as

λE for the electron-phonon case.
Third, and most important, the corrections to Eliashberg

theory remain O(1) (and numerically small) even at a QCP,
where ω∗

D = 0 and λ∗ = ∞. In other words, Eliashberg theory
near a nematic QCP, while not rigorously justified, is quite
accurate numerically both near and at the QCP. Furthermore,
the fast electron/slow boson criterion also remains valid at a
QCP as long as λ∗

E is small, which allows one to simplify the
calculations within Eliashberg theory.

We summarize the results for the Ising-nematic case in
Fig. 12.
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IV. CONCLUSIONS

In this paper we compared the validity of Eliashberg the-
ory for electrons interacting with an Einstein phonon and
with soft nematic fluctuations near an Ising-nematic QCP
and soft magnetic fluctuations near an Ising-ferromagnetic
QCP. Eliashberg theory is the set of coupled one-loop
self-consistent equations for the fermionic self-energy and
polarization operator, with vertex corrections neglected.

For electron-phonon interaction, Eliashberg theory has
been justified by the argument that an Einstein phonon
is a slow mode compared to a fermion (the effective bo-
son velocity is smaller than the Fermi velocity). In the
Ising-nematic/Ising-ferromagnetic case, this argument is not
directly applicable as soft fluctuations are collective modes of
electrons and their velocity is of the same order as vF .

We examined self-consistent Eliashberg theory and two-
loop corrections to it for both cases in the strong coupling
regime, where the system displays Fermi liquid behavior at
the lowest energies, non-Fermi liquid behavior in a wide range
of intermediate energies, and Fermi gas behavior at the largest
energies.

For the electron-phonon case, Eliashberg theory is rigor-
ously justified when the Eliashberg parameter λE is small.
Namely, the two-loop self-energy with vertex correction is
small in λE . Simultaneously, using the same smallness of λE ,
the Eliashberg equations can be simplified into two decoupled
perturbative one-loop equations, which can be easily solved.
In physical terms, the smallness of λE follows directly from
the condition that an Einstein phonon is a slow mode com-
pared to electrons.

For the Ising-nematic/Ising-ferromagnetic case, soft
bosons are collective modes of the electrons, and in the non-
Fermi liquid quantum-critical regime there is no parametric
smallness of the two-loop self-energy with vertex correction
compared to the one-loop self-energy in the Eliashberg theory.
Nevertheless, we found that the two-loop self-energy is
numerically much smaller than the one-loop one.

Additionally, the low-energy theory contains a small
parameter λ∗

E , which plays the role of λE in the sense
that it again allows one to reduce the coupled self-consistent
one-loop Eliashberg equations to decoupled perturbative
one-loop equations, which one can easily solve. The
implication of these results is that Eliashberg theory for
the Ising-nematic/Ising-ferromagnetic case is on rather solid
grounds. It is very likely that this holds also for other cases
when fermions interact with their soft collective excitations
in the charge or spin channel.

There is one aspect in which the Eliashberg description
of fermions coupled to soft collective bosons works even
better than for fermions interacting with an Einstein phonon.
Namely, for the collective boson case, the parameter λ∗

E is in-
dependent of the distance to a QCP and two-loop self-energy
remains numerically smaller than the one-loop one even at
a QCP. As a result, Eliashberg theory can be extended right
to the QCP. For the electron-phonon case, the Eliashberg
parameter λ∗

E is inversely proportional to the dressed Debye
frequency and Eliashberg theory inevitably breaks down at
some distance from the point where ωD would vanish. Beyond
this point, a completely new description in terms of polarons
is needed [51–54,64].
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