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Moore-Read state in half-filled moiré Chern band from three-body pseudopotential
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The moiré system provides a tunable platform for exploring exotic phases of materials. This article shows the
possible realization of a non-Abelian state characterized by the Moore-Read wavefunction in a half-filled moiré
Chern band, exemplified by twisted MoTe2. This is achieved by introducing short-range repulsive three-body
interaction. Exact diagonalization is employed to examine the spectrum in finite size. The incompressibility of the
system, the degeneracy of the ground states, and the number of low-energy states provide compelling evidence
to identify the ground state as the Moore-Read state. We further interpolate between the three-body interaction
and Coulomb interaction to show a phase transition between the composite Fermi-liquid and the Moore-Read
state. Finally, we explore the conditions under which the three-body pseudopotential from band mixing effects
mimic short-range repulsive three-body interaction. We provide insights toward realizing non-Abelian phases of
matter in the moiré system.
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I. INTRODUCTION

The fractional quantum Hall effect (FQHE) has at-
tracted widespread interest over the past few decades. A
series of Abelian FQHE states have been observed exper-
imentally when the Landau level is occupied at specific
fillings ν = p

2sp+1 s, p ∈ Z. Meanwhile, non-Abelian states
have been proposed theoretically to be the ground state of
the strong Coulomb interaction at even-denominator fillings
[1–6], which hold significant practical potential for realizing
topological quantum computations [7–9]. One well-studied
non-Abelian quantum Hall state is the Moore-Read Pfaf-
fian state [1], which is formed by p + ip wave pairing of
the composite fermions. While physicists have explored the
Moore-Read state for many years and believed that the ground
state of 5/2 filling of Landau level stays in the same universal
class as the Moore-Read Pfaffian state [10–14], mysteries and
questions still regarding realization of the state remain. The
Moore-Read state is not particle-hole symmetric which means
it cannot be the ground state of the Coulomb interaction with
particle-hole symmetry. Physicists have tried various methods
to overcome this issue, including the spontaneous particle-
hole symmetry breaking and band mixing in quantum hall
system (QHS) [15–19], though the nature of the state is still
under debate [20]. A more realistic question is if one can go
beyond the QHS to realize such a state in other 2D platforms.
Advancements in 2D materials result in hallmarks of realizing
non-Abelian states, with incompressible states observed at
even-denominator filling in graphene systems [21–23].

Recently, the discovery of the fractional quantum anoma-
lous Hall effect (FQAH) in the twisted bilayer of transition
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metal dichalcogenides (TMDs) [24] and pentalayer rhom-
bohedral stacked graphene [25] might shed light on these
questions. Several theoretical and numerical works have con-
firmed the similarity between the flat Chern band [26–32] and
the lowest Landau level in certain parameter regimes. Specif-
ically, there is compelling evidence that the ground state of
the half-filled Chern band is a composite Fermi liquid at zero
field. It is expected that a phase transition from the composite
Fermi liquid to the paired state, i.e., the Moore-Read state,
might be induced by adding sufficiently large perturbations
[33,34]. To date, there is no evidence of the Moore-Read
state in the QHS at half-filling. However, in the realistic
system the energy scale of Coulomb interaction e2

ε0,εr aM
, with

aM the superlattice constant, surpasses the band gap between
the valence band and conduction band, which means that the
effect of the band mixing is large compared to the electron
gas [35–38]. Another notable point is the absence of ex-
act particle-hole symmetry at half-filling in the Chern band
of twisted bilayer TMDs. Furthermore, the complex details of
the single particle wave function can lead to various types of
interaction according to the perturbation theory in contrast to
the electron gas. Therefore, the complexity of moiré materials
opens up the possibility for the system to host the Moore-Read
state in the Chern insulator.

In this work, we demonstrate the potential existence of the
non-Abelian Pfaffian state in twisted MoTe2 and present a
condition to realize the state in realistic settings. We begin
by introducing the minimal Hamiltonian for the twisted bi-
layer MoTe2 by a continuum model with Coulomb interaction
and complement the model further with three-body interac-
tion. We choose the simplest short-range repulsive three-body
interaction defined on the triangular lattice to capture the
low energy physics of the band mixing effect and break the
particle-hole symmetry. The Moore-Read state is the exact
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FIG. 1. (a) Graphic representation of the nearest three electrons
in a triangular lattice. There are two ways (red and orange triangular)
that three electrons are close to each other. (b) When three electrons
come close to each other, they experience repulsive force. (c) One of
the channels of the scattering process for the three-body interaction
is due to the band mixing of the Coulomb interaction. The index 0,
and m denote the Chern band and other bands, respectively.

ground state of the three-body interaction in the QHS [39].
Our work generalizes the statement to the case of the Chern
band system and explores its effects in a realistic setting. Ex-
act diagonalization is used to demonstrate the ground state of
the Hamiltonian being in the same phase as the Moore-Read
Pfaffian state. Energy spectrum, counting of excited states,
and spectral flow are all consistent with those characteris-
tic of the Pfaffian state in Landau level systems and lattice
models [40–42]. We investigate the competition between the
composite Fermi liquid and the paired Pfaffian state by inter-
polating between the Coulomb interaction and the three-body
interaction in a finite-size system. The excited states in the
energy spectrum will merge into the ground state manifold
when increasing the Coulomb potential to a critical strength,
which signals a phase transition in the thermodynamic limit.
Furthermore, we make use of the perturbation theory to inves-
tigate the feasibility of this three-body interaction in a realistic
system by considering the band mixing effect.

II. FORMULATION

The toy Hamiltonian of the system incorporating the
Coulomb interaction and the short-range three-body interac-
tion is (Fig. 1)

Ĥ = Ĥ0 +
∑

i j

V C
i j : ρ̂iρ̂ j : +

∑
i jk

V 3b
i jk : ρ̂iρ̂ j ρ̂k :, (1)

where Ĥ0 is the single particle Hamiltonian of the continuum
model [43] of the twisted MoTe2. V C

i j and V 3b
i jk denote the

strength of the Coulomb interaction and the nearest three-
body interaction respectively and ρ̂i is the density operator.

FIG. 2. (a) The band structure of MoTe2 at twist angle 3.89◦.
(b) The path along the high symmetry points in the first Brillouin
zone. (c) � is the Berry curvature measured in units Å2 of the Chern
band.

The normal ordering :: is employed to remove the self-
interaction. We adopt the continuum model for a low energy
description of the system at the single particle level. The
Hamiltonian in one of the valleys (K, K ′, which are locked
with spins) [43] is

ĤK↑
0 =

(
(p−h̄Kt )2

2m� + �t (r) T (r)

T †(r) (p−h̄Kb)2

2m� + �b(r)

)
, (2)

where t/b denotes the top/bottom layer, respectively. m∗ is
the renormalized mass of the electron. The moiré potential
�t/b = 2V

∑
j=1,3,5 cos (b j · r ± ψ ) and interlayer hopping

T (r) = ω(1 + eib2·r + eib3·r ), where V and ψ determine the
moiré potential and ω determines the strength of the interlayer
hopping. b j are the reciprocal vectors of the moiré lattice by
rotating b1 by ( j − 1)π/3 counterclockwise. The Coulomb
interaction between the valleys breaks their degeneracy and
results in valley (spin) polarization [32,44,45]. Thus, only one
valley is considered here. Here we adopt the first principle
parameters (V = 20.8 meV, ψ = 107.7◦, w = −23.8 meV,
m∗ = 0.62me, and a0 = 3.52 Å) from Ref. [30]. The twist
angle we focus on is 3.89◦, which is experimentally acces-
sible. The band structure and the berry curvature are shown
in Figs. 2(a) and 2(c). Numerical works have shown that the
ideal band geometry is satisfied under this set of parameters,
such that the flat Chern band can be effectively mapped to
the lowest Landau level [30,46–50]. The calculation using
another set of parameters in Ref. [27], supplemented with
three-body interaction, also supports the Pfaffian states, as
shown in Appendix A.

The Coulomb interaction in Fourier space takes the
form V (q) = e2tanh(|q|d )

2ε0εr |q| with ε0(r) the vacuum (relative)
permittivity, which incorporates the gate-screening effect. We
consider the short-range three-body repulsive interaction in
single layer MoTe2. When three electrons are near each
other, they experience repulsive forces shown in Fig. 1(b).
The three-body repulsion in real space takes the form
V 3b ∑

i �= j

∑
a,b δ(ri + a, r j )δ(ri + b, rk ), where ri, r j, rk are

the positions of three arbitrary electrons. a and b are vectors
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FIG. 3. (a)–(c) The energy spectrum of half filling of twisted
MoTe2 for three different sizes 4×4, 4×5, and 4×6, respectively.
The dielectric constant εr = 20. There is a clear energy gap between
the sixfold ground state and the excited states. (d) The spectral flow
of the ground state wave function by inserting magnetic flux along
the ky direction.

for the nearest neighbor bonds, and are summed over all pairs
of different nearest neighbor bonds on the triangular lattice.
There are two types of plaquettes on which three particles are
close to each other as enclosed by red and yellow triangules
in Fig. 1(a). Both of the plaquettes are incorporated in our
calculation. We next show that the ground state of the system
is the Moore-Read state when the above three-body inter-
action dominates. The mechanism behind this phenomenon
is rooted in the fact that the Moore-Read Pfaffian state is a
paired state. Intuitively, the three-body short-range repulsion
penalizes states in which three particles come closer together,
while two particles coming together does not result in an
energy cost. By multiple trials, we find the low-energy theory
quite robust and insensitive to the details of the three-body
interaction (see Fig. 7 in Appendix A). The nearest neighbor
three-body interaction we choose is just the simplest three-
body interaction consistent with the symmetry of the system.
Therefore, our result from the point-contact three-body inter-
action is general and can be generalized to other short-range
three-body interaction forms.

III. ENERGY SPECTRUM, SPECTRAL FLOW,
AND EXCITED STATE COUNTING

To demonstrate the theoretical existence of the Moore-
Read state in moiré systems, we set the strength of the
three-body interaction to be comparable with the bare
Coulomb interaction, and the dielectric constant εr = 20,
which results in a relatively small Coulomb interaction. The
low energy properties of the system are governed mainly by

FIG. 4. (a), (b) The possible configurations of low energy states
with one hole that satisfy the generalized Pauli principle correspond-
ing to two system sizes 4×4 and 4×5. (c), (d) The spectrum of the
system that deviates from half-filling. The system size for (c) is 4×4
with seven electrons and for (d) is 4×5 with nine electrons. States
below the red dotted line are the low energy excitation.

the three-body interaction. We project the three-body interac-
tion onto the Chern band and perform exact diagonalization
in the momentum space (first Brillouin zone) to obtain the
ground states and energy spectrum of the above Hamiltonian.
The first Brillouin zone is chosen to be a parallelogram with
three different system sizes 4×4, 4×5, and 4×6, respectively.
The sixfold degeneracy of the Moore-Read Pfaffian state on
the torus is a well-known characteristic of this state from
analysis of the topological field theory [9,51]. The presence
of a gap between the ground state and excited state, along
with the observed sixfold quasidegeneracy of the ground state
at different system sizes in Figs. 3(a)–3(c), strongly suggests
that the ground state is the Moore-Read Pfaffian state. Due to
the finite size effect, there is a degeneracy lift [52]. Since the
exact diagonalization only involves the localized interaction,
it is natural to expect that the Moore-Read state exists in the
thermodynamic limit of the model. We further check the claim
by inserting the flux through one cycle of the torus. The flux
insertion is evaluated on the 4×5 system. We find that the
ground states flow into each other and return to itself after
two flux quanta without merging with higher energy states
[cf. Fig. 3(d)].

To further confirm the non-Abelian properties, we count
the states within the low-energy manifold by removing an
electron and creating quasiholes above the sixfold degenerate
ground state [41]. The low-energy states must adhere to the
generalized Pauli exclusion principle, which stipulates that no
more than two electrons can occupy four consecutive orbitals
[53]. According to combinatorics it is found that the number
of low-energy states (below the red dotted line) should be 320
for 16 orbitals with seven electrons and 700 for 20 orbitals
with nine electrons, which is consistent with our calculation
(cf. Fig. 4). The number of low energy excitations in each
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FIG. 5. (a) Interpolation between the Coulomb interaction and
the three-body interaction which shows the gap of the lowest excited
state as a function of the interpolation parameter α. (b), (c) The
spectrum at two extreme cases corresponding to α = 0 and α = 1.

momentum sector can also be obtained by considering the
center of mass and relative translational symmetry [42].

IV. COULOMB INTERACTION AND COMPETITION
WITH COMPOSITE FERMI LIQUID

In real materials, the effect of Coulomb interaction can-
not be neglected, which would compete with the three-body
interaction. Previous studies have shown that the Coulomb
interaction in the moiré system stabilizes the anomalous com-
posite Fermi liquid, which is gapless [28,29]. To reveal the
competition between the Moore-Read state and the composite
Fermi liquid and how likely it is to realize the Moore-Read
state, we interpolate between the three-body interaction and
the Coulomb interaction

Ĥint = Ĥ0 + αV̂ C + (1 − α)V̂ 3b, (3)

where the V̂ C is the Coulomb interaction term and the V̂ 3b is
three-body interaction term. The strengths V 3b is set to be e2

ε0a0
.

For numerical efficiency, we perform the calculation on the
4×4 torus. It is expected that as α approaches one, the gap will
close and the ground state will be the anomalous composite
Fermi liquid state. When the interpolation parameter α is set
to zero, the system, dominated by the three-body interaction,
stays in an incompressible state and thus the gap remains. As
α increases to around 0.12, the gap closes, indicating a phase
transition [cf. Fig. 5(a)]. The system moves from the Moore-
Read state to the composite Fermi liquid. The spectrum of
two extreme cases α = 0 and α = 1 are shown in Figs. 5(b)
and 5(c), respectively. Both results are consistent with our
calculations and other studies. From the above analysis, we

conclude that a relatively large three-body repulsive interac-
tion is necessary for the Pfaffian state to be the ground state
of the system. The gap continuously closes from the Pfaffian
state to the CFL, though further study is needed to confirm
the nature of the transition, in light of previous theoretical
discussions [34,54].

V. THREE-BODY INTERACTION FROM BAND MIXING

It is natural to ask whether it is possible to realize three-
body interaction in a realistic platform that leads to the
Moore-Read state. We show that the three-body interaction
can arise due to the band mixing and determine the contri-
bution of the band mixing to the three-body interaction using
perturbation theory. In our case, we only consider the three-
body interaction contribution from band mixing effect and
neglect the other two-body contribution. The complete anal-
ysis of the band mixing effect is left for future study. Dividing
the Coulomb interaction into two parts, the Hamiltonian takes
the form

Ĥ = Ĥ0 + P̂0V̂
CP̂0 + P̂0V̂

CP̂1 + H.c., (4)

where P0 and P1 are the projection operator that projects the
state to the Chern band and the other bands, respectively, and
Ĥ0 is the single particle Hamiltonian. By the Schrieffer-Wolff
transformation [55], the interactions that induce interband
scattering are renormalized into the interaction within the
lowest Chern band. The renormalized interaction reads

−P̂0V̂
CP̂1

1

Ĥ0 − E0
P̂1V̂

CP̂0. (5)

When P̂0V̂ CP̂1 takes one of the electrons in the Chern band
to other bands and leaves the other electron in the original
band, the three-body interaction emerges [14–17], which can
be graphically represented in Fig. 1(c). From Eq. (5) we will
see the effect of the band mixing is determined by: (i) The
form factor F (k1, k2, m, n, g) = ∑

g′l ψ∗
mk1(g′+g)lψnk2g′l where

ψm,k denotes the Bloch wave function of momentum k in band
m with l and g, g′ the layer degrees of freedom and moiré
reciprocal vectors, respectively. (ii) The dielectric constant
εr and (iii) the band gap �E . Through numerical calcula-
tions, we have determined that the magnitude of form factor
F (k1, k2, 0, 0, g) associated with electron scattering within
the lowest Chern band and the form factor F (k1, k2, 0, m, g)
for scattering out of the lowest Chern band are comparable,
and approximate to 10−2.

For the short range three-body interaction to arise from
band mixing effects, we propose one condition that leads to
the Moore-Read state,

1

Nk

∑
m �=0,ks

F (k2, ks, 0, m, g1)F (ks, k5, m, 0, g2)
1

�Em

= C F (k2, k5, 0, 0, g1 + g2), (6)

where Nk is the number of k points proportional to the system
area and C is a constant with inverse energy dimension. Note
that this is not necessary condition, as other interaction forms
may well favor Pfaffian states, which remain to be explored.
The above formula poses a constraint of the form factor and
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FIG. 6. The energy spectrum of half filling of twisted MoTe2 for three different sizes 4×4, 4×5, and 4×6.

simplifies the three-body interaction from perturbation as

V per
k1,k2,k3
k4,k5,k6

= C
∑

g1,g2,g3

δksumV (k1 − k4 + g1)V (k3 − k6 + g3)

× F (k1, k4, 0, 0, g1)F (k2, k5, 0, 0, g2)

× F (k3, k6, 0, 0, g3),

where δksum = δk1+k2+k3,k4+k5+k6+g1+g2+g3
, and the left hand

side is the matrix element of the three-body interaction V 3b.
The detailed derivation is provided in Appendix B.

As a crude estimate of the strength of three-body interac-
tion from band mixing, we note that the projected Coulomb
interaction is of order e2

ε0εr aM
∼ 102 meV, while the three-

body interaction from Eq. (5) is ( e2

ε0εr aM
)2/(�E ) ∼ 103 meV

weighted by the form factor F from the interband scattering,
of order 0.05. So solely from the band mixing mechanism,
we have in the lowest Chern band V C/V 3b ∼ 2, which is not
in but not far from the Pfaffian state regime in Fig. 5. How-
ever, we note it is very crude and does not take into account
the condition of Eq. (6) or the detailed form of F function
carefully.

VI. SUMMARY AND DISCUSSION

In conclusion, we have numerically demonstrated the
existence of the Moore-Read state at half-filling upon in-
troducing a three-body interaction to a moiré Chern band
model, specifically twisted bilayer MoTe2. As shown in the
phase diagram Fig. 5(a), when the three-body interaction
becomes dominant, it leads to the non-Abelian state. Addi-
tionally, we have shown that the three-body interaction can
emerge as a low-energy effect from band mixing by perturba-
tion theory. The engineering of such interactions in physical
systems remains an important issue to resolve in the future.
Looking forward, it would be interesting to explore the con-
nection to the putative fractional quantum spin hall states
observed in moiré TMDs [22], and ask whether the interplay
of valley and interband scattering could stabilize non-Abelian
states there. It would be interesting to pursue realizations of
other non-Abelian states, such as the Read-Rezayi state, in
moiré systems. The search for non-Abelian fractionalization

with more feasible physical conditions in tunable platforms,
such as wide quantum well, (twisted) graphene multilay-
ers, and strained graphene, etc. [56–59], are also worth
exploring.
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APPENDIX A: ENERGY SPECTRUM USING
OTHER PARAMETERS

There are different sets of first principle calculation param-
eters for the twisted bilayer TMDC. In this section, we use
the parameters V = 11.2 meV, φ = −91◦, w = −11.3 meV,
m∗ = 0.62me, a0 = 3.52 Å) [27] at twist angle θ = 1.9◦.
However, the ratio between the three-body and the Coulomb
interaction should be larger than the ratio in the main text
for the ground state to be the Moore-Read state. We choose
εr = 20 and the three-body interaction strength V 3b = 15e2

ε0a0
.

The energy spectrum is shown in Fig. 6.
The energy gap and the ground state degeneracy indicate

that the ground state is the Moore-Read state. All other re-
sults in the main body can be reproduced using this set of
parameters.

In the main body, the calculation and the analysis is based
on the three-body pseudopotential with plaquettes (yellow
triangules and red triangules) of equal weights. To demon-
strate our result is general and robust to the details of the
three-body interaction, we construct different types of three-
body interaction with plaquettes of nonequal weights. To
better illustrate this problem, we parametrize our three body
interaction as

V̂ 3b = βV̂ 3b
N + (2 − β )V̂ 3b

NN , (A1)
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FIG. 7. The energy spectrum of half filling of twisted MoTe2 of different types of interaction when β = 0 and β = 2.

where β is the parameter that controls the form the three
body interaction. When β = 1, the result in the main body is
reproduced. We calculate the spectrum of two extreme cases
β = 0 and β = 2 on a 4×4 system. When β = 0, there is
only next nearest three-body interaction (denoted by yellow
plaquettes). Although it’s nonphysical and unreasonable to

construct such an interaction, the energy gap and ground state
degeneracy still remains. This originates from the fact that the
ground state properties are determined by the long wavelength
behavior of the interaction. Therefore, from the spectrum
(Fig. 7) of two extreme cases, it is inferred that our result is
robust and general.

APPENDIX B: THREE-BODY INTERACTION DERIVED BY PERTURBATION THEORY

The following effective Hamiltonian can be constructed by considering the effective theory:

Ĥeff = P̂0Ĥ0P̂0 + P̂0V̂ P̂0 − P̂0V̂ P̂1
1

Ĥ0 − E0
P̂1V̂ P̂0, (B1)

where P̂ is the project operator that projects the system to the Chern band and Ĥ is the single particle Hamiltonian. The first
order term Ĥ1 = P̂0V̂ P̂0 of the perturbation is simply the projected Coulomb interaction. Now we calculate the second order term
Ĥ2 = P̂0V̂ P̂1

1
Ĥ0−E0

P̂1V̂ P̂0. In the following we use m to denote the index of the band and 0 refers to the Chern band projected
onto. We write the second-order perturbation term in terms of the creations and annihilation operators, which diagonalize the
Chern band:

Ĥ2 =
∑

k1,k2,k3,k4
k′

1,k
′
2,k

′
3,k

′
4

m1,m2,m3,m4

(
Vk1,k2,k3,k4

0,0,m3,m4

a†
0,k1

a†
0,k2

am3,k3 am4,k4

)
P̂1

1

Ĥ0 − E0
P̂1

(
Vk′

1,k
′
2,k

′
3,k

′
4

m1,m2,0,0
a†

m1,k
′
1
a†

m2,k
′
2
a0,k′

3
a0,k′

4

)
, (B2)

where m is the index of the bands and cannot equal zero. The operator P̂1V̂ P̂0 will scatter the electrons from the Chern band to
higher bands. When only one electron in the Chern band is scattered into the Chern band, the three-body interaction emerges.
When two electrons are scattered, there is an additional two-body interaction. We assume the two-body interaction is still
governed by the Coulomb interaction.

Choosing the relative dielectric constant εr = 10, the energy scale of the Coulomb interaction is e2

ε0εr aM
∼ 102 meV. The

strength of the three-body interaction derived from the perturbation is approximately ( e2

ε0εr aM
)2/(�E ) ∼ 103 meV. The ratio

between the strength of the three-body interaction and the Coulomb interaction (∼10) makes it possible to realize the Moore-
Read state in the system as shown in our result in Fig. 5. The energy scale of the band mixing effect also depends on the form
factor F (k1, k2, 0, m, g), which is small (∼0.05) and suppresses the numerical value of the term. Hence, perturbation theory
holds here.

In our case, we only focus on the three-body interaction. In this case one of the creation operators {a†
m1,k

′
1
, a†

m2,k
′
2
} scatters

electrons into the higher bands and one of the annihilation operators {am3,k3 , am4,k4} brings it back. There are four cases in total.
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(1) k′
1 = k3, m1 = m3, and m2 = m4 = 0,

Ĥ2 =
∑

k1,k2,k4
k′

2,k
′
3,k

′
4

∑
m,k

(
Vk1,k2,k,k4

0,0,m,0
a†

0,k1
a†

0,k2
am,ka0,k4

)
P̂1

1

Ĥ0 − E0
P̂1

(
Vk′

1,k
′
2,k

′
3,k

′
4

m,0,0,0
a†

m,ka†
0,k′

2
a0,k′

3
a0,k′

4

)

=
∑

k1,k2,k4
k′

2,k
′
3,k

′
4

∑
m,k

Vk1,k2,k,k4
0,0,m,0

Vk,k′
2,k

′
3,k

′
4

m,0,0,0

(
a†

0,k1
a†

0,k2
am,ka0,k4

)
P̂1

1

Ĥ0 − E0
P̂1

(
a†

m,ka†
0,k′

2
a0,k′

3
a0,k′

4

)

=
∑

k1,k2,k4
k′

2,k
′
3,k

′
4

⎛
⎝∑

m,k

−1

�Em
Vk1,k2,k,k4

0,0,m,0
Vk,k′

2,k
′
3,k

′
4

m,0,0,0

⎞
⎠(

a†
0,k1

a†
0,k2

a0,k4 a†
0,k′

2
a0,k′

3
a0,k′

4

)
, (B3)

where V k1,k2,k3,k4
m1,m2,m3,m4

= 1
A

∑
q δk3−q,k2+g1

δk4+q,k1+g2
V (q)F (k2, k3, m2, m3, g1)F (k1, k4, m1, m4, g2). In the second equality we ap-

proximate 1
Ĥ0−E0

as 1
�Em

. We normal ordered the above formula to obtain the three-body interaction:

∑
k1,k2,k4
k′

2,k
′
3,k

′
4

⎛
⎝∑

m,k

1

�Em
Vk1,k2,k,k4

0,0,m,0
Vk,k′

2,k
′
3,k

′
4

m,0,0,0

⎞
⎠(

a†
0,k1

a†
0,k2

a†
0,k′

2
a0,k4 a0,k′

3
a0,k′

4

)
. (B4)

Using the same trick we obtain the remaining three cases.
(2) k′

2 = k3, m2 = m3, and m1 = m4 = 0,

∑
k1,k2,k4
k′

1,k
′
3,k

′
4

⎛
⎝∑

m,k

−1

�Em
Vk1,k2,k,k4

0,0,m,0
Vk′

1,k,k′
3,k

′
4

0,m,0,0

⎞
⎠(

a†
0,k1

a†
0,k2

a†
0,k′

1
a0,k4 a0,k′

3
a0,k′

4

)
. (B5)

(3) k′
1 = k4, m1 = m4, and m2 = m3 = 0,

∑
k1,k2,k3
k′

2,k
′
3,k

′
4

⎛
⎝∑

m,k

−1

�Em
V0,0,k1,k2,k3,k

0,m
Vk,k′

2,k
′
3,k

′
4

m,0,0,0

⎞
⎠(

a†
0,k1

a†
0,k2

a†
0,k′

2
a0,k3 a0,k′

3
a0,k′

4

)
. (B6)

(4) k′
2 = k4, m2 = m4, and m1 = m3 = 0,

∑
k1,k2,k3
k′

1,k
′
3,k

′
4

⎛
⎝∑

m,k

1

�Em
Vk1,k2,k3,k

0,0,0,m
Vk′

1,k,k′
3,k

′
4

0,m,0,0

⎞
⎠(

a†
0,k1

a†
0,k2

a†
0,k′

1
a0,k3 a0,k′

3
a0,k′

4

)
. (B7)

Thus, the strength of the three-body interaction can be expressed as

V per
k1,k2,k3,
k4,k5,k6

=
∑
m,k

1

�Em

(
Vk1,k2,k,k4

0,0,m,0
Vk,k3,k5,k6

m,0,0,0
− Vk1,k2,k,k4

0,0,m,0
Vk3,k,k5,k6

0,m,0,0
− Vk1,k2,k4,k

0,0,0,m
Vk,k3,k5,k6

m,0,0,0
+ Vk1,k2,k4,k

0,0,0,m
Vk3,k,k5,k6

0,m,0,0

)
, (B8)

where V per
k1,k2,k3,
k4,k5,k6

is the interaction strength from the perturbation theory. Expanding each term in the above formula in terms of the

form factor, we have
(1) Vk1,k2,k,k4

0,0,m,0
Vk,k3,k5,k6

m,0,0,0
= ∑

g1,g2,g3,g4
δk1+k2,k4+k+g1+g2

δk+k3,k5+k6+g3+g4
V (k1 − k4 + g1)V (k3 − k5 + g4)×F (k1, k4, 0, 0, g1)

F (k2, k, 0, m, g2)F (k, k6, m, 0, g3)F (k3, k5, 0, 0, g4).
(2) Vk1,k2,k,k4

0,0,m,0
Vk3,k,k5,k6

0,m,0,0
= ∑

g1,g2,g3,g4
δk1+k2,k4+k+g1+g2

δk+k3,k5+k6+g3+g4
V (k1 − k4 + g1)V (k3 − k6 + g4)×F (k1, k4, 0, 0, g1)

F (k2, k, 0, m, g2)F (k, k5, m, 0, g3)F (k3, k6, 0, 0, g4).
(3) Vk1,k2,k4,k

0,0,0,m
Vk,k3,k5,k6

m,0,0,0
= ∑

g1,g2,g3,g4
δk1+k2,k4+k+g1+g2

δk+k3,k5+k6+g3+g4
V (k2 − k4 + g1)V (k3 − k5 + g4)×F (k2, k4, 0, 0, g1)

F (k1, k, 0, m, g1)F (k, k6, m, 0, g3)F (k3, k5, 0, 0, g4).
(4) Vk1,k2,k4,k

0,0,0,m
Vk3,k,k5,k6

0,m,0,0
= ∑

g1,g2,g3,g4
δk1+k2,k4+k+g1+g2

δk+k3,k5+k6+g3+g4
V (k2 − k4 + g2)V (k3 − k6 + g4)×F (k2, k4, 0, 0, g1)

F (k1, k, 0, m, g2)F (k, k5, m, 0, g3)F (k3, k6, 0, 0, g4).
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The above terms take the same form instead of permuting k indices. It gives rise to a three-body interaction but it’s not obvious
this interaction will lead to the Moore-Read Pfaffian ground state since we don’t know whether it is short range. The short-range
interaction in the main text projected onto the Chern band takes the form

V 3b
k1,k2,k3
k4,k5,k6

=
∑

g1,g2,g3

δk1+k2+k3,k4+k5+k6+g1+g2+g3
V 3b(k1 − k4 + g1, k3 − k5 + g3)

× F (k1, k4, 0, 0, g1)F (k2, k6, 0, 0, g2)F (k3, k5, 0, 0, g3), (B9)

where V 3b(k1 − k4 + g1, k3 − k5 + g − 3) is the short-range three-body interaction in the k space. Naively, to make the
form of the three-body interaction from the perturbation resemble the short-range interaction in the main body of the paper
we can naturally contract the middle two form factors F (k2, k, 0, m, g2)F (k, k6, m, 0, g3) to make it a single form factor
F (k2, k6, 0, 0, g2 + g3). Now we assume the form factor F (k1, k2, m, n) satisfies the condition (6) in the main body. We
insert it into the above equations before performing the summation over m. The middle two form factors in first equation
F (k2, k, 0, m, g2)F (k, k6, m, 0, g3) with energy Em reduce to one form factor F (k2, k6, 0, 0, g2 + g3). Then the summation of
equation over k, m weighted by inverse of energy becomes∑

m,k

1

�Em
Vk1,k2,k,k4

0,0,m,0
Vk,k3,k5,k6

m,0,0,0
= C

∑
g1,g2,g3,g4

δk1+k2+k3,k4+k5+k6+g1+g2+g3+g4
V (k1 − k4 + g1)V (k3 − k5 + g4)

× F (k1, k4, 0, 0, g1)F (k2, k6, 0, 0, g2 + g3)F (k3, k5, 0, 0, g4). (B10)

Changing the notation g2 + g3 → g2, g4 → g3, the above first equation becomes∑
m,k

1

�Em
Vk1,k2,k,k4

0,0,m,0
Vk,k3,k5,k6

m,0,0,0
= C

∑
g1,g2,g3

δk1+k2+k3,k4+k5+k6+g1+g2+g3
V (k1 − k4 + g1)V (k3 − k5 + g3)

× F (k1, k4, 0, 0, g1)F (k2, k6, 0, 0, g2)F (k3, k5, 0, 0, g3). (B11)

We carry out a similar calculation for the other three, and we have the condition of the Pfaffian state to arise

V per
k1,k2,k3
k4,k5,k6

= C
∑

g1,g2,g3

δk1+k2+k3,k4+k5+k6+g1+g2+g3
V (k1 − k4 + g1)V (k3 − k5 + g3)

× F (k1, k4, 0, 0, g1)F (k2, k6, 0, 0, g2)F (k3, k5, 0, 0, g3), (B12)

where the form factors F (k1, k2, 0, 0, g) involve the wave function of the single particle Hamiltonian. Because of the statistical
properties of fermions, there is an overall factor four in front of the interaction incorporated into the constant C. Although
our condition may not be easily satisfied, it provides a convenient way to determine the resemblance between the three-body
interaction from perturbation and the pseudopotential. Besides, we also expect that if band mixing could soften the Coulomb
interaction between the electrons it is more likely the system is in the Moore-Read state. In the thermodynamic limit, we expect
the topological ground state should be robust against the nontopological channel. Therefore, we can argue the topological ground
state will emerge as the dominant state.
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