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We give an explicit operator representation (via a sequential circuit and projection to symmetry subspaces)
of Kramers-Wannier duality transformation in higher-dimensional subsystem symmetric models, generalizing
the construction in the 1D transverse-field Ising model. Using the Kramers-Wannier duality operator, we also
construct the Kennedy-Tasaki transformation that maps subsystem symmetry-protected topological phases to
spontaneous subsystem symmetry-breaking phases, where the symmetry group for the former is either Z2 × Z2

or Z2. This also generalizes the recently proposed picture of the one-dimensional Kennedy-Tasaki transformation
as a composition of manipulations involving gauging and stacking symmetry-protected topological phases to
higher dimensions.
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I. INTRODUCTION

Symmetry-protected topological phases (SPT phases) [1,2]
have gained the attention of quantum information and con-
densed matter researchers for the past decade. SPT phases are
the equivalence classes of gapped Hamiltonians with a given
symmetry. We say two Hamiltonians are in the same phase if
they can be connected by a path in the space of gapped Hamil-
tonians that respect the symmetry. There is also an equivalent
definition in terms of states without mentioning Hamiltoni-
ans. These states are short-range entangled and possess trivial
topological order. They were first discussed in the context of
the spin-1 Haldane phase in the 1+1 dimension [3]. Short-
range entangled states in the same phase can be connected by
a symmetric finite-depth quantum circuit. Conversely, no such
circuit exists if they are in different SPT phases. The notion
of SPT phases has been generalized to higher dimensions in
bosonic systems classified by group cohomology [4,5] and in
fermionic SPTs by supergroup cohomology [6] and more gen-
erally by cobordism [7]. Furthermore, SPT phases protected
by subsystem symmetries were explored in Refs. [8–10].

Conventional spontaneous symmetry breaking (SSB)
phases, in contrast to SPT phases, can be described by local
order parameters, with the famous example of the 2D classical
Ising model [11,12], as well as its corresponding 1D quantum
Ising model in a transverse field. In these models, the so-called
Kramers-Wannier (KW) duality [13–16] maps the model to
one on the dual lattice between high-temperature (or high-
field, i.e., disordered) and low-temperature (or low-field, i.e.,
ordered) phases. There is a recent re-emergence of interest
in the KW duality of the 1D transverse-field Ising model,
which is regarded as a transformation on the same lattice, i.e.,
in the same Hilbert space, exchanging the Ising interaction
and transverse-field terms. In addition to the Z2 spin-flip sym-
metry, at the critical point, an additional symmetry is hence
given by the KW duality. Recently, an explicit expression

for this symmetry action in terms of unitaries and projection
was obtained by Refs. [17–19]. Due to the explicit projection
onto the symmetric subspace, this is a noninvertible symme-
try. Furthermore, this symmetry action squares to a lattice
translation by one site times the projection [18]. Seiberg and
Shao also show that this noninvertible symmetry comes from
gauging the fermion parity of free Majorana fermions [18].
Majorana translation symmetry emerges as the noninvertible
KW duality symmetry after gauging the fermion parity. This
noninvertible symmetry fits with the noninvertible duality line
in the Ising CFT [20–23].

The Haldane phase, now recognized as an SPT phase, was
found by Kennedy and Tasaki (KT) to relate via a nonlocal
transformation to a spontaneous Z2 × Z2 symmetry breaking
phase [24,25]. Oshikawa explicitly constructed such a non-
local transformation and generalized it to all integer spins
[26]. The overall picture that emerges is that the Z2 × Z2

SPT is mapped to two copies of the symmetry broken phase
under the KT transformation [27]. An explicit example given
in Ref. [27] is between the spin-1/2 1D cluster-state Hamil-
tonian, which represents a nontrivial Z2 × Z2 SPT phase,
and two copies of the transverse-field Ising model, which
represent Z2 SSB phases. Recently, there have also been gen-
eralizations of KT transformation to categorical symmetries
[28] and in the context of LDPC codes [29].

From a different perspective, cluster states are resources for
measurement-based quantum computation (MBQC) [30,31],
where performing single-qubit measurements on cluster states
leads to universal computation. In searching for order param-
eters to characterize quantum computational phases of matter
for MBQC, Doherty and Bartlett [32] considered a mapping
that takes the 1D open-boundary cluster Hamiltonian to two
copies of open-boundary transverse-field Ising models, which,
in fact, realizes the same picture above of the KT transforma-
tion. They also mapped the 2D cluster state on a square lattice
with a transverse field to two copies of the 2D transverse-field
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plaquette Ising model. Later, this transformation was gener-
alized to 3D by You et al. in Ref. [8], where they map the
3D cluster state to two copies of the 3D transverse-field cubic
Ising model. In these cases, we note that the nonlocal transfor-
mation involves mapping the Pauli Z operators to an operator
supported on one side of the light cone of Pauli Z . We remark
that there are a few ways to obtain the KT transformation, as
will be discussed in Sec. IV, and in fact, the exact mapping by
Doherty and Bartlett can be derived.

In this paper, we generalize the explicit operator con-
struction of the KW duality symmetry to higher-dimensional
hypercubic Ising models that have subsystem line-like sym-
metry. Such duality maps between the SSB and disordered
phases. We also discuss a fermionic dual to these models:
Majorana hypercubic models that have subsystem fermion
parity symmetry. We gauge the subsystem fermion parity
to obtain the hypercubic Ising models. Connecting SPT to
SSB phases, we provide an explicit operator representation
of the KT transformation in one and higher dimensions. The
KT transformation maps the Z2 × Z2-symmetric cluster-state
model on the hypercubic bipartite lattice to two copies of
hypercubic Ising models. We generalize the picture provided
by Ref. [33] for KT transformation to that between Z2 × Z2

subsystem SPT (SSPT) to (two copies of) Z2 subsystem SSB
(SSSB) phases in higher dimensions. We also discuss about
Z2 subsystem symmetric model in two and higher dimensions
and their corresponding Z2 subsystem SPT models. Specif-
ically, we provide an explicit operator representation of the
KW duality symmetry for the double hypercubic Ising model
(DHCIM), and using this, we construct the KT transformation
that maps between Z2 SSPT and one copy of DHCIM (which
has SSSB).

The remaining structure of this paper is as follows. We
give an overview of the results in Ref. [18] in Sec. II, where
they obtain an explicit expression for KW duality on a lat-
tice. Using these results, we give an explicit expression for
Kennedy-Tasaki transformation in one dimension mapping
Z2 × Z2 SPT to two copies of the Ising model. We also
discuss the composition of KT and KW. In Sec. III, we discuss
our results on the explicit KW duality operator for subsystem
symmetric models in two and higher dimensions. Section IV
deals with the KT transformation that maps the Z2 × Z2

SSPT to two copies of hypercubic Ising models that are in
the SSSB phase. We mention the composition of KW and
KT in two and higher dimensions in Sec. V. The discussion
of KW and KT transformation for Z2 subsystem symmetric
model in two and higher dimensions is presented in Sec. VI.
Finally, in Sec. VII, we conclude our results and give some
future directions. Some discussions about the fermionic duals
of the hypercubic Ising models are given in the Appendix A.
We discuss an alternate way to obtain the KT transformation
in the Appendix B. In Appendix C, we discuss ZN gener-
alization of hypercubic clock models and their noninvertible
symmetries. In Appendix D, we provide the ZN generalization
of KT transformation that maps ZN × ZN SPT phase to two
copies of ZN symmetry breaking phase in one dimension and
discuss a KT transformation that maps ZN × ZN SSPT phase
to two copies of ZN subsystem symmetry breaking phase in
two dimensions. We discuss a way to obtain the Hamiltonian
of Z2 SSPT phase from the Hamiltonian of Z2 × Z2 SSPT

by breaking the Z2 × Z2 symmetry to the diagonal subgroup
in Appendix E. In Appendix F, we describe how one can
implement the KW and KT transformations in short-depth
operations using gates and measurements. We discuss KT
transformations between order parameters in Appendix G.

II. NONINVERTIBLE SYMMETRY AND
KENNEDY-TASAKI TRANSFORMATION IN

ONE-DIMENSIONAL LATTICE MODEL

In this section, we review noninvertible symmetry and
Kennedy-Tasaki transformation in one-dimensional lattice
models.

A. Kramers-Wannier duality

1. Z2 symmetric model

The two-dimensional classical Ising model possesses
the famous Kramers-Wannier (KW) duality between high-
temperature and low-temperature phases [13]. The duality
maps an ordered phase to a disordered phase and vice
versa. At the critical temperature, the KW duality is a self-
duality, and that in turn determines the critical temperature.
The two-dimensional classical model can be mapped to a
one-dimensional quantum model by the quantum-classical
correspondence [16]. Hence, one can discuss the KW duality
in the context of a one-dimensional quantum lattice model,
which is the transverse field Ising model (TFI). Consider the
Hamiltonian of the TFI model on a ring with L sites with a
coupling parameter λ,

HTFI = −
L∑

i=1

ZiZi+1 − λ

L∑
i=1

Xi. (1)

Here, X , Y , and Z are the Pauli operators. They are bosonic
operators that anticommute with each other and square to
identity. The model has a global Z2 symmetry operator η ≡∏L

j=1 Xj and it commutes with the Hamiltonian [HTFI, η] = 0.
This model at λ = 1 also has a symmetry that interchanges the
Ising and transverse field term. This is the quantum version
of the celebrated KW self-duality at the critical point for the
classical model. Recently, an explicit expression for the KW
duality symmetry for TFI was obtained by Refs. [17–19].
The KW duality which we denote by D can be decomposed
into a unitary part and a projection onto the symmetric sub-
space where η = 1. The unitary part that we denote by D̃
(see Fig. 1) is an ordered product of operators (specifically,
a Clifford circuit),

D̃ ≡
⎛
⎝L−1∏

j=1

ei π
4 Xj ei π

4 Z j Z j+1

⎞
⎠ei π

4 XL , (2)

whereas the projector is defined by

P ≡ (1 + η)

2
. (3)

The KW duality symmetry is the product D̃P:

D ≡ D̃P. (4)
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FIG. 1. Quantum circuit representation of the operator D̃ given
in Eq. (2). The time ordering of the circuit is from top to bottom.
The top layer denotes the input sites 1,2, …,L. The bottom layer
represents the output.

It is a symmetry at λ = 1 because it commutes with the
Hamiltonian [HTFI, D] = 0 as it exchanges the two terms in
the Hamiltonian,

DXj = ZjZ j+1D, Xj+1D = DZjZ j+1. (5)

One can show easily that by using the unitary operator
D̃ it leads to D̃XjD̃† = ZjZ j+1 for j �= L, D̃XLD̃† = ZLZ1η,
D̃†XjD̃ = Zj−1Zj for j �= 1, and D̃†X1D̃ = ZLZ1η. The extra η

factor in the special boundary cases requires the introduction
of the projector (1 + η)/2 in D above, making the latter a
noninvertible symmetry for the critical transverse-field Ising
model. Additionally, the action on Zj by D̃ is

D̃ZjD̃† = Y1

j∏
k=2

Xk, (6)

and that by D̃† is

D̃†ZjD̃ = −
⎛
⎝L−1∏

k= j

Xk

⎞
⎠YL. (7)

From Eq. (5), we easily see that D2Xj = Xj+1D2 and
D2ZjZ j+1 = Zj+1Zj+2D2 (with the periodic boundary condi-
tion L + 1 ≡ 1). Moreover, it could be easily checked that
D†D = P. Hence, D2 is a product of lattice translation by one
site, which we denote by T, and the projection P onto the
symmetric subspace,

D2∝ TP. (8)

The proportionality factor is a phase and is fixed by the action
of D2 on the product state |+〉⊗L.

D2 = e
2π iL

4 TP. (9)

As a note, translation operation cannot be constructed in
constant depth quantum circuit [34]. This is consistent with
the fact that D̃ is a linear-depth quantum circuit. We note
that the phase factor (e2π iN/8)2 related to an anomaly in the
corresponding fermionic theory [18], and it does not affect
the transformation of operators.

2. ZN symmetric model

We generalize the discussion to the quantum clock model
with an N-dimensional qudit degree of freedom at each
site. We introduce generalized Pauli operators which obey
Z|a〉 = ωa|a〉, X |a〉 = |a + 1 mod N〉 with ω = e

2π i
N so that

X † = X −1, Z† = Z−1, ZX = ωXZ , Z†X = ω−1XZ†, etc. Let
the model be defined on a ring with L sites. The Hamiltonian
of the model is given by

H = −J
∑

i

(Z†
i Zi+1 + ZiZ

†
i+1 + λ(Xi + X †

i )), (10)

with periodic identifications Zi+L ≡ Zi and Xi+L ≡ Xi. This
model has a global symmetry generated by η = ∏

i Xi. Note
that η2, …, ηN−1 are also global symmetries. The model
is known to have a critical point describing phase transi-
tion at λ = 1 for N = 2, 3, 4 [35–37]. At λ = 1, there is a
symmetry under the Kramers-Wannier transformation that in-
terchanges the interaction term and the transverse-field term.
This self-dual point is described by the SU (2)N

U (1) coset confor-

mal field theory with central charge c = 2(N−1)
N+2 [38,39] for

N = 2, 3, 4. (We comment that for N > 4, the central charge
is c = 1 [40,41] and there is, in fact, an intermediate critical
phase instead of a single transition point.) Let us denote the
Kramers-Wannier duality symmetry for this model as D(N ).
We define

D(N ) ≡ P(N )D̃(N )P(N )

≡ P(N )

L−1∏
j=1

[(
N−1∑
n=0

c(n)X n
j

)(
N−1∑
n=0

c̃(n)(ZjZ
†
j+1)n

)]

×
(

N−1∑
n=0

c(n)X n
L

)
P(N ), (11)

where the projection operator is onto the ZN symmetric state
given by

P(N ) ≡
(

1 + η + η2 + · · · + ηN−1

N

)
, (12)

and the coefficients in Eq. (11) are given by

c̃(n) = ω− n(N+n)
2√

N
, c(n) = ω

n(N−n)
2√
N

. (13)

The operator D(N ) satisfies the following properties:

D(N )Xj = ZjZ
†
j+1D(N ), (14a)

D(N )X
†
j = Z†

j Z j+1D(N ), (14b)
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TABLE I. The values of phase eiφ(N,L) for various choices of N .

N 2 3 4 5

eiφ(N,L) e
2π iL

8 e− 2π iL
4 e− 2π iL

8 1

D(N )ZjZ
†
j+1 = Xj+1D(N ), (14c)

D(N )Z
†
j Z j+1 = X †

j+1D(N ). (14d)

Moreover, D(N ) commutes with the Hamiltonian at λ = 1,
D†

(N )D(N ) = D(N )D
†
(N ) = P(N ) and

D2
(N ) = e2iφ(N,L)TclockP(N ). (15)

Here Tclock is the translation on the lattice by one site and
eiφ(N,L) is a phase factor. For small values of N , we give the
values of phase eiφ(N,L) in Table I.

For completeness, we note that the action of D̃(N ) (the
unitary part of D(N )) on a single Z operator is

D̃(N )Zi = ω
(N2+1)

2 Z1

i∏
j=1

X †
j D̃(N ), (16)

which reduces to Eq. (6) for N = 2.

B. Kennedy-Tasaki transformation

Kennedy and Tasaki constructed a nonlocal transformation
that maps a Z2 × Z2 symmetry-protected topological phase to
a symmetry breaking phase in Refs. [24,25]. They constructed
the transformation in the context of S = 1 spin chains. How-
ever, a simple compact expression valid for any integer spin
was found by Ref. [26].

Here, we construct an explicit expression for the Kennedy-
Tasaki transformation using the Kramers-Wannier duality
symmetry operator D. Let us consider a spin chain with
L = 2M sites with Z2 × Z2 symmetry on the odd and even
sublattices. The Hamiltonian for this spin chain is

Hcluster = −
2M∑
i=1

Zi−1XiZi+1 − λ

2M∑
i=1

Xi. (17)

This is the cluster Hamiltonian with a transverse field in one
dimension. We assume the periodic boundary condition and
hence Z2M+1 = Z1 and also take Z0 ≡ Z2M . We define the
symmetry generator ηeven ≡ ∏M

k=1 X2k and ηodd ≡ ∏M
k=1 X2k−1

on the even and odd sublattices, respectively. For both the even
and odd sublattices we introduce the KW duality operators:

Deven ≡
(

M−1∏
k=1

ei π
4 X2k ei π

4 Z2kZ2k+2

)
ei π

4 X2M
(1 + ηeven)

2
, (18a)

Dodd ≡
(

M−1∏
k=1

ei π
4 X2k−1 ei π

4 Z2k−1Z2k+1

)
ei π

4 X2M−1
(1 + ηodd)

2
. (18b)

Let us define the cluster entangler T ≡ ∏
j CZ j, j+1, where

CZ is the controlled-Z gate CZj, j+1 ≡ ei π
4 (1−Z j )(1−Zj+1 ). Note

that the cluster entangler is equivalent to stacking an SPT

phase. With these ingredients, we define the Kennedy-Tasaki
transformation as

KT ≡ D†
oddD†

evenT DevenDodd. (19)

Ref. [27] showed that the KT transformation in the contin-
uum is equivalent to a sequence of operations: T ST or ST S,
where S is gauging the global symmetry and T is stacking a
Z2 × Z2 SPT. Our definition here uses the picture of S†T S
that is similar to the picture of ST S up to a translation in its
transformation. Since we use a quantum circuit and projection
to implement KW transformation, in our definition of S, we
have a lattice translation by one unit. Therefore, S† is not equal
to S on the lattice. Note that both S†T S and ST S are the same
in the continuum since in the continuum translation by one
unit goes to identity operation and S† = S.

Our calculation verifies that S†T S gives rise to the KT
transformation. Explicitly, the action of our KT transforma-
tion is given by

KT Xi = Xi KT, (20a)

KT Zi−1XiZi+1 = Zi−1Zi+1 KT. (20b)

Hence, KT maps the cluster Hamiltonian to two (decou-
pled) copies of Ising models in the two sublattices. On a single
Z operator, the action of KT is given by

KT Z2i+1 = Z2i+1

M−1∏
k=i+1

X2k KT′, (21a)

KT Z2i =
i∏

k=1

X2k−1Z2i KT′′, (21b)

where KT′ and KT′′ are defined as

KT′ ≡ D′†
oddD†

evenT DevenD′
odd, (22a)

KT′′ ≡ D†
oddD′†

evenT D′
evenDodd, (22b)

with

D′
odd ≡

(
M−1∏
k=1

ei π
4 X2k−1 ei π

4 Z2k−1Z2k+1

)
ei π

4 X2M−1
(1 − ηodd )

2
,

(23a)

D′
even ≡

(
M−1∏
k=1

ei π
4 X2k ei π

4 Z2kZ2k+2

)
ei π

4 X2M
(1 − ηeven)

2
. (23b)

Similarly,

KT†Z2i+1 = Z2i+1

M−1∏
k=i+1

X2k (KT′)†, (24a)

KT†Z2i =
i∏

k=1

X2k−1Z2i (KT′′)†. (24b)

Composition of KT with itself gives

KT2 = (1 + ηeven )

2

(1 + ηodd )

2
, (25)

The projection factor implies that KT is noninvertible.
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FIG. 2. (a) KT transformation from SPT to SSB; (b) KT trans-
formation from SSPT to SSSB.

As a remark, we can also use the following definition to
implement the KT transformation,

KT ≡ DoddDevenT DevenDodd, (26)

which differs from Eq. (19) by the last part (without the
Hermitian conjugation), and this will lead to additional trans-
lation. Furthermore, we have also verified that the alternative
definition corresponding to T ST also gives a valid KT trans-
formation. We refer the readers to Appendix B.

C. Composition of operators

So far, we discussed the D operator, which implements the
Kramers-Wannier transformation, and KT, which implements
the Kennedy-Tasaki transformation in one dimension. Here,
we consider the composition of operators

DSPT ≡ KT†DevenDodd KT

= D†
oddD†

even T DevenDodd T DevenDodd (27)

where this composition is schematically summarized in
Fig. 2(a). Its action on the terms in the Z2 × Z2 cluster state
Hamiltonian with the transverse field in Eq. (17) is

DSPTXi = ZiXi+1Zi+2DSPT, (28a)

DSPTZi−1XiZi+1 = Xi+1DSPT. (28b)

On single Z operators, DSPT act as

DSPTZ2i+1 = −Z1Z2i+2Y2MD′
SPT, (29a)

DSPTZ2i = −Y1Z2Z2i+1D′′
SPT, (29b)

where

D′
SPT ≡ D′†

oddD†
even T DevenD′

odd T DevenD′
odd (30a)

D′′
SPT ≡ D†

oddD′†
even T D′

evenDodd T D′
evenDodd (30b)

with D′
odd and D′

even given in Eq. (23). We remark that DSPT

squares to the projection and translation by two sites—or
equivalently, by one site in each sublattice. Similar duality
transformation as in Eq. (28) can be achieved by UCZ ≡∏

j CZ j, j+1, which is the cluster entangler T defined above,
although (UCZ )2 = 1 and there is no translation.

III. NONINVERTIBLE SYMMETRY IN LATTICE MODELS
BEYOND ONE DIMENSION

Here, we provide a generalization of noninvertible sym-
metry in higher dimensions. We will use inputs from the
one-dimensional noninvertible symmetry construction for this

generalization. The models we consider for the generalization
of noninvertible symmetry in higher dimensions possess sub-
system symmetries compared to the canonical example of a
noninvertible symmetric system in one dimension (transverse-
field Ising model) that possesses a 0-form symmetry.

A. Two dimensions

As a first generalization, we will look at two dimensions.
Recently, Ref. [42] provided a construction of a subsystem
noninvertible symmetry operator that maps between self-dual
models on different lattices. Our KW construction here builds
upon the 1D result by Seiberg and Shao [18], which we have
already reviewed in the Sec. II A 1; we map self-dual models
on the same lattice.

In two dimensions, we consider the transverse-field plaque-
tte Ising model, which is defined on a two-dimensional square
lattice. Let us denote the coordinates of the square lattice by a
pair (i, j) where i denotes the x-coordinate, and j denotes the
y coordinate. The Hamiltonian for this model is given by

HTFPI = −
∑
i, j

( Zi, jZi+1, jZi+1, j+1Zi, j+1 + λ Xi, j ). (31)

This model has subsystem symmetries along horizontal and
vertical directions, i.e., operators of the form ηx

j ≡ ∏
i Xi, j and

η
y
i ≡ ∏

j Xi, j commute with the Hamiltonian. If we put the
square lattice on a torus, with Lx unit cells along x direction
and Ly unit cells along y direction, then there are Lx + Ly

symmetry generators. However, there is one constraint among
them:

∏
j η

x
j = ∏

i η
y
i . Hence, we have Lx + Ly − 1 indepen-

dent symmetry generators. Additionally, at λ = 1, there is an
extra symmetry that exchanges the plaquette term and the
transverse field. This is the generalization of the famous KW
duality to the transverse-field plaquette Ising model. Here, we
write down an expression for the KW duality operator on the
square lattice, generalizing the 1D construction in Ref. [18].

Let us now define the following operators:

D̃x ≡
Ly∏

j=1

((
Lx−1∏
i=1

ei π
4 Xi, j ei π

4 Zi, j Zi+1 j

)
ei π

4 XLx , j

)
, (32a)

D̃y ≡
Lx∏

i=1

⎛
⎝

⎛
⎝Ly−1∏

j=1

ei π
4 Xi, j ei π

4 Zi, j Zi, j+1

⎞
⎠ei π

4 Xi,Ly

⎞
⎠, (32b)

P(2) ≡
Ly∏

j=1

(
1 + ηx

j

)
2

Lx∏
i=1

(
1 + η

y
i

)
2

. (32c)

As it can be seen, D̃x is composed of rows of the one-
dimensional version of D̃ in Eq. (2). Similarly, D̃y is composed
of columns of the one-dimensional version of D̃ in Eq. (2).
P(2) is a projector onto the subsystem symmetric subspace
along both x and y directions. Now we define the following
unitary action:

D̃(2) ≡ D̃xH⊗(2)D̃y, (33)

where H⊗(2) represents the action of the Hadamard transfor-
mation on all sites (which transforms between Zi, j and Xi, j).
We comment that the particular ordering of operators we set
in defining Eq. (33) is our choice. Another possible definition
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is D̃(2) ≡ D̃yH⊗(2)D̃x. We note that the two definitions are
related by swapping the x and y coordinates. Their action on
Pauli operators Xi, j and Zi, j operators are related by swapping
(i, j) ←→ ( j, i).

For i �= Lx and j �= Ly, D̃(2) exchanges the two terms in the
Hamiltonian as

D̃(2)Xi, j = Zi, jZi, j+1Zi+1, jZi+1, j+1D̃(2), (34a)

D̃(2)Zi, jZi, j+1Zi+1, jZi+1, j+1 = Xi+1, j+1D̃(2). (34b)

Near the boundary, the transformation picks up subsystem
symmetric factors:

D̃(2)XLx, j = ZLx, jZ1, jZLx, j+1Z1, j+1η
x
jη

x
j+1D̃(2), (35a)

D̃(2)Xi,Ly = Zi,Ly Zi+1,Ly Zi,1Zi+1,1D̃(2)η
y
i , (35b)

D̃(2)XLx,Ly = ZLx,Ly Z1,Ly ZLx,1Z1,1η
x
Ly

ηx
1D̃(2)η

y
Lx

, (35c)

and similarly,

D̃(2)ZLx, jZLx, j+1Z1, jZ1, j+1 = X1, j+1η
x
j+1D̃(2), (36a)

D̃(2)Zi,Ly Zi,1Zi+1,Ly Zi+1,1 = Xi+1,1D̃(2)η
y
i η

y
i+1, (36b)

D̃(2)ZLx,Ly ZLx,1Z1,Ly Z1,1 = X1,1η
x
1D̃(2)η

y
1η

y
Lx

. (36c)

We can absorb the subsystem symmetric factors by in-
troducing projection and defining the following noninvertible
operator:

D(2) ≡ P(2)D̃(2)P(2). (37)

The operator D(2) interchanges the plaquette term and the
transverse field term, and we identify it as the KW duality
transformation. In particular,

D(2)Xi, j = Zi, jZi+1, jZi, j+1Zi+1, j+1D(2), (38a)

D(2)Zi, jZi+1, jZi, j+1Zi+1, j+1 = Xi+1, j+1D(2), (38b)

and hence D(2) is a symmetry of the Hamiltonian Eq. (31) at
λ = 1, i.e., [HTFPI|λ=1, D(2)] = 0. Action of D(2) on a single
Zi, j operator is

D(2)Zi, j = (−i)Zi,1Zi+1,1Y1,1

i∏
k=2

Xk,1 ×
j∏

m=2

(
Y1,m

i∏
l=2

Xl,m

)
D(2)′ , (39)

where

D(2)′ ≡ P̃(2)′D̃(2)P̃(2), (40)

with

P̃(2)′ ≡
j∏

l=1

(
1 − ηx

l

)
2

Ly∏
l= j+1

(
1 + ηx

l

)
2

∏
k �=1,i,i+1

(
1 + η

y
k

)
2

×
(
1 − η

y
i

)
2

(
1 − η

y
i+1

)
2

(
1 + (−1) jη

y
1

)
2

, (41a)

P̃(2) ≡
∏
l �= j

(
1 + ηx

l

)
2

∏
k �=i

(
1 + η

y
k

)
2

(
1 − ηx

j

)
2

(
1 − η

y
i

)
2

, (41b)

and

D(2)†Zi, j = (−i)(−1)Lx−i+1
Lx−1∏
k=i

⎛
⎝

⎛
⎝Ly−1∏

l= j

Xk,l

⎞
⎠Yk,Ly

⎞
⎠

⎛
⎝Ly−1∏

l= j

XLx,l

⎞
⎠YLx,Ly ZLx, jZLx, j−1P̄(2)′D̃(2)†P̄(2), (42)

where

P̄(2)′ ≡
i−1∏
k=1

(1 + η
y
k )

2

Lx∏
k=i

(
1 − η

y
k

)
2

∏
l �= j, j−1,Ly

(
1 + ηx

l

)
2

(
1 − ηx

j

)
2

(
1 − ηx

j−1

)
2

(
1 + (−1)Lx−i+1ηx

Ly

)
2

, (43a)

P̄(2) ≡
∏
k �=i

(
1 + η

y
k

)
2

∏
l �= j

(
1 + ηx

l

)
2

(
1 − η

y
i

)
2

(
1 − ηx

j

)
2

. (43b)

Moreover, after an appropriate choice of normalization for
D(2), (D(2) )2 is a translation (i, j) → (i + 1, j + 1) up to the
projector:

(D(2) )2 ∝ T(1,1)P(2), (44)

where T(1,1) is a translation along the diagonal. The projection
P(2) is onto the subsystem symmetric Hilbert space compared

to the projection in Eq. (8) that is onto a 0-form symmetric
subspace. Note that the translation in the diagonal direction
leads to traversing of all sites if the lengths Lx and Ly have no
common factor, i.e., gcd(Lx, Ly) = 1.

We note that the KW transformation can also be imple-
mented by unitary gates plus measurements in a short-depth
operation, which maps the degrees of freedom to those on the
dual lattice; see Appendix F.
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FIG. 3. The Hamiltonian term
∏

v∈∂c Zv in the transverse-field
hypercube Ising model in three dimensions.

B. Higher dimensions

In higher dimensions, we consider the transverse-field
hypercubic Ising model (TFHCI). This model is a natural
generalization of the transverse field plaquette Ising model
that we considered in two dimensions. It is defined on the
hypercubic lattice with a hypercubic interaction of the vertices
of a cube. In addition to the hypercubic Ising-like term, there
is also a transverse field term.

Let us consider a hypercubic lattice in d spatial dimensions
with coordinates x1, …, xd . Let us denote the set of all vertices
of the hypercubic lattice by �v and the set of all hypercubes
in the lattice by �c. We denote the boundary of a hypercubic
cell c by ∂c. The Hamiltonian for the TFHCI model is

HTFHCI = −
∑
c∈�c

∏
v∈∂c

Zv − λ
∑
v∈�v

Xv. (45)

See Fig. 3 for an illustration in three dimensions. This model
has subsystem line-like symmetries along all the coordinate
directions. At λ = 1, there is an additional symmetry that in-
terchanges the hypercubic term and the transverse-field term.
This is the generalization of KW duality to higher dimensions.
We provide an explicit operator which achieves the KW dual-
ity similar to the two dimensions,

D(d ) ≡ P(d )D̃d H⊗(d )D̃d−1H⊗(d ) · · · D̃1P(d ), (46)

where each of the D̃i are string operators like Eq. (2)
on a straight line along ith direction, H⊗(d ) represents the
tensor product of Hadamard operators on all the sites of d-
dimensional lattice and P(d ) is a projection onto subsystem
straight linelike symmetries. The operator D(d ) is a symmetry
of the TFHCI model as it commutes with the Hamiltonian,
i.e., [HTFHCI, D(d )] = 0. After an appropriate choice of nor-
malization for D(d ), acting the operator twice will generate a
diagonal unit shift in d dimensions, i.e.,

(D(d ) )2 ∝ T(1,...,1)P(d ). (47)

IV. KENNEDY-TASAKI TRANSFORMATION IN LATTICE
MODELS BEYOND ONE DIMENSION

Here, we consider generalizations of Kennedy-Tasaki
transformations to higher dimensions and derive them based
on Fig. 2. The KT transformation takes a higher-dimensional
SPT phase to an SSB phase. Such an operator-mapping re-
lation in 2D was first constructed in Ref. [32] for the case
of the open-boundary condition, which was then generalized
to 3D in Ref. [8]. In this section, we study KT transforma-
tions that map Z2 × Z2 subsystem symmetric SPT phases to
spontaneous subsystem symmetry breaking phases. Later in
subSec. VI B, we look at the KT transformations that map a
Z2 SSPT phase to an SSSB phase, the latter of which breaks
the Z2 subsystem symmetry.

A. Two dimensions

In two dimensions, SSPT phases with symmetry group G
are classified by [9]

C[G] ≡ H2(G2,U (1))/(H2(G,U (1)))3. (48)

As a remark by Ref. [9], this is the classification of strong
SSPT phases with symmetry group G. There is also a notion
of weak SSPT phases which is composed of decoupled 1D
SPTs. We will not consider weak SSPT phases in our analysis.
In our case G = Z2 × Z2 and C[Z2 × Z2] = Z2 × Z2 × Z2.
There are three generators for the SSPT. To enumerate them,
let us consider a two-dimensional lattice consisting of two
square sublattices. We color the sublattices with red and blue
as shown in Fig. 4(a). We denote the vertices and plaquettes
in each red and blue lattice by vr and pr , and by vb and
pb, respectively. Note that the vertex of the red sublattice is
effectively the plaquette of the blue sublattice and vice versa.
The three generators for the SSPT are (1) Z2 × Z2 SSPT with
cluster entangler between adjacent red and blue sites, (2) Z2

SSPT (given in Sec. VI) on the red lattice, and (3) Z2 SSPT
on the blue lattice.

Here, we will describe the first generator: Z2 × Z2 SSPT
with cluster entangler between adjacent red and blue sites
and the KT transformation that maps between this phase and
two copies of the SSSB phase. The last two generators and
their KT transformation are given in Sec. VI B. For a general
element in the classification Z2 × Z2 × Z2, in principle, we
could construct a similar KT transformation that maps be-
tween this particular phase to copy/copies of SSSB phases.

Let us consider the two-dimensional cluster state, with the
red and blue sites entangled, which is the ground state of the
first two terms in the following Hamiltonian:

H2D cluster = −
∑
vr

Xvr

∏
vb∈∂ pb

Zvb −
∑
vb

Xvb

∏
vr∈∂ pr

Zvr

− λ
∑
vr

Xvr − λ
∑
vb

Xvb, (49)

where we used the identification pb = vr and pr = vb, and the
last two terms are external fields to tune the system away from
the cluster-state point. We assume periodic boundary condi-
tions along both the x axis and y axis of the two-dimensional
lattice. Note that all our results also carry over to the case of
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FIG. 4. (a) Each site resides a red qubit, and each face resides a blue qubit. (b, c) KT(2) transformation acting on a single Z operator is
given by a product of Pauli X operators in a light cone.

an infinite lattice. We define the two-dimensional KT transfor-
mation as

KT(2) ≡ D(2)†
b D(2)†

r T (2)D(2)
r D(2)

b , (50)

where D(2)
r and D(2)

b denote the KW transformation in two
dimensions as defined in Eq. (37) for the red and blue
sublattices. T (2) denotes the cluster entangler between red
and blue sublattices and can be written explicitly as T (2) =∏

p

∏
v∈∂ p CZv,p. Explicitly, KT(2) transformation is given by

KT(2)X r
i, j = X r

i, jKT(2), (51a)

KT(2)X b
i+ 1

2 , j+ 1
2
Zr

i, jZ
r
i+1, jZ

r
i, j+1Zr

i+1, j+1

= Zr
i, jZ

r
i+1, jZ

r
i, j+1Zr

i+1, j+1KT(2), (51b)

and similar equations for r ↔ b. Readers may wonder def-
initions of the order parameter of the SSSB phase and the
string order parameter, and how they are related by the KT
transformation. We discuss this in Appendix G. The action of
KT(2) on a single Z operator on the red sublattice is

KT(2)Zr
i, j = Zr

i, j

i∏
k=1

j∏
l=1

X b
k− 1

2 ,l− 1
2
KT(2)′ , (52)

where

KT(2)′ ≡ D(2)†
b D(2)′†

r T (2)D(2)′
r D(2)

b , (53)

with

D(2)′
r ≡ P̃(2)′

r D̃x,rH⊗(2)
r D̃y,rP̃(2)

r , (54)

and

P̃(2)
r ≡

∏
l �= j

(
1 + ηx

l

)
2

∏
k �=i

(
1 + η

y
k

)
2

(
1 − ηx

j

)
2

(
1 − η

y
i

)
2

. (55a)

P̃(2)′
r ≡

j∏
l=1

(
1 − ηx

l

)
2

Ly∏
l= j+1

(
1 + ηx

l

)
2

∏
k �=1,i,i+1

(
1 + η

y
k

)
2

×
(
1 − η

y
i

)
2

(
1 − η

y
i+1

)
2

(
1 + (−1) jη

y
1

)
2

, (55b)

D̃x,r and D̃y,r in Eq. (54) denote the operator D̃x and D̃y

on the red sublattice and H⊗(2)
r denote the tensor product of

Hadamard operator on all sites of the red sublattice. KT(2)

acting on a single Z operator on the blue sublattice is

KT(2)Zb
i+ 1

2 , j+ 1
2

= Zb
i+ 1

2 , j+ 1
2

Lx−1∏
k=i+1

Ly−1∏
l= j+1

X r
k,l KT(2)′′ , (56)

where

KT(2)′′ ≡ D(2)′†
b D(2)†

r T (2)D(2)
r D(2)′

b , (57)

with

D(2)′
b ≡ P̃(2)′

b D̃x,bH⊗(2)
b D̃y,bP̃(2)

b , (58)

and

P̃(2)′
b ≡

j+1−1∏
l=1

(
1 − ηx

l+ 1
2

)
2

Ly∏
l= j+1

(
1 + ηx

l+ 1
2

)
2

∏
k �=1,i,i+1

(
1 + η

y
k+ 1

2

)
2

(
1 − η

y
i+ 1

2

)
2

(
1 − η

y
i+ 3

2

)
2

(
1 + (−1) j+1η

y
1
2

)
2

, (59a)

P̃(2)
b ≡

∏
l �= j

(
1 + ηx

l+ 1
2

)
2

∏
k �=i

(
1 + η

y
k+ 1

2

)
2

(
1 − ηx

j+ 1
2

)
2

(
1 − η

y
i+ 1

2

)
2

. (59b)

D̃x,b and D̃y,b in Eq. (58) denote the operator D̃x and D̃y

on the blue sublattice and H⊗(2)
b denote the tensor product

of Hadamard operator on all sites of the blue sublattice.

The subsystem symmetry generators on the blue sublattice
are ηx

j+ 1
2

= ∏Lx−1
i=0 Xi+ 1

2 , j+ 1
2

and η
y
i+ 1

2

= ∏Ly−1
j=0 Xi+ 1

2 , j+ 1
2
. The

structure of the membrane operator in Eqs. (52) and (56)
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FIG. 5. Hamiltonian terms in the Z2 × Z2 cluster state on the
three-dimensional lattice. Here, we draw the blue lattice as a back-
ground. The red lattice sites reside at the centers of the blue cubes.
(left) Xvr

∏
vb∈∂cb Zvb , (right) Xvb

∏
vr∈∂cr Zvr .

[see Figs. 4(b) and 4(c)] for the derived KT(2) transformation
resembles the structure given in Ref. [32], except for the
rotation of the lattice by 45◦. Their mapping of a Pauli Z
operator involves a product of Pauli operators supported on a
quadrant (light cone) relative to the original Pauli Z operator,
where the original ones on the red and blue lattices get mapped
to the opposite quadrants. Similar to theirs, we find a light
cone structure in our transformation. We also find that the
composition of two KT(2) transformations gives

(KT(2))2 ∝ P(2)
r P(2)

b , (60)

P(2)
r and P(2)

b are the respective projections onto the subspaces
of the Hilbert spaces of the red and blue sublattices, which are
separately subsystem symmetric.

Similar to the remark in the 1D case, there are different
ways to implement a valid KT transformation. We refer the
readers to Appendix B for explicit calculations of another
choice.

B. Higher dimensions

Here, we will generalize all the discussions we had for two
dimensions to higher dimensions. We consider d-dimensional
lattice consisting of two hypercubic sublattices. These sublat-
tices are dual to each other. Again, we color them red and blue.
Let us denote the vertices and hypercubes of the red and blue
sublattices by vr, cr and vb, cb, respectively. A vertex of the
red sublattice is effectively a hypercube of the blue sublattice.
Let us consider the d-dimensional entangler on the red and
blue hypercubic sublattices for the cluster state described by
the Hamiltonian

Hd-dimcluster = −
∑
vr

Xvr

∏
vb∈∂cb

Zvb −
∑
vb

Xvb

∏
vr∈∂cr

Zvr

− λ
∑
vr

Xvr − λ
∑
vb

Xvb, (61)

where we used the identification cb = vr and cr = vb; see
Fig. 5 for an illustration of Hamiltonian terms. We assume
periodic boundary conditions along all the d axes. We define

the d-dimensional KT transformation,

KT(d ) ≡ D(d )†
b D(d )†

r T (d )D(d )
r D(d )

b , (62)

where D(d )
r and D(d )

b denote the KW transformation in d di-
mensions defined in Eq. (46) for red and blue sublattices. T (d )

is the cluster entangler between the red and blue sublattices.
Explicitly, KT(d ) transformation is given by

KT(d )Xvr = Xvr KT(d ), (63a)

KT(d )Xvb

∏
vr∈∂cr

Zvr =
∏

vr∈∂cr

Zvr KT(d ), (63b)

By r ↔ b, we get another similar set of equations. The
action of KT(d ) on a single Z operator can be worked out
similarly in the two-dimensional case, and we find that the
light cone structure is in opposite directions on the two sub-
lattices [8]. The composition of two KT(d ) transformations is
proportional to a projection

(KT(d ) )2∝ P(d )
r P(d )

b . (64)

P(d )
r and P(d )

b are projections onto subsystem symmetric sub-
space of the Hilbert spaces of red and blue sublattices. In
Appendix F, we describe how to implement the KT transfor-
mation in a short-depth operation.

V. COMPOSITION OF OPERATORS BEYOND
ONE DIMENSION

A. Two dimensions

We consider the composition of Kennedy-Tasaki and
Kramers-Wannier transformation in two dimensions shown
with the lattice given in Fig. 4(a). This is a similar analysis
as we did in Sec. II C.

D(2)
SSPT ≡ KT(2)† D(2)

r D(2)
b KT(2). (65)

It satisfies the following relations:

D(2)
SSPTX r

i, j = X b
i+ 1

2 , j+ 1
2
Zr

i, jZ
r
i+1, jZ

r
i, j+1Zr

i+1, j+1D(2)
SSPT, (66a)

D(2)
SSPTX b

i+ 1
2 , j+ 1

2
Zr

i, jZ
r
i+1, jZ

r
i, j+1Zr

i+1, j+1 = X r
i+1, j+1D(2)

SSPT.

(66b)

D(2)
SSPT is a symmetry of the 2D cluster state Hamiltonian

Eq. (49) with Z2 × Z2 subsystem symmetry. Moreover, it
squares to a translation times a projection as in the case of
Kramers-Wannier transformation Eq. (44),(

D(2)
SSPT

)2 ∝ T(1,1),rT(1,1),bP(2)
r P(2)

b . (67)

The translations T(1,1),r and T(1,1),b act on both the red and
blue sublattice by a diagonal unit shit on the respective
sublattices. We note that the transformations Eq. (66) are
equivalently achieved by the controlled-Z operator U (2)

CZ =∏
vr

∏
vb=pr∈∂∗vr

CZvr ,pr with ∂∗vr a set of plaquettes that con-

tain vr . U (2)
CZ is a unitary and squares to 1.

B. Higher dimensions

Similarly, we can consider the composition of Kennedy-
Tasaki and Kramers-Wannier in higher dimensions:

D(d )
SSPT ≡ KT(d )† D(d )

r D(d )
b KT(d ). (68)
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It satisfies the following relations:

D(d )
SSPTXvr = Xvb

∏
vr∈∂cr

Zvr D(d )
SSPT, (69a)

D(d )
SSPTXvb

∏
vr∈∂cr

Zvr = Xvr+d D(d )
SSPT, (69b)

where d denotes the direction (1,1, …,1) and is the diago-
nal vector. The vertices vr and vb appearing as subscripts
of Pauli X operators in Eq. (69) are related by a half diag-
onal translation ( 1

2 , 1
2 , . . . , 1

2 ), i.e., vb = vr + ( 1
2 , 1

2 , . . . , 1
2 ).

Hence, D(d )
SSPT is a symmetry of the d-D cluster state Hamil-

tonian Eq. (61) with Z2 × Z2 subsystem symmetry. Again,
it squares to diagonal translation times a projection up to a
normalization factor(

D(d )
SSPT

)2∝ T(1,...,1),rT(1,...,1),bP(d )
r P(d )

b . (70)

The translations T(1,...,1),r and T(1,...,1),b act on both the red
and blue sublattice by a diagonal unit shit on the respective
sublattices. We note that the transformations Eq. (69) are
equivalently achieved by the controlled-Z operator U (d )

CZ =∏
vr

∏
vb=cr∈∂∗vr

CZvr ,cr with ∂∗vr a set of hypercubes that

contain vr . U (d )
CZ is a unitary and square to 1.

VI. NONINVERTIBLE SYMMETRY IN Z2 SUBSYSTEM
SYMMETRIC MODELS

In this section, we construct a noninvertible symmetry in
a Z2 subsystem symmetric model in two dimensions, which
exhibits an SSSB order in the limit of large coupling. More-
over, we construct a map from a Z2 SSPT cluster state to a
trivial state, as well as that from the SSPT cluster state to
the SSSB state. (Note that, unlike in the previous sections,
the symmetry in the SSPT is not Z2 × Z2 but Z2 instead.)
We study the transformation in two dimensions in detail, but
the construction generalizes to arbitrary spatial dimensions.
At the end of the section, we briefly discuss the generalization
to three dimensions and higher.

A. Kramers-Wannier for SSSB Hamiltonian

Consider a Hamiltonian, which we may call the double-
plaquette Ising model (DPIM),

HDPIM(λ) = −
∑
i, j

(Zi+1, j+1Zi+1, jZi, j+1

× Zi−1, jZi, j−1Zi−1, j−1 + λXi, j )

= −
∑
i, j

⎡
⎣ Z Z

Z Z
Z Z

+ λX

⎤
⎦. (71)

For simplicity, we consider the model on a square lattice with
Lx = Ly = L. One can think of the first term as the product of

two plaquette Ising terms shifted in both x and y directions by
one. The model is symmetric under a set of unitary transfor-
mations that represents spin flips along rigid lines in x, y, and
diagonal directions:

ηx
j ≡

L∏
i=1

Xi, j ( j ∈ {1, . . . , L}), (72a)

η
y
i ≡

L∏
j=1

Xi, j (i ∈ {1, . . . , L}), (72b)

η
diag
k ≡

L∏
	=1

X	,[	+k]L (k ∈ {1, . . . , L}), (72c)

where [•]L denotes the entry mod L. It is a subsystem Z2

symmetry with a constraint
∏L

j=1 ηx
j = ∏L

i=1 η
y
i = ∏L

k=1 η
diag
k .

In what follows, we consider gauging all of the above symme-
tries. To do so, we employ the sequential circuit approach and
gauge each Z2 line symmetry one by one, which implements
the 1D Kramers-Wannier transformation on it. It is natural to
expect that the whole map executes a self-duality, and indeed,
the Hamiltonian HDPIM is mapped to itself with λ moved to
the Z term.

Now, we define the sequential circuit. We use the operators
D̃x and D̃y, already defined in Eqs. (32a) and (32b), respec-
tively. We introduce another unitary,

D̃diag ≡
L∏

k=1

dk, (73)

with

dk ≡
(

L−1∏
	=1

ei π
4 X	,[	+k]L ei π

4 Z	,[	+k]L Z	+1,[	+k+1]L

)
ei π

4 XL,[L+k]L , (74)

where the ordering is understood as before; as 	 increases,
we go to the right in the product. We use a projector to
absorb unwanted η’s that get attached to boundary terms in
the Hamiltonian upon transformations by unitaries:

PDPIM ≡
L∏

j=1

1 + ηx
j

2

L∏
i=1

1 + η
y
i

2

L∏
k=1

1 + η
diag
k

2
. (75)

Then we define the duality operator as

DDPIM ≡ PDPIMD̃yH⊗(2)D̃xH⊗(2)D̃diagPDPIM, (76)

where H⊗(2) is the simultaneous Hadamard transformation on
all the qubits, as before. In the bulk, the transformation occurs
as follows:

X

D̃diag−→ Z
Z

H⊗(2)−→ X
X

D̃x−→ Z Z
Z Z

H⊗(2)−→ X X
X X

D̃y−→
Z Z

Z Z
Z Z

, (77)
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where we have added boxes to indicate the same location on
the lattice. The transformations form the following algebra:

[HDPIM(λ), η] = 0, (78a)
HDPIM(λ = 1)DDPIM = DDPIMHDPIM(λ = 1), (78b)

ηDDPIM = DDPIMη = DDPIM, (78c)

for η ∈ {ηx
j , η

y
i , η

diag
k }; in particular, at the self-duality point

λ = 1, we get an algebra involving a noninvertible symmetry.
Moreover, DDPIM squares to a diagonal translation by two
units and a projection up to an overall normalization

(DDPIM)2∝ T(2,2)PDPIM, (79)

where T(2,2) is the translation by (2,2). Note, however, that
one could set the opposite ordering for the diagonal part of the
unitary. Then such a KW operator D′

DPIM defined with it would
obey (D′

DPIM)2∝ PDPIM, so the translation is not an essential
feature in this case. We also comment that we can implement
the KW transformation in a short-depth operation (including
measurement) in Appendix F.

B. Kennedy-Tasaki for SSSB and SSPT

In the literature [8,9], the following Hamiltonian at λ = 0
is known to host a Z2 SSPT ground state:

HSSPT(λ) = −
∑
i, j

(Xi, jZi+1, j+1Zi+1, jZi, j+1Zi−1, jZi, j−1Zi−1, j−1 + λXi, j ) = −
∑
i, j

⎡
⎣ Z Z

Z X Z
Z Z

+ λX

⎤
⎦. (80)

This Hamiltonian can be obtained from a symmetry breaking
of the 2D cluster model in Sec. IV A, which is the 2D Z2 × Z2

SSPT for horizontal and vertical line-like symmetry on square
lattice [9]. Namely, if we insert a term

− g
∑ Zr

Zb
(81)

into the Hamiltonian in Eq. (49), and tune g → ∞, then the
symmetry will then be broken into the diagonal subgroup
Z2 × Z2 → Zdiag

2 , as shown in Appendix E.
There is an obvious cluster-state entangler which maps

from Xi, j to the first term, which we denote by TSSPT,

X
TSSPT←→

Z Z
Z X Z
Z Z

. (82)

We remark that in the literature, the cluster state described
by the above stabilizer is seen as an SSPT state protected by
{ηx

j , η
y
i }; see, e.g., Refs. [8,9]. In our current context, however,

it would also be natural to view this as an SSPT order pro-
tected by {ηx

j , η
y
i , η

diag
k }.

Indeed, we have the following mapping:

Z Z
Z X Z
Z Z

DDPIM←→
Z Z

Z X Z
Z Z

, (83a)

X

DDPIM←→
Z Z

Z Z
Z Z

. (83b)

Now note that the map DDPIM preserves locality for sym-
metric operators (those composed of single X and the product
of six Z’s), and it also preserves a gap. The property ηDDPIM =
DDPIM means that this is a gauging map [43–46]. We expect
that there is no finite-depth local unitary circuit connecting the
symmetric ground states described by the two stabilizers on
the right-hand side: the one being the cluster state (short-range
entangled) and the other being SSSB with long-range order.

Then one cannot have a symmetric (under {ηx
j , η

y
i , η

diag
k })

finite-depth local unitary connecting the states described by
the two stabilizers on the left-hand side. Since X is the stabi-
lizer for the trivial symmetric state, the other one has to belong
to a nontrivial SSPT. Finally, we can define a Kennedy-Tasaki
transformation:

KTZ2 ≡ D†
DPIMTSSPTDDPIM, (84)

which implements the transformation between the SSPT and
SSSB phases,

Z Z
Z X Z
Z Z

KTZ2←→
Z Z

Z Z
Z Z

. (85)

Equivalently, we can define

KTZ2 ≡ TSSPTDDPIMTSSPT, (86)

and implements the same transformation in Eq. (85) with a
diagonal unit shift.

C. Three dimensions and higher

We conclude this section by giving a general picture in
higher dimensions. The model we consider as a generalization
of DPIM is a model that we shall call a double hypercube
Ising model, whose multibody term is simply the product of
shifted hypercube terms

∏
v∈∂c Zv in Eq. (45); see Fig. 6(a) for

an illustration of three dimensions. Inherited from the parent
Hamiltonian, the model is symmetric under spin flips along
rigid lines in every coordinate direction. Due to the shifted
product, the model is also symmetric under the spin flips along
any rigid diagonal line pointing in the direction (1, 1, . . . , 1).
Then, the same story in two dimensions can be generalized to
three and higher dimensions.

In three dimensions, for example, we have a double cube
Ising model (DCIM), whose Ising term is a product of Z
operators at fourteen points, i.e., the product of eight Z’s at
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Z
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Z
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Z

Z

Z

Z

Z

X

FIG. 6. (a) A Hamiltonian term in the double hypercube Ising
model in three dimensions. Note that there is no Z operator on the
vertex at the center. (b) A Hamiltonian term in the Z2 SSPT cluster
state in three dimensions.

the corners of two cubes with one overlap. The sequential
circuit is

DDCIM ≡ PDCIMD̃zH⊗(3)D̃yH⊗(3)D̃xH⊗(3)D̃diagPDCIM, (87)

with an appropriate definition of D̃diag, H⊗(3), and PDCIM,
where the latter imposes all the symmetry generators
{ηx

j , η
y
i , η

z
m, η

diag
k } to be evaluated to unity for the ground

states.
On the other side of the duality web, there is also a clus-

ter state whose stabilizer is given by one X (sitting at the
overlapping site of two diagonally neighboring cubes) and 14
Z’s (sitting at the remaining corners), which is produced by
a combination of CZ gates; see Fig. 6(b). This 3D cluster
state is a nontrivial 3D Z2 SSPT; see Ref. [47] for other
generators of 3D Z2 SSPT phases. The cluster-state entangler
and the Kramers-Wannier duality operator DDCIM form a web
of dualities.

VII. CONCLUSION

In this paper, we have presented a higher-dimensional
generalization of the noninvertible Kramers-Wannier duality
symmetry on a lattice. The generalized hypercubic Ising mod-
els with a transverse field exhibit noninvertible symmetry at
the self-dual point. In addition to that, we have also presented
a generalization of the Kennedy-Tasaki transformation in

higher dimensions. In our examples involving Z2 × Z2 SSPT
phases, under the KT transformation, the higher-dimensional
cluster-state model with an external field decomposes into
two copies of hypercubic transverse-field Ising models. The
KT transformation derived in the main text is obtained by
sandwiching the cluster-state entangler between the KW dual-
ity operator (on two sublattices) and its Hermitian conjugate.
We have also derived an alternative KT transformation in the
Appendix B. Both of these variants of the KT transformation
achieve the effect of taking a Z2 × Z2 model to two copies
of SSSB models. Our result generalizes the picture of the 1D
KT transformation proposed by [27] to higher dimensions. In
addition to the Z2 × Z2 symmetry, we also discussed KW
duality symmetry of DHCIM and used that to give a KT
transformation that maps between the cluster model, which
is Z2 SSPT, and one copy of DHCIM, which is in the SSSB
phase.

While the KW operators in our construction require
linear-depth circuits, they can also be implemented using a
cluster-state entangler acting on the original and ancillary
degrees of freedom, measurement on the original degrees
of freedom, and then a feedforward correction, the whole
combination of which is finite-depth (see Appendix F). It is,
therefore, feasible to implement the KW and KT transfor-
mations on quantum devices, following the approaches in,
e.g., Refs. [48–51]. However, in the case of 1D [18], the
linear-depth construction of the KW duality operator (on the
same lattice) is a noninvertible symmetry arising from the
anomalous translation symmetry in the Majorana fermion rep-
resentation after gauging the global fermion parity. Hence,
this construction clarifies the relationship between anomalies
and noninvertible symmetry. In Appendix. A, we also discuss
Majorana hypercube models and identify the exchange in the
Majorana terms that gives rise to the KW duality in the corre-
sponding Ising hypercube model. The exchange action is not
related to translation and, moreover, does not commute with
the subsystem fermion parity. However, the physical meaning
of this exchange symmetry is not yet clear.

The noninvertible symmetries would also have a gener-
alization to a Kramers-Wannier transformation that gauges
higher-form symmetries. In Ref. [52], for example, gauging
Z2 × Z2 1-form symmetry was considered using a mathemat-
ical map, which transforms the 3D cluster state (also called
the Raussendorf-Bravyi-Harrington state [53]) to itself and the
product state to two copies of the 3D toric code; essentially,
this is a higher-form symmetry generalization of the Kramers-
Wannier transformation. We have confirmed that the parent
Hamiltonians of the above-mentioned states map in the same
corresponding way under the measurement-assisted construc-
tion. It would be interesting to explore the KW transformation
more broadly beyond this example. One could also define
a higher-form generalization of the Kennedy-Tasaki trans-
formation by composing the map with the 3D cluster state
entangler, which in total brings an SPT state to some copies
of SSB states with respect to the higher-form symmetry. It
would be interesting to construct a circuit with a projector that
realizes this transformation and study its algebra.

It is also natural to study the Kennedy-Tasaki transforma-
tions that map between the SSPT phase and the SSB phase
in higher-dimensional models for more examples and other
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TABLE II. Ground-state degeneracy of various Hamiltonians with Z2 subsystem symmetry that we denote by H1 and H2. We omit the
summation over lattice sites and overall negative signs in front of the Hamiltonian terms for simplicity. H1 and H2 are related by a Kramers-
Wannier duality, i.e., D(2)H1 = H2D(2).

H1 term H2 term GSD of H1 GSD of H2

X
Z Z
Z Z

1 2Lx+Ly−1

Z Z
Z X Z
Z Z

Z Y
Y Z 1

4 for Lx, Ly even,

2 otherwise

X X Z I Z
Z I Z

2Ly
2Lx+2Ly−2 for Lx even,

2Lx+Ly−1 for Lx odd
X

X
Z Z

Z Z
Z Z

2L

for Lx = Ly = L
23L−2

for Lx = Ly = L

symmetry groups. Classification of SSPT phases beyond two
dimensions is not extensively known yet. Thus, it would be
worthwhile to extend the classification of SSPT phases to
higher dimensions and find a KT transformation that maps
between all the SSPT to SSSB phases for symmetry groups
beyond Z2 and Z2 × Z2.

Recently, KT has been used to discuss SPT phases pro-
tected by noninvertible symmetry [54] in 1 + 1 dimensions.
The distinct noninvertible SPT phases are characterized by
various symmetry-breaking patterns of the dual symmetry
that emerges after applying the KT transformation. It would
be interesting to analyze such noninvertible SSPT phases in
2 + 1 dimensions. We speculate that the cluster states with
Z2 × Z2 or Z2 subsystem symmetry would split into distinct
SSPTs after imposing the noninvertible KW duality symme-
try. However, we leave a comprehensive analysis for future
exploration.

The existence of noninvertible symmetry put constraints
similar to the Lieb-Shultz-Mattis theorem on the low energy
theory of one-dimensional lattice models: it is recently found
in the case of 1D by Seiberg, Seifnashri, and Shao [55] that
the system is either in a gapless phase or gapped phase with
a three (or a multiple of three) degenerate ground states at
the noninvertible symmetric point. Studying such LSM con-
straints with noninvertible symmetries beyond one dimension
would be generally interesting. In two dimensions, the imme-
diate question is whether lattice models with Z2 subsystem
symmetry and the noninvertible symmetry D(2) obey any such
constraints. Let us consider some possible Z2 subsystem sym-
metric phases on the two-dimensional torus.

(1) According to the classification of strong SSPTs in two
dimensions, there are

(a) the trivial SSPT (H1 in the first row),
(b) one nontrivial Z2 SSPT(H1 in the second row).

(2) There is an SSSB phase (H2 in the first row).
(3) There is a topological order, i.e., the Wen-plaquette

model [56] (H2 in the second row).
The trivial SSPT is mapped to the SSSB phase under the

Kramers-Wannier operator D(2); see the first row of Table II.
It is easy to see that the nontrivial Z2 SSPT that was dis-
cussed in Sec. VI B is mapped to the Wen-plaquette model
under D(2); see the second row of Table II. The trivial and
nontrivial SSPTs have a single ground state. The SSSB phase

has 2Lx+Ly−1 ground states and this can be seen by counting
the number of independent stabilizer generators. The topolog-
ical order (the Wen-plaquette model) has a four or twofold
ground-state degeneracy depending on whether it is an even
by even lattice or not [56]. At the critical point between
the trivial phase and SSSB phase (first-order transition), we
expect 2Lx+Ly−1 + 1 ground states. The critical point between
nontrivial SSPT and topological order is either gapless or
has five or three ground states depending on the lattice size.
We summarize our discussions so far about ground-state de-
generacy of various models and their KW dual that are Z2

subsystem symmetric in Table II with two more examples.
For more general Hamiltonians that are invariant under

both Z2 subsystem symmetry and noninvertible symmetry
D(2), counting the number of ground states requires a more
careful analysis. This is because, first of all, the constraint
about the number of ground states in the spirit of the LSM
theorem is a question about the thermodynamic behavior of
the lattice models that we start with. For lattice models with
subsystem symmetries, the thermodynamic limit is very sensi-
tive to the lattice system size. This is manifest in the extensive
ground-state degeneracy of these lattice models with large but
finite system sizes. It would be interesting if one could define
a notion of ground-state degeneracy in this setup as well as
in higher dimensions and find an LSM-type constraint on the
number of ground states. However, we leave this question for
future exploration.
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APPENDIX A: FERMIONIC DUAL

1. Majorana plaquette model

Let us consider the Majorana plaquette model in a 2D
square lattice. At each vertex, we have two Majorana fermions
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γ and γ ′. The Hamiltonian is given by

HMaj-plaq =
∑
i, j

(γ ′
i, jγi+1, jγ

′
i, j+1γi+1, j+1 + iλγi, jγ

′
i, j ), (A1)

where (i, j) denotes the x and y coordinates of the 2D square
lattice. This model has the subsystem fermion parity symme-
try along horizontal and vertical lines given by

Sx
j ≡

∏
i

(−iγi, jγ
′
i, j ), Sy

i ≡
∏

j

(−iγi, jγ
′
i, j ). (A2)

There are in total 2Lx+Ly subsystem fermion parity symme-
tries. However, there is a global constraint,∏

j

Sx
j =

∏
i

Sy
i . (A3)

Hence, in total, there are 2Lx+Ly−1 subsystem symmetries,
which in turn agree with the number of subsystem symmetries
for the plaquette Ising model. Now we discuss gauging the
subsystem fermion parity. We consider the Jordan-Wigner
transformation for subsystem symmetric fermionic models in
2D defined in Refs. [33,57],

γi, j ≡
⎛
⎝ Lx∏

i′=1

j−1∏
j′=1

Xi′, j′

⎞
⎠

(
i−1∏
i′=1

Xi′, j

)
Zi, j, (A4a)

γ ′
i, j ≡ −

⎛
⎝ Lx∏

i′=1

j−1∏
j′=1

Xi′, j′

⎞
⎠

(
i−1∏
i′=1

Xi′, j

)
Yi, j . (A4b)

Plugging the above relations in Eq. (A1), we find the fol-
lowing Hamiltonian:

H̃plaq = −
∑

i �=Lx, j

Zi, jZi+1, jZi, j+1Zi+1, j+1 −
Ly∑

j=1

(
Lx∏

i=1

Xi, j

)(
Lx∏

i=1

Xi, j+1

)
ZLx, jZ1, jZLx, j+1Z1, j+1 − λ

∑
i, j

Xi, j . (A5)

This is the plaquette Ising model Hamiltonian with defects
along the horizontal direction. The second term in Eq. (A5)
contains defects inserted at two consecutive horizontal lines.
Note that the subsystem fermion parity maps to the subsystem
line symmetry of the plaquette Ising model under the Jordan-
Wigner transformation Eq. (A4),

Sx
j =

Lx∏
i=1

Xi, j, Sy
i =

Ly∏
j=1

Xi, j . (A6)

To gauge the subsystem fermion parity, we need to sum over
defect configurations [flipping the signs of terms in the second
sum in Eq. (A5)] only along the horizontal direction.

We perform a procedure similar to the procedure of gaug-
ing fermion parity in the free Majorana fermion model to
obtain the transverse field Ising model in 1D [18]. First, let
us define an extended Hilbert space,

H ≡ H0

⊕
{i1,...,ik}�=∅

Hi1...ik , {i1, . . . , ik} ⊂ {1, . . . , Ly},

(A7)

where ∅ is the empty set and i1 < · · · < ik . Now let us intro-
duce a total ordering on the subsets of the set {1, 2, . . . , Ly}.
Suppose A and B are two subsets of {1, 2, . . . , Ly}, then A < B
if |A| < |B|(|S| denote the cardinality of the set S) or if |A| =
|B| then the least element in A ∪ B − A ∩ B is contained in A.
With this ordering on the subsets, we define the Hamiltonian
on the extended Hilbert space as

H ≡ Diag(H0, H1, . . . , HLy , . . . , Hi1...ik , . . . , H1...Ly ),

{i1, . . . , ik} ⊂ {1, . . . , Ly}, (A8)

where the entries in the diagonal are ordered with respect
to the subscript that is in one-to-one correspondence with
the subsets of {1, 2, . . . , Ly}. Hamiltonian Hi1...ik denote the
Hamiltonian Eq. (A5) with defects inserted at rows labeled by
i1, . . . , ik . Namely, the twisted Hamiltonian Hi1...ik is defined

as the Hamiltonian H̃plaq but with the product Sx
j (or Sx

j+1) in
the second term given a phase (−1) when j ∈ {i1, . . . , ik}(or
j + 1 ∈ {i1, . . . , ik}). The untwisted Hamiltonian H0 is the
same as the Hamiltonian H̃plaq in Eq. (A5) without any defects
inserted. In total there are 2Ly isomorphic copies of the Hilbert
space H0 in the total Hilbert space H and 2Ly Hamiltonians in
the diagonal matrix that represent the Hamiltonian H in the
total Hilbert space H. The dimension of the extended Hilbert
space H is dim(H0)2Ly . We define the subsystem fermion
parity on the total Hilbert space,

(−1)F̂i ≡ Diag((−1)F̂i , . . . , (−1)F̂i ), (A9)

with 2Ly copies of the subsystem fermion parity op-
erator (−1)F̂i at ith row on the diagonal. In the ex-
tended Hilbert space H, the Hamiltonian H has other
Z2 symmetries which we denote by ηi. These are ηi =
Diag(a0, a1, . . . , aLy , . . . , ai1..ik , . . . , a1...Ly ), with

ai1...ik =
{−1 when i ∈ {i1, . . . , ik},

1 when i /∈ {i1, . . . , ik}, (A10a)

a0 = 1. (A10b)

We perform a set of projections to preserve the dimension
of the Hilbert space. The projections are

ηi(−1)F̂i = I, (A11)

where I is the 2Ly × 2Ly identity matrix. Then
dim(H|

ηi (−1)F̂i =1) = dim(H0) as we want. Now we write
down a representation of the Pauli operators in the extended
Hilbert space. We take the Pauli X to be the diagonal matrix

X ≡

⎛
⎜⎝X

. . .

X

⎞
⎟⎠. (A12)

However, we cannot take the Pauli Z and Y to be diagonal
since they would not commute with the projection. We define
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the new Pauli Z and Y operators that commute with the projec-
tion in terms of their matrix elements. This definition depend
on the vertical position of the operators on the square lattice.
Let S ⊂ {1, . . . , Ly}

(Z−, j )S∪{ j},S = (Z−, j )S,S∪{ j} = Z−, j, (A13a)

(Y−, j )S∪{ j},S = (Y−, j )S,S∪{ j} = Y−, j, (A13b)

where the index of subsets is numbered, according to the
total ordering we defined above, starting from one. The Pauli
Z and Y operators on the right-hand side is acting on the
Hilbert space HS or HS∪{ j}. It is an easy exercise to see that
above defined operators indeed satisfy the Pauli algebra. With
these definitions of Pauli operators, the Hamiltonian H in
Eq. (A8) is

Hplaq = −
∑
i, j

Zi, jZi+1, jZi, j+1Zi+1, j+1 − λ
∑
i, j

Xi, j . (A14)

This is the plaquette Ising model Hamiltonian.

a. Anomalous symmetry

As we discussed before, the Hamiltonian Eq. (A1) has
subsystem fermion parity symmetry. At λ = 1, in addition to
this symmetry, there is an exchange symmetry that exchanges
the plaquette term with the onsite fermion parity term,

E :

{
iγi, jγ

′
i, j → γ ′

i, jγi+1, jγ
′
i, j+1γi+1, j+1,

γ ′
i, jγi+1, jγ

′
i, j+1γi+1, j+1 → iγi+1, j+1γ

′
i+1, j+1.

(A15)

This symmetry does not commute with the subsystem fermion
parity and hence is anomalous. After gauging the subsystem
fermion parity, the exchange symmetry E gives rise to the
noninvertible symmetry D(2) at λ = 1.

2. Majorana hypercubic models

The same gauging procedure can be carried out in higher
dimensions. We start with hypercubic Majorana models and
gauge the subsystem fermion parity to obtain hypercubic
Ising models. Let us consider d dimensions and the following
fermionic Hamiltonian,

HMaj-HC =
∑

i1,...,id

⎛
⎝−

1∏
j2,..., jd =0

γ ′
i1,i2+ j2,...,id + jd γi1+1,i2+ j2,...,id + jd + iλγi1,...,id γ

′
i1,...,id

⎞
⎠. (A16)

This model has subsystem fermion parity along lines in any of the d directions,

Sxl

i1,...îl ,...,id
≡

∏
il

(−iγi1,...,id γ
′
i1,...,id

)
. (A17)

We consider a generalization of the Jordan-Wigner transformation for subsystem symmetric fermionic models in higher
dimensions,

γi1...id ≡
⎛
⎝ Lx1∏

i′1=1

Lx2∏
i′2=1

. . .

id −1∏
i′d =1

Xi′1,...,i
′
d

⎞
⎠

⎛
⎝ Lx1∏

i′1=1

Lx2∏
i′2=1

. . .

id−1−1∏
i′d−1=1

Xi′1,...,i
′
d−1,id

⎞
⎠ . . .

⎛
⎝i1−1∏

i′1=1

Xi′1,i2,...,id

⎞
⎠Zi1,...,id , (A18a)

γ ′
i1...id ≡ −

⎛
⎝ Lx1∏

i′1=1

Lx2∏
i′2=1

. . .

id −1∏
i′d =1

Xi′1,...,i
′
d

⎞
⎠

⎛
⎝ Lx1∏

i′1=1

Lx2∏
i′2=1

. . .

id−1−1∏
i′d−1=1

Xi′1,...,i
′
d−1,id

⎞
⎠ . . .

⎛
⎝i1−1∏

i′1=1

Xi′1,i2,...,id

⎞
⎠Yi1,...,id . (A18b)

We plug this transformation into the Hamiltonian
Eq. (A16) and obtain

H̃HC = −
∑

i1 �=Lx1
,i2,...,id

1∏
j2,..., jd =0

Zi1,i2+ j2,...,id + jd Zi1+1,i2+ j2,...,id + jd

−
∑

i2,...,id

1∏
j2,... jd =0

Lx1∏
i1=1

Xi1,i2+ j2,...,id + jd

×
1∏

j2,..., jd =0

ZLx1 ,i2+ j2,...,id + jd Z1,i2+ j2,...,id + jd

− λ
∑

i1,...,id

Xi1,...,id . (A19)

This is the hypercubic Ising model Hamiltonian with defects
inserted along x1 direction. The second term in Eq. (A19)

contains the defect lines. To gauge the subsystem fermion
parity, we sum over defect configurations in the x1 direction.
Define an extended Hilbert space

H ≡ H0

⊕
{i1,...,ik}�=∅

Hi1...ik , i j ∈ {
1, . . . , Lx2 . . . Lxd

}
,

{
i1, . . . , ik} ⊂ {1, . . . , Lx2 . . . Lxd

}
. (A20)

We choose an ordering on the subsystem fermion parity lines
in the x1 direction. Any line in the x1 direction is speci-
fied by the d − 1 of the remaining coordinates x2, . . . , xd .
Then we choose an ordering on the remaining coordinates
(x2, . . . , xd ) < (x′

2, . . . , x′
d ) if xi < x′

i provided x j = x′
j for all

j < i, i.e., ordering is chosen based on the first coordinate
(reading from left) for which the two tuples disagree. Then
these lines are enumerated from 1 to Lx2 . . . Lxd . Similar to the
two-dimensional case we define a total ordering on the subsets
of {1, . . . , Lx2 . . . Lxd } with the definition of the total ordering
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exactly as in the case of two dimensions. With respect to this
ordering, we define the Hamiltonian on the extended Hilbert
space

H ≡ Diag
(
H0, H1, . . . , Hi1...ik , . . . , H1...(Lx2 ...Lxd )

)
,

i j ∈ {
1, . . . , Lx2 . . . Lxd

}
,

{i1, . . . , ik} ⊂ {
1, . . . , Lx2 . . . Lxd

}
,

(A21)

where the entries in the diagonal are ordered with respect to
the subscript that is in one-to-one correspondence with the
subsets of {1, 2, . . . , Lx2 . . . Lxd }. Hamiltonian Hi1...ik denotes
the Hamiltonian Eq. (A19) with defects inserted on lines la-
beled by i1, i2,\ldots up to ik . Namely, the twisted Hamiltonian

Hi1...ik is defined as the Hamiltonian H̃HC but with the subsys-
tem fermion parity lines enumerated as j (according to our
definition of enumeration) in the second term given a phase
(−1) when j ∈ {i1, . . . , ik}. The untwisted Hamiltonian H0 is
the same as the Hamiltonian H̃HC in Eq. (A5) without any
defects inserted. In total, there are 2Lx2 ...Lxd isomorphic copies
of the Hilbert space H0 in the total Hilbert space H. The rest
of the analysis is a straightforward extension of the one we
performed for the Majorana plaquette model in the previous
subsection with i taking values in {1, . . . , Lx2 . . . Lxd }. After
the projections Eq. (A11), we obtain the total Hamiltonian
Eq. (A21) with the new Pauli X and Z operators similar as
in Eqs. (A12) and (A13),

HHC = −
∑

i1 �=Lx1 ,i2,...,id

∏
j2,..., jd

Zi1,i2+ j2,...,id + jd Zi1+1,i2+ j2,...,id + jd − λ
∑

i1,...,id

Xi1,...,id . (A22)

This is the Hamiltonian for hypercubic Ising model.

APPENDIX B: KT TRANSFORMATION AS TST

In this Appendix, we look at an alternate way of writing
down the KT transformation.

1. One dimension

We consider a ring with 2M sites. Let us consider the
operator

KT ≡ T DevenDoddT . (B1)

After simplifying Eq. (B1), KT can be written explicitly as

KT = DevenDodd, (B2)

where

Deven ≡
(

M−1∏
k=1

ei π
4 Z2k−1X2kZ2k+1 ei π

4 Z2kZ2k+2

)

× ei π
4 Z2M−1X2M Z1

(1 + ηeven )

2
, (B3a)

Dodd ≡
(

M−1∏
k=1

ei π
4 Z2k−2X2k−1Z2k ei π

4 Z2k−1Z2k+1

)

× ei π
4 Z2M−2X2M−1Z2M

(1 + ηodd )

2
. (B3b)

Note that the pattern in the product of operators in Eq. (B3)
takes an interesting form; alternating terms of the form ZXZ
and ZZ in the exponents. In fact, this pattern gives rise to the
desired Kennedy-Tasaki transformation. Explicitly, the action
of our KT transformation is given by

KTXi = Xi+1KT, (B4a)

KTZi−1XiZi+1 = ZiZi+2KT. (B4b)

Hence, KT maps the cluster Hamiltonian to two (decou-
pled) copies of Ising models in the two sublattices. On a single
Z operator, the action of KT is given by

KTZ2i+1 = Z2MY1

i∏
k=1

X2k+1Z2i+2KT
′
, (B5a)

KTZ2i = Z1Y2

i∏
k=2

X2kZ2i+1KT
′′
, (B5b)

where KT
′
and KT

′′
are defined as

KT
′ ≡ T DevenD′

oddT, (B6a)

KT
′′ ≡ T D′

evenDoddT, (B6b)

with

D′
odd ≡

(
M−1∏
k=1

ei π
4 X2k−1 ei π

4 Z2k−1Z2k+1

)
ei π

4 X2M−1
(1 − ηodd )

2
,

(B7a)

D′
even ≡

(
N−1∏
k=1

ei π
4 X2k ei π

4 Z2kZ2k+2

)
ei π

4 X2M
(1 − ηeven)

2
. (B7b)

Similarly,

KT
†
Z2i = −Z2i−1

M−1∏
k=i

X2kY2MZ1(KT
′′
)†, (B8a)

KT
†
Z2i+1 = −Z2i

M−2∏
k=i

X2k+1Y2M−1Z2M (KT
′
)†. (B8b)

Composition of KT with itself gives

KT
2 = eiπMT2

(1 + ηeven )

2

(1 + ηodd )

2
, (B9)
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FIG. 7. KT
(2)

transformation acting on a single Z operator at the
red site is given by a membrane operator according to Eq. (B12).

where T2 is a translation by two lattice sites. The projection
factor implies that KT is noninvertible.

2. Two dimensions

We generalize the T ST version of KT transformation to
two dimensions:

KT
(2) ≡ T (2)D(2)

r D(2)
b T (2). (B10)

Explicitly KT
(2)

transformation is given by

KT
(2)

X r
i, j = X b

i+ 1
2 , j+ 1

2
KT

(2)
, (B11a)

KT
(2)

X b
i+ 1

2 , j+ 1
2
Zr

i, jZ
r
i+1, jZ

r
i, j+1Zr

i+1, j+1

= Zb
i+ 1

2 , j+ 1
2
Zb

i+1+ 1
2 , j+ 1

2
Zb

i+ 1
2 , j+1+ 1

2
Zb

i+1+ 1
2 , j+1+ 1

2
KT

(2)
,

(B11b)

and similar equations for r ↔ b. Hence, KT
(2)

maps Z2 × Z2

cluster SSPT Hamiltonian Eq. (49) to two copies of the pla-
quette Ising model, which is in the SSSB phase. KT

(2)
also

maps the Z2 SSPT Hamiltonian Eq. (80) to a single copy of
double plaquette-Ising model Hamiltonian in Eq. (71) that is
in the SSSB phase.

Action of KT
(2)

on a single Z operator is (see Fig. 7)

KT
(2)

Zr
i, j = (−i)Zr

i,1Zr
i+1,1Zb

1
2 , j+ 1

2
Zb

i+ 1
2 , j+ 1

2
Zb

1
2 , 1

2
Zb

i+ 1
2 , 1

2

× Y r
1,1

j∏
k=2

X r
k,1

j∏
m=2

(
Y r

1,m

i∏
l=2

X r
l,k

)
KT

(2)′
, (B12)

where

KT
(2)′ ≡ T (2)D(2)′

r D(2)
b T (2), (B13)

with

D(2)′
r ≡ P̃(2)′

r D̃xH⊗(2)
r D̃yP̃(2)

r , (B14)

and

P̃(2)′
r ≡

j∏
l=1

(
1 − ηx

l

)
2

Ly∏
l= j+1

(
1 + ηx

l

)
2

×
∏

k �=1,i,i+1

(
1 + η

y
k

)
2

(
1 − η

y
i

)
2

×
(
1 − η

y
i+1

)
2

(
1 + (−1) jη

y
1

)
2

, (B15a)

P̃(2)
r ≡

∏
l �= j

(
1 + ηx

l

)
2

∏
k �=i

(
1 + η

y
k

)
2

(
1 − ηx

j

)
2

(
1 − η

y
i

)
2

,

(B15b)

and similar equation for r ↔ b.
Furthermore, our mapping of the Pauli X operator is shifted

diagonally to the other sublattice. We also find the composi-
tion of two KT

(2)
transformations gives

(KT
(2)

)2 ∝ T(1,1),rT(1,1),bP(2)
r P(2)

b , (B16)

where T(1,1),r and T(1,1),b are diagonal translations on the
red and blue sublattices, respectively. P(2)

r and P(2)
b are the

respective projections onto the Hilbert spaces of the red and
blue sublattices, which are separately subsystem symmetric.

3. Higher dimensions

Explicitly T ST version of KT transformation is

KT
(d )

Xvr = XvbKT
(d )

, (B17a)

KT
(d )

Xvb

∏
vr∈∂cr

Zvr =
∏

vb∈∂cb

ZvbKT
(d )

, (B17b)

where the terms in the left- and right-hand sides are related
by diagonal translation by half unit. By r ↔ b we get another

similar set of equations. Composition of two KT
(d )

transfor-
mations is

(KT
(d )

)2∝ T(1,...,1),rT(1,...,1),bP(d )
r P(d )

b , (B18)

where T(1,...,1),r and T(1,...,1),b are diagonal translations on the
red and blue sublattices. P(d )

r and P(d )
b are projections onto

subsystem symmetric subspace of the Hilbert spaces of red
and blue sublattices.

APPENDIX C: ZN GENERALIZATION OF HYPERCUBIC
ISING MODELS

1. ZN plaquette transverse field clock model

As before, we consider a 2D square lattice with Lx sites
in the x direction and Ly sites in the y direction with the
periodic boundary condition. The Hamiltonian for the ZN

generalization to the plaquette clock model, which we call the
transverse-field plaquette clock model, is

HT FPC = −
∑
i, j

(Zi, jZ
†
i+1, jZ

†
i, j+1Zi+1, j+1 + H.c.

+ λ(Xi, j + X †
i, j )). (C1)
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This model has ZN subsystem symmetry along horizontal
rows and vertical columns. Let us denote them by

ηx
j ≡

∏
i

Xi, j, η
y
i ≡

∏
j

Xi, j . (C2)

They satisfy (ηx
j )

N = 1 and (ηy
i )N = 1. At λ = 1, there is

an extra symmetry that exchanges the clock term and the
transverse-field term. We give an explicit expression for this
symmetry operator as a generalization of Eq. (33). Let us
define

D̃(N ),x ≡
Ly∏

j=1

D̃x
(N ), j, D̃(N ),y ≡

Lx∏
j=1

D̃y
(N ), j, (C3)

where D̃x
(N ), j represent the operator D̃(N ) for a fixed horizontal

row. Similarly D̃y
(N ), j represent the operator D̃(N ) for a fixed

vertical column. We define the following operator, a quantum
Fourier transform that is a generalization of the Hadamard
gate to qudit d.o.f.,

H(N ) ≡ 1√
N

N−1∑
x=0

N−1∑
y=0

e
2π ixy

N |x〉 〈y| . (C4)

This operator implements the following relation:

H(N )Z = X †H(N ), H(N )X = ZH(N ). (C5)

Note that the operator H(N ) for N = 2 is the same as the
Hadamard transformation. We define the operator

D̃(2)
(N ) ≡ D̃(N ),xH⊗(2)

(N ) D̃(N ),y,

P(2)
(N ) ≡

Ly∏
j=1

(
1 + ηx

j + (
ηx

j

)2 + · · · + (
ηx

j

)N−1)
N

×
Lx∏

i=1

(
1 + η

y
i + (

η
y
i

)2 + · · · + (
η

y
i

)N−1)
N

, (C6)

where H⊗(2)
(N ) represent the tensor product of H(N ) on all sites

of the two-dimensional lattice. The noninvertible KW duality
operator we define is D(2)

(N ) = P(2)
(N )D̃

(2)
(N )P

(2)
(N ). The following

relations are satisfied by D(2)
(N ):

D(2)
(N )Xi, j = Z†

i, jZi+1, jZi, j+1Z†
i+1, j+1D(2)

(N ), (C7a)

D(2)
(N )Z

†
i, jZi+1, jZi, j+1Z†

i+1, j+1 = X †
i+1, j+1D(2)

(N ). (C7b)

The operator D(2)
(N ) commutes with the Hamiltonian at λ=1.

We also have (D(2)
(N ) )

2∝ CT(1,1)P
(2)
(N ) where T(1,1) is the diag-

onal translation operator which send (i, j) to (i + 1, j + 1)
and C is the conjugation operator with action CX = X †C and
CZ = Z†C.

2. Higher-dimensional hypercubic clock models

We generalize the discussion for the hypercubic clock
model with a transverse field to all spatial dimensions. The
Hamiltonian for the transverse field hypercubic clock model

is given by

HTFHCC = −
∑
c∈�c

(∏
v∈∂c

Zv + H.c.

)
− λ

∑
v∈�v

(Xv + X †
v ).

(C8)

The noninvertible symmetry operator (at λ = 1) is generalized
as

D(d )
(N ) ≡ P(d )

(N )D̃(N ),d H⊗(d )
(N ) D̃(N ),d−1H⊗(d )

(N ) . . . D̃(N ),1P(d )
(N ), (C9)

where each of the D̃(N ),i are string operators like Eq. (2) on
straight line along ith direction, H⊗(d )

(N ) represent the tensor
product of H(N ) on all sites of the d-dimensional lattice and
P(d )

(N ) is a projection onto subsystem straight line like sym-

metries. The operator D(d )
(N ) commutes with the Hamiltonian

at λ = 1. Up to an overall normalization for D(d )
(N ), acting the

operator twice will generate a diagonal unit shift and a con-
jugation in d dimensions, i.e, (D(d )

(N ) )
2∝ CT(1,...,1)P

(d )
(N ) where

T(1,...,1) is a diagonal translation on the hypercube and C is a
conjugation.

APPENDIX D: ZN GENERALIZATION
OF KT TRANSFORMATION

1. One dimension

Let us consider the ZN × ZN SPTs in one dimension.
According to the classification of SPTs in Ref. [5], we have
H2(ZN × ZN ,U (1)) = ZN . Hence, there are nontrivial ZN ×
ZN SPTs in one dimension. Let us consider the following
nontrivial SPT Hamiltonian on a ring with 2L sites [58],

Hl,N
1DSPT = −

L∑
i=1

((Z†
2i−2)lX2i−1Zl

2i

+ Zl
2i−1X2i(Z

†
2i+1)l + H.c.). (D1)

This Hamiltonian has ZN × ZN symmetry generated by η1 =∏L
i=1 X2i−1 and η2 = ∏L

i=1 X2i. This Hamiltonian can be ob-
tained from the trivial Hamiltonian

Htriv = −
2L∑
i=1

(Xi + X †
i ), (D2)

using ZN cluster entangler. To define the ZN cluster entangler,
first, we define the generalization of the controlled-Z gate to
qudits.

CZk
c,t ≡

N−1∑
n=0

|n〉c 〈n| ⊗ Zkn
t , CZ†

c,t ≡ CZN−1
c,t . (D3)

Then the cluster entangler is defined as

T ≡
L∏

i=1

CZ2i,2i−1CZ†
2i,2i+1, T N = 1. (D4)

Note that Hl,N
1DSPT is obtained from Htriv using lth power of

cluster entangler T . Now we define KTl,N that maps ZN × ZN

SPT to two copies of clock models,

KTl,N ≡ (T †)lD(N ),oddD(N ),even(T †)l , (D5)

where D(N ),odd and D(N ),even represent the KW duality op-
erator D(N ) on odd and even sites. It satisfies the following
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FIG. 8. It can be regarded as a square lattice where each site
contains a red qubit and a blue qubit.

properties:

KTl,N Zl
2i−1X2i(Z

†
2i+1)l = Z2iZ

†
2i+2KTl,N , (D6a)

KTl,N (Z†
2i )

lX2i+1Zl
2i+2 = Z2i+1Z†

2i+3KTl,N . (D6b)

Hence, KTl,N maps a nontrivial ZN × ZN SPT to two
copies of ZN SSB phases.

2. Two and higher dimensions

In two dimensions SSPT phases protected by symmetry Gs

are classified by Ref. [9]:

C[Gs] ≡ H2(G2
s ,U (1)

)/
(H2(Gs,U (1)))3. (D7)

In our case, Gs = ZN × ZN and the SSPT classification gives
C[ZN × ZN ] = ZN × ZN × ZN . To enumerate various SSPT
phases, we consider two square lattices with the color red and
blue as in Fig. 4(a). The generators for the three ZN factors are
(1) ZN × ZN SSPT with cluster entangler between adjacent
red and blue sites, (2) ZN SSPT (generalization of Z2 SSPT
we considered in two dimensions in Sec. VI) on red lattice,
and (3) ZN SSPT on blue lattice. It should be straightforward
to generalize the KT transformation to each of the three gen-
erators of the SSPT phase resulting in (1) two copies of the
plaquette clock model, (2) one copy of the double-plaquette
clock model, and (3) one copy of the double-plaquette clock
model, respectively.

APPENDIX E: THE Z2 SSPT

On a 2D square lattice, where each site contains two qubits,
one can define the Z2 × Z2 SSPT for subsystem symmetries.
The SSPT state is equivalent to the 2D cluster state given by
the Hamiltonian

H2D cluster =−
∑
vr

Xvr

∏
vb∈∂ pb

Zvb −
∑
vb

Xvb

∏
vr∈∂ pr

Zvr

− λ
∑
vr

Xvr − λ
∑
vb

Xvb, (E1)

whereas each site now contains a blue (b) qubit and to its
bottom left, a red (r) qubit, as illustrated in Fig. 8.

After inserting the symmetry-breaking terms, the Hamilto-
nian becomes

H2D cluster = −
∑
vr

Xvr

∏
vb∈∂ pb

Zvb −
∑
vb

Xvb

∏
vr∈∂ pr

Zvr

− λ
∑
vr

Xvr − λ
∑
vb

Xvb − g
∑
vr

Zvb

Zvr
.

(E2)

Tuning g → ∞, the local Hilbert space of each site effectively
reduces to two-dimensional in the low-energy sector, since

Zvb

Zvr
≡ 1. (E3)

One can therefore map this reduced local Hilbert space into a
one-qubit Hilbert space, i.e.,

Zvb, Zvr → Zv,
Xvb

Xvr
→ Xv. (E4)

Under the perturbation theory, it can be shown that the low-
energy effective Hamiltonian under the map becomes (after a
re-scaling of energy)

H = 1

2

∑ Z Z
Z X Z
Z Z

− λ
∑ Z Z

Z Z
− λ2

2

∑
X. (E5)

For small λ, this model is in a Z2 SSPT order for the horizon-
tal and vertical subsystem symmetries.

In particular, when λ = 0, we directly show here that the
β(g) phase defined in Ref. [9] is nontrivial. For an SSPT state,
because of its short-ranged entangled nature, the truncated
symmetry operator U j0, j1

i0,i1
≡ ∏i1, j1

i=i0, j= j0
Xi, j only affects locally

on the corners,

U j0, j1
i0,i1

Vi0, j0Vi1, j0Vi0, j1Vi1, j1 |ψ〉 = |ψ〉 , (E6)

where operator Vi, j is supported only locally around (i, j). It
can be easily shown that the operator

Vi, j = Zi−1, j−1Zi, j . (E7)

The characterizing phase for a nontrivial SSPT states is

βi, j ≡ 〈ψ | S†
i V †

i, jSiVi, j |ψ〉 = −1, (E8)

where Si ≡ ∏
i′�i

∏
j Xi′ , j is the symmetry action on a half-

plane. Therefore, the ground state when λ = 0 is a strong
SSPT protected by a linearly symmetric local unitary (LSLU).
We note that a similar calculation can be performed for the 3D
Z2 SSPT model.

APPENDIX F: MEASUREMENT-BASED
GAUGING METHOD

In this Appendix, we provide a measurement-based method
to gauge the symmetries of various models that we consider
in the main text in Secs. III and VI.

1. Plaquette Ising model

The plaquette Ising model has both horizontal and vertical
subsystem symmetries. To gauge these subsystem symme-
tries, we introduce an ancilla d.o.f. in |+〉 state at each center
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FIG. 9. Cluster entanglement pattern for the KW duality map
that maps between two plaquette Ising models. The blue lattice is
the original lattice, and the red lattice is the ancilla lattice.

of a plaquette p ∈ �p (a vertex of the dual lattice). This d.o.f.
is entangled to the vertices (v ∈ �v) of the corresponding
plaquette via controlled-Z gate as shown in Fig. 9. Then,
we measure away the vertex d.o.f. in the Pauli X basis with
the measurement outcome being all |+〉 state. Explicitly, this
procedure can be written as an operator:

KW = 〈+|⊗�v

∏
p

∏
v∈∂ p

CZp,v |+〉⊗�p . (F1)

Then, KW satisfies

KWXv =
∏

p,v∈∂ p

ZpKW, (F2)

KW
∏
v∈∂ p

Zv = XpKW, (F3)

mapping between the plaquette Ising models on the original
and dual lattices. This allows a short-depth implementation
of the KW transformation and can be easily generalized to
higher dimensions. When measurement outcomes do not ap-
pear as the product state |+〉, one can perform feedforward
corrections to clean up nontrivial effects on the output wave
function caused by them. Such a mechanism was explained
in Refs. [49,59] for gauging 0-form symmetries, and will be
explained in Ref. [60] for more general spin models.

2. Double plaquette Ising model

In addition to the horizontal and vertical symmetries, the
double plaquette Ising model also has a diagonal symmetry.
To implement the self-dual transformation of the double pla-
quette Ising model, we introduce another copy of the square
lattice on top of the original lattice which we call the ancilla
lattice. Let us denote the superimposed vertices on the two
lattices by v and v(a), where the superscript (a) denotes the
lattice on which the ancilla d.o.f. is initialized in the |+〉 state.
A particular v(a) is entangled via controlled-Z gate to adjacent
vertices on the original lattice as shown in Fig. 10. Let us
denote the set of neighboring vertices (including diagonal but
not off-diagonal) of an ancilla vertex v(a) by Neigh(v(a) ) and
the set of neighboring ancilla vertices (including diagonal but
not off-diagonal) of a vertex v by Neigh(v). Then, we measure
away the vertex d.o.f. in the original lattice in the Pauli X basis
with measurement outcome being all |+〉 state. Explicitly, this
procedure is given by

KW = 〈+|⊗�v

∏
v(a)

∏
v∈Neigh(v(a) )

CZv(a),v |+〉⊗�
v(a) . (F4)

FIG. 10. Cluster entanglement pattern for the KW duality map
that maps between two double-plaquette Ising models. The blue
lattice is the original lattice, and the red lattice is the ancilla lattice.

KW satisfies

KWXv =
∏

v(a)∈Neigh(v)

Zv(a) KW, (F5)

KW
∏

v∈Neigh(v(a) )

Zv = Xv(a) KW (F6)

mapping between the double plaquette Ising models on the
original and ancilla lattices. This allows us to perform the
KW duality and can be generalized to higher dimensions.
Similar to the discussion in the plaquette Ising model, when
measurement outcomes do not appear as the product state |+〉,
one can perform the feedforward corrections to clean up the
nontrivial effect on the output wave function caused by them
[60].

3. Implementing the KT transformation

We have seen in the previous subsections how to imple-
ment the KW transformations. Equipped with this, we can
then use the duality web to perform the KT transformation as
well by composing, e.g., T ST , where T can be implemented
by the cluster-state entangling operation (and S is the KW
operation).

APPENDIX G: MAPPING OF ORDER PARAMETERS

Order parameters of nontrivial phases get mapped under
the KT transformations. Let Bk be a product of Z operators in
the models we have considered in this work exhibiting SSSB
phases, such as the plaquette Ising term, the double plaquette
Ising term, etc. Let Kk be the stabilizer of the corresponding
SSPT cluster states. In SSSB phases, as a generalization of
the two-point function 〈ZjZ j+	〉 in the 1D Ising model, a long-
range entanglement can be detected by the order parameter〈 ∏

k∈M
Bk

〉
, (G1)

where M is a segment consisting of cells (hypercubes) along
a line where the subsystem symmetries are supported. An
example in the 2D plaquette Ising model is the product of
Bk = Zi, jZi+1, jZi+1, jZi+1, j+1 along a 1D segment (a thin strip
consisting of plaquettes), which becomes a product of four
Pauli Z’s at the corners of the strip: 〈Zi, jZi+	, jZi+	, j+1Zi, j+1〉.
Upon the KT transformation, the corresponding SSPT string
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order parameter is written as〈 ∏
k∈M

Kk

〉
, (G2)

where the segment M is filled with X operators in ad-
dition to the Z operators at the corners. For the 2D
plaquette Ising model, an example of the string or-
der parameter obtained by the KT operator (50) is
〈Zi, jZi, j+1Xi+ 1

2 , j+ 1
2
· · · Xi+	− 1

2 , j+ 1
2
Zi+	, jZi+	, j+1〉.

[1] Z.-C. Gu and X.-G. Wen, Tensor-entanglement-filtering renor-
malization approach and symmetry-protected topological order,
Phys. Rev. B 80, 155131 (2009).

[2] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, En-
tanglement spectrum of a topological phase in one dimension,
Phys. Rev. B 81, 064439 (2010).

[3] F. D. M. Haldane, Nonlinear field theory of large-spin Heisen-
berg antiferromagnets: Semiclassically quantized solitons of the
one-dimensional easy-axis Néel state, Phys. Rev. Lett. 50, 1153
(1983).

[4] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Symmetry pro-
tected topological orders and the group cohomology of their
symmetry group, Phys. Rev. B 87, 155114 (2013).

[5] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Symmetry-
protected topological orders in interacting bosonic systems,
Science 338, 1604 (2012).

[6] Z.-C. Gu and X.-G. Wen, Symmetry-protected topological
orders for interacting fermions: Fermionic topological nonlin-
ear σ models and a special group supercohomology theory,
Phys. Rev. B 90, 115141 (2014).

[7] A. Kapustin, Symmetry protected topological phases,
anomalies, and cobordisms: Beyond group cohomology,
arXiv:1403.1467.

[8] Y. You, T. Devakul, F. J. Burnell, and S. L. Sondhi, Subsystem
symmetry protected topological order, Phys. Rev. B 98, 035112
(2018).

[9] T. Devakul, D. J. Williamson, and Y. You, Classification of
subsystem symmetry-protected topological phases, Phys. Rev.
B 98, 235121 (2018).

[10] R. Raussendorf, C. Okay, D.-S. Wang, D. T. Stephen, and H. P.
Nautrup, Computationally universal phase of quantum matter,
Phys. Rev. Lett. 122, 090501 (2019).

[11] B. M. McCoy and T. T. Wu, The Two-Dimensional Ising Model
(Harvard University Press, Cambridge, MA, 1973).

[12] B. M. McCoy, Advanced Statistical Mechanics (Oxford Univer-
sity Press, Oxford, UK, 2009), Vol. 146.

[13] H. A. Kramers and G. H. Wannier, Statistics of the two-
dimensional ferromagnet. Part I, Phys. Rev. 60, 252 (1941).

[14] L. Onsager, Crystal statistics. I. A two-dimensional model with
an order-disorder transition, Phys. Rev. 65, 117 (1944).

[15] B. Kaufman, Crystal statistics. II. Partition function evaluated
by spinor analysis, Phys. Rev. 76, 1232 (1949).

[16] J. B. Kogut, An introduction to lattice gauge theory and spin
systems, Rev. Mod. Phys. 51, 659 (1979).

[17] W. W. Ho and T. H. Hsieh, Efficient variational simulation of
nontrivial quantum states, SciPost Phys. 6, 029 (2019).

[18] N. Seiberg and S.-H. Shao, Majorana chain and Ising model—
(non-invertible) translations, anomalies, and emanant symme-
tries, SciPost Phys. 16, 064 (2024).

[19] X. Chen, A. Dua, M. Hermele, D. T. Stephen, N. Tanti-
vasadakarn, R. Vanhove, and J.-Y. Zhao, Sequential quantum

circuits as maps between gapped phases, Phys. Rev. B 109,
075116 (2024).

[20] C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang, and X. Yin,
Topological defect lines and renormalization group flows in two
dimensions, J. High Energy Phys. 01 (2019) 026.

[21] J. Fröhlich, J. Fuchs, I. Runkel, and C. Schweigert, Kramers-
Wannier duality from conformal defects, Phys. Rev. Lett. 93,
070601 (2004).

[22] J. Fröhlich, J. Fuchs, I. Runkel, and C. Schweigert, Duality and
defects in rational conformal field theory, Nucl. Phys. B 763,
354 (2007).

[23] G. Schutz, “Duality twisted” boundary conditions in n-state
Potts models, J. Phys. A: Math. Gen. 26, 4555 (1993).

[24] T. Kennedy and H. Tasaki, Hidden symmetry breaking and the
haldane phase in s = 1 quantum spin chains, Commun. Math.
Phys. 147, 431 (1992).

[25] T. Kennedy and H. Tasaki, Hidden Z2 × Z2 symmetry breaking
in haldane-gap antiferromagnets, Phys. Rev. B 45, 304 (1992).

[26] M. Oshikawa, Hidden Z2
∗Z2 symmetry in quantum spin chains

with arbitrary integer spin, J. Phys.: Condens. Matter 4, 7469
(1992).

[27] L. Li, M. Oshikawa, and Y. Zheng, Noninvertible duality
transformation between symmetry-protected topological and
spontaneous symmetry breaking phases, Phys. Rev. B 108,
214429 (2023).

[28] L. Bhardwaj, L. E. Bottini, D. Pajer, and S. Schafer-Nameki,
The club sandwich: Gapless phases and phase transitions with
non-invertible symmetries, arXiv:2312.17322.

[29] T. Rakovszky and V. Khemani, The physics of (good) LDPC
codes I. Gauging and dualities, arXiv:2310.16032.

[30] R. Raussendorf and H. J. Briegel, A one-way quantum com-
puter, Phys. Rev. Lett. 86, 5188 (2001).

[31] R. Raussendorf, D. E. Browne, and H. J. Briegel, Measurement-
based quantum computation on cluster states, Phys. Rev. A 68,
022312 (2003).

[32] A. C. Doherty and S. D. Bartlett, Identifying phases of quantum
many-body systems that are universal for quantum computa-
tion, Phys. Rev. Lett. 103, 020506 (2009).

[33] W. Cao, M. Yamazaki, and Y. Zheng, Boson-fermion duality
with subsystem symmetry, Phys. Rev. B 106, 075150 (2022).

[34] D. Gross, V. Nesme, H. Vogts, and R. F. Werner, Index the-
ory of one dimensional quantum walks and cellular automata,
Commun. Math. Phys. 310, 419 (2012).

[35] J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,
Renormalization, vortices, and symmetry-breaking perturba-
tions in the two-dimensional planar model, Phys. Rev. B 16,
1217 (1977).

[36] G. Ortiz, E. Cobanera, and Z. Nussinov, Dualities and the phase
diagram of the p-clock model, Nucl. Phys. B 854, 780 (2012).

[37] J. Chen, H.-J. Liao, H.-D. Xie, X.-J. Han, R.-Z. Huang, S.
Cheng, Z.-C. Wei, Z.-Y. Xie, and T. Xiang, Phase transition

245129-21

https://doi.org/10.1103/PhysRevB.80.155131
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevLett.50.1153
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1126/science.1227224
https://doi.org/10.1103/PhysRevB.90.115141
https://arxiv.org/abs/1403.1467
https://doi.org/10.1103/PhysRevB.98.035112
https://doi.org/10.1103/PhysRevB.98.235121
https://doi.org/10.1103/PhysRevLett.122.090501
https://doi.org/10.1103/PhysRev.60.252
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1103/PhysRev.76.1232
https://doi.org/10.1103/RevModPhys.51.659
https://doi.org/10.21468/SciPostPhys.6.3.029
https://doi.org/10.21468/SciPostPhys.16.3.064
https://doi.org/10.1103/PhysRevB.109.075116
https://doi.org/10.1007/JHEP01(2019)026
https://doi.org/10.1103/PhysRevLett.93.070601
https://doi.org/10.1016/j.nuclphysb.2006.11.017
https://doi.org/10.1088/0305-4470/26/18/021
https://doi.org/10.1007/BF02097239
https://doi.org/10.1103/PhysRevB.45.304
https://doi.org/10.1088/0953-8984/4/36/019
https://doi.org/10.1103/PhysRevB.108.214429
https://arxiv.org/abs/2312.17322
https://arxiv.org/abs/2310.16032
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevA.68.022312
https://doi.org/10.1103/PhysRevLett.103.020506
https://doi.org/10.1103/PhysRevB.106.075150
https://doi.org/10.1007/s00220-012-1423-1
https://doi.org/10.1103/PhysRevB.16.1217
https://doi.org/10.1016/j.nuclphysb.2011.09.012


PARAYIL MANA, LI, SUKENO, AND WEI PHYSICAL REVIEW B 109, 245129 (2024)

of the q-state clock model: Duality and tensor renormalization,
Chin. Phys. Lett. 34, 050503 (2017).

[38] V. A. Fateev and A. B. Zamolodchikov, Parafermionic currents
in the two-dimensional conformal quantum field theory and
selfdual critical points in Z(n) invariant statistical systems, Zh.
Eksp. Teor. Fiz. 89, 380 (1985) [Sov. Phys. JETP 62, 215
(1985)].

[39] V. Fateev and A. B. Zamolodchikov, Integrable perturbations of
ZN parafermion models and the O(3) sigma model, Phys. Lett.
B 271, 91 (1991).

[40] W. Li, S. Yang, H.-H. Tu, and M. Cheng, Criticality in
translation-invariant parafermion chains, Phys. Rev. B 91,
115133 (2015).

[41] Z.-Q. Li, L.-P. Yang, Z. Y. Xie, H.-H. Tu, H.-J. Liao, and T.
Xiang, Critical properties of the two-dimensional q-state clock
model, Phys. Rev. E 101, 060105(R) (2020).

[42] W. Cao, L. Li, M. Yamazaki, and Y. Zheng, Subsystem non-
invertible symmetry operators and defects, SciPost Phys. 15,
155 (2023).

[43] M. Levin and Z.-C. Gu, Braiding statistics approach to
symmetry-protected topological phases, Phys. Rev. B 86,
115109 (2012).

[44] B. Yoshida, Topological phases with generalized global sym-
metries, Phys. Rev. B 93, 155131 (2016).

[45] B. Yoshida, Gapped boundaries, group cohomology and fault-
tolerant logical gates, Ann. Phys. 377, 387 (2017).

[46] A. Kubica and B. Yoshida, Ungauging quantum error-correcting
codes, arXiv:1805.01836.

[47] N. Tantivasadakarn and S. Vijay, Searching for fracton orders
via symmetry defect condensation, Phys. Rev. B 101, 165143
(2020).

[48] L. Piroli, G. Styliaris, and J. I. Cirac, Quantum circuits assisted
by local operations and classical communication: Transforma-
tions and phases of matter, Phys. Rev. Lett. 127, 220503 (2021).

[49] N. Tantivasadakarn, R. Thorngren, A. Vishwanath, and R.
Verresen, Long-range entanglement from measuring symmetry-
protected topological phases, Phys. Rev. X 14, 021040 (2024).

[50] T.-C. Lu, L. A. Lessa, I. H. Kim, and T. H. Hsieh, Measure-
ment as a shortcut to long-range entangled quantum matter,
PRX Quantum 3, 040337 (2022).

[51] M. Iqbal, N. Tantivasadakarn, T. M. Gatterman, J. A. Gerber,
K. Gilmore, D. Gresh, A. Hankin, N. Hewitt, C. V. Horst,
M. Matheny et al., Topological order from measurements
and feed-forward on a trapped ion quantum computer,
arXiv:2302.01917.

[52] S. Roberts, B. Yoshida, A. Kubica, and S. D. Bartlett,
Symmetry-protected topological order at nonzero temperature,
Phys. Rev. A 96, 022306 (2017).

[53] R. Raussendorf, S. Bravyi, and J. Harrington, Long-range quan-
tum entanglement in noisy cluster states, Phys. Rev. A 71,
062313 (2005).

[54] S. Seifnashri and S.-H. Shao, Cluster state as a non-invertible
symmetry protected topological phase, arXiv:2404.01369.

[55] N. Seiberg, S. Seifnashri, and S.-H. Shao, Non-invertible sym-
metries and LSM-type constraints on a tensor product Hilbert
space, SciPost Phys. 16, 154 (2024).

[56] X.-G. Wen, Quantum orders in an exact soluble model,
Phys. Rev. Lett. 90, 016803 (2003).

[57] N. Tantivasadakarn, Jordan-Wigner dualities for translation-
invariant Hamiltonians in any dimension: Emergent fermions
in fracton topological order, Phys. Rev. Res. 2, 023353
(2020).

[58] L. Tsui, Y.-T. Huang, H.-C. Jiang, and D.-H. Lee, The phase
transitions between Zn×Zn bosonic topological phases in
1+1D, and a constraint on the central charge for the critical
points between bosonic symmetry protected topological phases,
Nucl. Phys. B 919, 470 (2017).

[59] Y. Li, H. Sukeno, A. P. Mana, H. P. Nautrup, and T.-C. Wei,
Symmetry-enriched topological order from partially gauging
symmetry-protected topologically ordered states assisted by
measurements, Phys. Rev. B 108, 115144 (2023).

[60] T. Okuda, A. Parayil Mana, and H. Sukeno, Anomaly inflow for
CSS and fractonic lattice models and dualities via cluster state
measurement, arXiv:2405.15853.

245129-22

https://doi.org/10.1088/0256-307X/34/5/050503
https://doi.org/10.1016/0370-2693(91)91283-2
https://doi.org/10.1103/PhysRevB.91.115133
https://doi.org/10.1103/PhysRevE.101.060105
https://doi.org/10.21468/SciPostPhys.15.4.155
https://doi.org/10.1103/PhysRevB.86.115109
https://doi.org/10.1103/PhysRevB.93.155131
https://doi.org/10.1016/j.aop.2016.12.014
https://arxiv.org/abs/1805.01836
https://doi.org/10.1103/PhysRevB.101.165143
https://doi.org/10.1103/PhysRevLett.127.220503
https://doi.org/10.1103/PhysRevX.14.021040
https://doi.org/10.1103/PRXQuantum.3.040337
https://arxiv.org/abs/2302.01917
https://doi.org/10.1103/PhysRevA.96.022306
https://doi.org/10.1103/PhysRevA.71.062313
https://arxiv.org/abs/2404.01369
https://doi.org/10.21468/SciPostPhys.16.6.154
https://doi.org/10.1103/PhysRevLett.90.016803
https://doi.org/10.1103/PhysRevResearch.2.023353
https://doi.org/10.1016/j.nuclphysb.2017.03.021
https://doi.org/10.1103/PhysRevB.108.115144
https://arxiv.org/abs/2405.15853

