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Non-Hermitian linear electro-optic effect in three-dimensional materials
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Here, we present an in-depth theoretical analysis of the linear electro-optic effect in low-symmetry three-
dimensional (3D) conductive materials with large Berry curvature dipoles. Our study identifies two distinct
kinetic contributions to the linear electro-optic effect: a gyrotropic Hermitian (conservative) piece and a non-
Hermitian term that can originate optical gain. We concentrate on the study of 3D materials belonging to the
32 (D3) point group subject to a static electric bias along the trigonal axis. Our investigation shows that doped
trigonal tellurium has promising properties, with its gyrotropic electro-optic response offering the potential for
realizing electrically biased electromagnetic isolators and inducing significant optical dichroism. Most notably, it
is demonstrated that under sufficiently large static electric bias, tellurium’s non-Hermitian electro-optic response
may lead to optical gain. Using first-principles calculations, it is shown that n-doped tellurium is particularly
promising, as it can host significantly larger Berry curvature dipoles than the more common p-doped tellurium.
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I. INTRODUCTION

Advances in integrated photonic circuits are key to meeting
the demands of high-speed data communications, offering
significant improvements in speed, bandwidth, and energy
efficiency [1,2]. However, their development is challenged by
the presence of losses and the difficulty of integrating non-
reciprocal components [1,3–7]. These components, such as
isolators and circulators, enable one-way light transmission,
a crucial feature for efficient signal routing and control in
photonic circuits.

The traditional and long-established approach to achieve
robust nonreciprocal responses and realize electromagnetic
isolators involves breaking time-reversal symmetry by ex-
ploiting magneto-optic effects in materials like ferrites or
iron garnets under a static magnetic bias [8–10]. How-
ever, the requirement for an external bulky magnetic biasing
circuit poses a major obstacle to integrating these compo-
nents onto a chip. This issue has spurred the development
of alternative “magnetless” nonreciprocal systems in recent
years.

Magnetless nonreciprocal systems can be categorized into
two distinct groups. The first group comprises systems with
linear material responses under normal operating conditions,
and which require the application of a suitable external
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bias. This group includes various platforms characterized
by broken time-reversal symmetry, such as time-variant
systems [11–14], systems with moving parts [15,16], and
systems with drifting electrons [17–22]. Furthermore, this cat-
egory also encompasses proposals involving non-Hermitian
platforms based on active electronic systems [23–25] or op-
tically pumped systems [26]. The second group comprises
nonreciprocal systems that rely on the use of nonlinear ma-
terials, which are dynamically self-biased by incoming waves
[27–32]. The latter solutions require high-power input signals
and usually do not offer robust optical isolation [33,34].

In recent years, there has been significant interest in nonlin-
ear transport phenomena [35], particularly nonlinear Hall and
linear electro-optic (EO) effects and their relationship with the
Berry curvature dipole [36–38]. The Berry curvature dipole
may be pictured as a dipolar pattern of the Berry curvature
distribution across the Fermi surface.

Some time ago, inspired by the physics of transistors, we
introduced a mechanism for generating strongly nonrecipro-
cal and non-Hermitian linearized electromagnetic responses
in low-symmetry materials [39]. Our approach relies on the
combination of material nonlinearities with a static electric
bias. We theoretically demonstrated that a hypothetical meta-
material, composed of a periodic arrangement of MOSFETs
(termed “MOSFET-metamaterial”) exhibits intriguing nonre-
ciprocal and non-Hermitian responses with unique physical
properties under a static electric bias.

Our theory raises the question of whether it is possi-
ble to achieve a distributed electromagnetic response akin
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to that of a transistor using natural materials. In a recent
theoretical study [38], we have demonstrated that non-
linear two-dimensional (2D) conductive materials with a
broken inversion symmetry and a large Berry curvature
dipole (e.g., strained twisted bilayer graphene) are promising
platforms to obtain nonreciprocal and non-Hermitian tran-
sistorlike distributed responses. The analysis of Ref. [38]
shows that an incident electromagnetic wave passing through
such electrically biased 2D materials may experience opti-
cal gain, depending on the wave polarization, direction of
wave propagation, and orientation of the static electric bias.
An optical cavity comprising these electrically biased 2D
non-Hermitian materials may enable chiral terahertz (THz)
lasing [40].

In this paper, we extend our theory to three-dimensional
(3D) crystals with broken inversion symmetry and a Berry
curvature dipole. Consistent with our previous investigation
on 2D low-symmetry materials [38], we find that there are two
distinct contributions to the linear EO effect in these 3D mate-
rials: one is rooted in a gyrotropic Hermitian (conservative)
response, and the other is associated with a non-Hermitian
EO response characterized by its nonconservative nature.
Moreover, we analyze the origin for the gyrotropic EO ef-
fect, suggesting that it arises from microscopic dc currents
following helical-type trajectories induced by the static elec-
tric bias, which in turn generate an internal static magnetic
field.

It is important to point out here the differences between
the EO effect and the nonlinear Hall effect [36]. While
both effects are linked to the Berry curvature dipole, they
diverge in key aspects. Specifically, the EO effect mani-
fests as a linear response to the combined influence of a
static electric field bias (E0) and an optical dynamic (ac)
electric field (Eωe−iωt ). On the other hand, the nonlinear
Hall effect is a second-order response to an applied electric
field.

Throughout this work, we focus the study of the linear EO
effects on 3D materials belonging to the 32 point group (D3 in
the Schoenflies notation) subject to a static electric bias along
the trigonal axis. Using first-principles density functional the-
ory (DFT) calculations, we provide an in-depth study of the
linear EO effect in trigonal tellurium. It is demonstrated that
the gyrotropic Hermitian response in n-doped tellurium may
present exciting opportunities, e.g., the realization of electri-
cally biased electromagnetic isolators and the generation of
significant optical dichroism. Indeed, the first-principles cal-
culations suggest that n-doped tellurium may provide larger
Berry curvature dipoles and lower dc conductivity in com-
parison with the more common p-doped variant. Moreover,
under a sufficiently high static electric bias, the non-
Hermitian EO response of tellurium may give rise to optical
gain.

This paper is organized as follows. In Sec. II, we derive
the gyrotropic (Hermitian) and non-Hermitian linear EO re-
sponses of generic 3D low-symmetry conductive systems. In
Sec. III, we examine the linear EO effect in generic 3D materi-
als belonging to the 32 point group symmetry (D3). Finally, in
Sec. IV we investigate nonreciprocal and gain effects in trig-
onal tellurium biased along the trigonal axis. The conclusions
are drawn in Sec. V.

II. NON-HERMITIAN LINEAR ELECTRO-OPTIC EFFECT
IN LOW-SYMMETRY MATERIALS

A. Boltzmann transport theory

Here, we use the semiclassical Boltzmann transport theory
to derive the linearized optical response of a generic low-
symmetry metallic system under a static electric bias. We
suppose that the material is described by a time-reversal sym-
metric Hamiltonian. Our analysis does not take into account
self-consistent field (screening) effects.

The electron distribution function in the material, fk, satis-
fies the Boltzmann transport equation:

∂ fk

∂t
+ ∂k

∂t
· ∇k fk = − 1

τ

(
fk − f 0

k

)
, (1)

where f 0
k is the Fermi-Dirac distribution, τ is the scattering

relaxation time, and h̄ ∂k
∂t = −eE (with e > 0). For a static (dc)

field E0 the distribution function does not depend on t . Thus,
the perturbation due to the static bias is given by

[
fk − f 0

k

]
static = δ f 0

k ≈ e

h̄
τE0 · ∇k f 0

k . (2)

Let us now suppose that a much weaker optical dy-
namic (ac) field (Eωe−iωt ) is applied to the material,
resulting in a perturbation (δ f ω

k e−iωt ) of the distribution
function. The linearized dynamics of the optical field is con-
trolled by the distribution function f 0

k + δ f 0
k , so that δ f ω

k
satisfies

∂

∂t

(
δ f ω

k e−iωt
) + (−eEωe−iωt )

1

h̄
· ∇k

[
f 0
k + δ f 0

k

]
= − 1

τ
δ f ω

k e−iωt . (3)

Solving Eq. (3) with respect to δ f ω
k it follows that

δ f ω
k = 1

1 − iωτ

τe

h̄
∇k

[
f 0
k + δ f 0

k

] · Eω

= 1

1−iωτ

τe

h̄
∇k f 0

k ·Eω+ 1

1−iωτ

(τe

h̄

)2
∇k

[
E0·∇k f 0

k

]·Eω.

(4)

Next, we characterize the induced current density distribu-
tion due to the applied fields. It can be written in terms of the
total distribution function as follows:

J =− e

V

∑
k

(
f 0
k + δ f 0

k + δ f ω
k e−iωt + c.c.

)
(

v0
k − e

h̄
�k × (E0 + Eωe−iωt + c.c.)

)
, (5)

where v0
k is the group velocity of the electron wave, �k

is the Berry curvature, V is the volume of the material,
and c.c. stands for complex conjugate. Note that we take
into account the anomalous velocity contribution, − e

h̄�k × E
[41,42], which is the key mechanism to obtain both the
non-Hermitian and the gyrotropic response. The anomalous
velocity has higher-order corrections in the electromagnetic
fields [43], but they have no impact in the EO response
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of time-reversal symmetric systems. The linear response
is determined by the following static and dynamic current
densities:

J0 = − e

V

∑
k

(
v0

k − e

h̄
�k × E0

)(
f 0
k + δ f 0

k

)
, (6a)

Jω = − e

V

∑
k

(
v0

k − e

h̄
�k × E0

)
δ f ω

k

− e

V

∑
k

(
− e

h̄
�k × Eω

)(
f 0
k + δ f 0

k

)
. (6b)

As the system is described by a time-reversal symmetric
Hamiltonian, v0

k and �k are odd functions of the quasimo-
mentum k. Thus, only the terms associated with δ f 0

k and
δ f ω

k , which are also odd functions of k, can contribute to the
response:

J0 = − e

V

∑
k

(
v0

k − e

h̄
�k × E0

)
δ f 0

k , (7a)

Jω = − e

V

∑
k

(
v0

k − e

h̄
�k × E0

)
δ f ω

k

− e

V

∑
k

(
− e

h̄
�k × Eω

)
δ f 0

k . (7b)

Using now Eqs. (2) and (4), we can write the current as a
function of the applied electric field:

J0 = − e

V

∑
k

v0
k

(τe

h̄
E0 · ∇k f 0

k

)

− e

V

∑
k

(
− e

h̄
�k × E0

)(τe

h̄
E0 · ∇k f 0

k

)
(8a)

Jω = − e

V

∑
k

v0
k

(
1

1 − iωτ

τe

h̄
∇k f 0

k · Eω

)

− e

V

∑
k

(
− e

h̄
�k × E0

)(
1

1 − iωτ

τe

h̄
∇k f 0

k · Eω

)

− e

V

∑
k

(τe

h̄
E0 · ∇k f 0

k

)(
− e

h̄
�k × Eω

)
. (8b)

We only retain terms of Jω that are either independent of
E0 or linear in E0. Higher-order terms are weaker and are not
accounted for in our analysis. The leading terms in Eq. (8)
associated with v0

k are the usual linear static and dynamic
Drude-like responses. The linear EO response is ruled by the
remaining terms:

JEO = τe3

h̄2 E0 ·
(

1

V

∑
k

∇k f 0
k ⊗ �k

)
× Eω

+ τe3

h̄2

1

1 − iωτ

(
1

V

∑
k

(�k × E0) ⊗ ∇k f 0
k

)
· Eω, (9)

where the symbol ⊗ denotes the tensor product of two vectors.
The EO current density (JEO) is ruled by the anomalous elec-
tron velocity. Specifically, it arises from the linear variation
of the distribution function under the influence of one of the
applied fields (E0 or Eω), in conjunction with the anomalous
velocity determined by the interplay between the Berry curva-
ture and the other applied field (Eω or E0).

B. Conductivity response

The linear electro-optic response is determined by Eq. (9).
The corresponding conductivity tensor can be written as a
Brillouin-zone integral using the rule 1

V

∑
k → 1

(2π )3

∫
d3k.

Thus, the linear EO piece of the conductivity can be written
as

σ̄EO(ω) = τe3

h̄2

(
E0 · 1

(2π )3

∫
d3k ∇k f 0

k ⊗ �k

)
× 1̄

− τe3

h̄2

1

1−iωτ
E0×

(
1

(2π )3

∫
d3k �k ⊗ ∇k f 0

k

)
,

(10)

with 1̄ the unit matrix. The conductivity can be expressed
in terms of the so-called Berry curvature dipole tensor (D̄)
defined as

Di j = − 1

(2π )3

∫
∂ f 0

k

∂ki
�k, jd

3k = 1

(2π )3

∫
f 0
k

∂�k, j

∂ki
d3k.

(11)
The Berry curvature dipole in 3D materials is dimensionless
and traceless: Dxx + Dyy + Dzz = 0. The conductivity σ̄EO is
given by

σ̄EO(ω) = σ̄ H
EO + σ̄ NH

EO (ω)

≡ −τe3

h̄2 (E0 · D̄) × 1̄ + τe3

h̄2

1

1 − iωτ
(E0 × D̄T ),

(12)

where the symbol T denotes the tensor transpose.
The first term of σ̄EO defines an antisymmetric real-valued

matrix, analogous to a Hall conductivity. It corresponds to
a conservative gyrotropic response associated with a pseu-
dovector aligned along the direction of the vector E0 · D̄ =
D̄T · E0 (pseudomagnetic field). This gyrotropic conservative
response, which has been previously discussed in the literature
[44], plays a crucial role in multiple phenomena, including
the kinetic Faraday effect (also known as current-induced
optical activity) [44–47] and the kinetic magnetoelectric effect
[44,48,49]. Remarkably, σ̄EO has an additional contribution
(σ̄ NH

EO ) that varies with frequency and generally leads to a
nonconservative electro-optic response and optical gain. This
non-Hermitian electro-optic response was discovered only re-
cently [38,50]. It should be noted that the derived EO response
[Eq. (12)] is only valid for frequencies well below the thresh-
old for interband absorption.

C. The Berry curvature dipole as a magnetoelectric
coupling tensor

To provide some intuition on the origin of the electro-optic
effect and on the physical interpretation of the Berry curvature
dipole from an optics perspective, next we present a compari-
son between the linear EO response of (chiral) conductors and
the response of magnetized (gyrotropic) materials.

To this end, let us start by analyzing the response of an
electron gas biased with a static magnetic field [Fig. 1(a)].
A magnetized electron gas exhibits a gyrotropic response,
which can be modeled by a conductivity tensor of the form
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FIG. 1. (a) Electron gas biased by a static magnetic field (B0). The bias induces a gyrotropic electromagnetic response. (b) Semiconductor
with mirror symmetry biased with a static electric field (E0): the average magnetic field in the bulk region is approximately zero, resulting in
a negligible gyrotropic response. (c) Chiral low-symmetry semiconductor biased with a static electric field (E0). Due to the low symmetry of
the material, the electric current j0 may follow a helical-type path, which creates an internal magnetic field and a gyrotropic electromagnetic
response. (d) Similar to (c) but for a 2D system. In this case, the current trajectory has the form of a planar helix.

σ̄gyro ≈ ε0
ω2

p


2 ωc × 1̄, with ε0 the vacuum permittivity, ωp the
plasma frequency, ωc = eB0/m∗ the cyclotron frequency with
m∗ the effective mass of the electrons, and 
 = 1/τ the
collision frequency associated with material loss. For simplic-
ity, we focus on the low-frequency response of the material
(ω � 
) and suppose that |ωc| � 
.

It is interesting to compare the response of the magnet-
ically biased electron gas with the first piece of Eq. (12).

By matching σ̄gyro ≈ ε0
ω2

p


2 ωc × 1̄ to σ̄ H
EO = − τe3

h̄2 (E0 · D̄) × 1̄
one sees that the static electric bias induces an equivalent
cyclotron frequency given by ωc = −e3


ε0 h̄2ω2
p
(D̄T · E0). Thus, the

equivalent magnetic bias is given by

Bint
0 = −e2
m∗

ε0 h̄2ω2
p

D̄T · E0 = −1

c
ζ̄ · E0, (13)

where ζ̄ = 4παe
m∗c2

h̄ωp



ωp

D̄T is a dimensionless tensor, with

αe = e2

4πε0 h̄c ≈ 1
137 the fine-structure constant. As seen, the

Berry curvature dipole links the equivalent magnetic field to
the static electric bias. Thus, D̄T may be understood as a static
magnetoelectric coupling tensor. A related interpretation was
presented in Ref. [51]. To give an idea of the numbers,
suppose that 
/ωp ∼ 1, m∗ = 0.1me with me the rest free-
electron mass, ωp ∼ 2π × 1 THz, and D̄T ∼ 10−4. Then, the
electric field intensity required in order that Bint

0 ∼ 1 mT is
2.6 × 103 V/m. The equivalent magnetic field intensity scales
with the Berry curvature dipole, and hence materials with a
large Berry curvature dipole can be promising platforms to
generate strong nonreciprocal and non-Hermitian effects.

The previous discussion leads to an interesting picture for
the physical origin of the (conservative part) of the linear EO
effect. In fact, it suggests that in low-symmetry materials the
static electric bias may create an internal static magnetic field
that acts to bias the material. The effect may be pictured as
a result of helical-type trajectories for the dc current, due
to the low symmetry of the material [compare Figs. 1(b)
and 1(c)]. In contrast, for materials with mirror symmetry
the current trajectory follows a straight line, and thereby the
induced magnetic field is mostly outside of the material and

the net magnetization within the material is approximately
zero [Fig. 1(b)]. Consequently, the gyrotropic response is
negligible in the high-symmetry case (σ̄gyro ≈ 0). A related
picture for the current trajectory in the material has been
discussed elsewhere [52–54]. The same mechanism justifies
the gyrotropic response of low-symmetry 2D materials biased
with a static electric bias (see Ref. [38]). In this case, the
microscopic currents may flow along planar helical paths,
leading to a magnetic field orthogonal to E0 [see Fig. 1(d)].

Importantly, the current-induced gyrotropic effect has been
experimentally observed in Refs. [45,46], by measuring the
rotation of light polarization when passing through a biased
tellurium sample. This electrical analog of the Faraday effect
[55] was designated as current-induced optical activity [45,46]
or kinetic Faraday effect [44].

III. MATERIALS WITH D3 SYMMETRY

A. Electro-optic conductivity

Here we analyze the electro-optic effects in 3D materials
belonging to the 32 point group. For such materials, the Berry
curvature dipole tensor has the form [44]

D̄ = Dx̂ ⊗ x̂ + Dŷ ⊗ ŷ − 2Dẑ ⊗ ẑ. (14)

For a static electric field bias E0 = E0ẑ applied along the
trigonal axis, the Hermitian (H) and non-Hermitian (NH) EO
conductivity contributions are given by

σ̄ H
EO = τe3

h̄2 2DE0ẑ × 1̄, (15a)

σ̄ NH
EO (ω) = τe3

h̄2

DE0

1 − iωτ
ẑ × 1̄. (15b)

Curiously, with D3 symmetry, both conservative and non-
conservative components exhibit identical structures: they are
represented by an antisymmetric tensor. As further discussed
below, the response described by σ̄ NH

EO (ω) is inherently non-
conservative.
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For convenience we introduce an equivalent cyclotron-type
frequency defined as

ω0 = τe3

ε0h̄2 DE0 = 4παe
ec

h̄

DE0. (16)

The frequency ω0 is proportional to the dipole strength and
to the electric field strength, and inversely proportional to
the collision frequency (
 = 1/τ ). The linear electro-optic
conductivity can be written in terms of ω0 as follows:

σ̄ H
EO = 2ε0ω0ẑ × 1̄, (17)

σ̄ NH
EO (ω) = ε0ω0

1 − iωτ
ẑ × 1̄.

It is interesting to analyze the EO contribution to the power
(per unit of volume) transferred from the optical field to the
material (dissipated power). It is given by

pdis,EO = 1

2
Re{E∗ · σ̄EO · E} = −ε0ω0

ω


ω2 + 
2
Im{ExE∗

y }.
(18)

The transferred power is determined only by the nonconser-
vative piece (σ̄ NH

EO ) of the EO conductivity. For simplicity,
we dropped the subscript ω, and from here on the dynamic
electric field is simply denoted by E. Clearly, the sign of
pdis,EO can be either positive, indicating absorption, or nega-
tive, indicating gain. The structure of σ̄ NH

EO shows considerable
similarity to the response of a passive dissipative gyrotropic
medium. However, here we can have gain because the linear
EO effect does not trigger a corresponding “partner” diagonal
(symmetric) response. This contrasts with passive systems,
where the symmetric component of the response invariably
ensures a positive value for pdis,EO. For circular or elliptical
polarization, the sign of the term Im{ExE∗

y } is governed by the
polarization handedness. Therefore, owing to the NH electro-
optic contribution, power can be transferred either from the
wave to the material (resulting in absorption, pdis,EO > 0), or
from the material to the wave (yielding optical gain, pdis,EO <

0). It is relevant to note that pdis,EO is combined with an
additional term pdis,D > 0 due to the linear Drude response.
This second term always generates dissipation.

A related discussion on power transfer in chiral metallic
systems under the simultaneous influence of static (dc) and
dynamic (ac) electric fields is reported in [50]. In addition, a

study of the application of the nonlinear Hall effect to energy
harvesting is presented in [56].

B. Full optical response

The full electromagnetic response of the material can be
characterized by a permittivity tensor ε̄(ω) = ε̄b + iσ̄ /ω, with
σ̄ (ω) = σ̄D(ω) + σ̄ H

EO + σ̄ NH
EO (ω) describing the response of

free electrons, and ε̄b describing the permittivity response
of bound electrons. Here σ̄D(ω) is the usual linear Drude
response:

σ̄D(ω) = ε0ω
2
p


 − iω
1̄. (19)

For simplicity, we ignore here the typical anisotropic re-
sponse of materials with D3 symmetry, and we take ε̄b

as a diagonal matrix of the form ε̄b = ε0εdiel1̄. In addi-
tion, it is assumed that the response of bound electrons
is little affected by the static electric bias. Furthermore,
we also neglect the chiral response inherent to materials
with D3 symmetry, which is associated with natural optical
activity. Under these conditions, the permittivity takes the
form ε̄(ω) = ε0

[
εdiel1 + χ̄D(ω) + χ̄H

EO(ω) + χ̄NH
EO (ω)

]
, where

the electric susceptibilities χ̄α (ω) = iσ̄α/(ε0ω) model the
different components of the free electrons response (α =
D, EO−H, EO−NH). Doing this, the relative permittivity ten-
sor of the material can be written as

ε̄(ω)

ε0
= εdiag1 + iεgẑ × 1̄, with (20a)

εdiag(ω) = εdiel − ω2
p

ω2 + i
ω
and

εg(ω) = ω0


ω

(
2



+ iω + 


ω2 + 
2

)
. (20b)

For the sake of simplicity, we will omit the dispersion of
εdiel, but we will incorporate dissipation effects due to phonon
coupling, represented by a constant imaginary component:
εdiel = ε′

diel + iε′′
diel.

Next, we characterize the plane-wave modes in the
material for propagation along the trigonal axis. The
dispersion equation for this case can be simplified to
k2

z − (ω/c)2(εdiag ± εg) = 0. Solving this dispersion equation
yields the following solutions:

Eigenmode 1: kz,1 = ω
c
√

εeff,1 with εeff,1 = εdiag + εg, E1 ∼ x̂ + iŷ,

Eigenmode 2 : kz,2 = ω
c
√

εeff,2 with εeff,2 = εdiag − εg, E2 ∼ x̂ − iŷ
. (21)

Therefore, the bulk material supports two eigenmodes:
eigenmode 1 with positive handedness with respect to the +z
axis and eigenmode 2 with negative handedness with respect
to +z.

Figure 2 shows the photonic band diagrams (ω = ω′ + iω′′
vs kz) for different values of ω0. In the absence of bias

(ω0 = 0), the material supports the propagation of two degen-
erate modes [see blue lines in Figs. 2(a) and 2(b)]. Differently,
under a static electric bias (ω0 �= 0), two circularly polarized
eigenmodes with opposite handedness propagate in the mate-

rial [see orange and green solid and dashed lines in Figs. 2(a)
and 2(b)]. Notably, for eigenmode 2 (dashed lines) an increase
of ω0 diminishes |ω′′|—corresponding to a larger lifetime
of the natural mode—and may even lead to oscillations that
grow exponentially with time (ω′′ > 0) [see Fig. 2(b)]. These
exponentially growing oscillations (wave instabilities) arise
from the non-Hermitian electro-optic effect, which becomes
significant for large enough values of |ω0|. Quite differently,
for eigenmode 1 (solid lines) |ω′′| increases with ω0, so that
the lifetime becomes shorter.
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FIG. 2. Photonic band diagram of a conductive material with D3 symmetry biased along the trigonal axis (z direction). The propagation is
along z. (a) Real and (b) imaginary parts of the oscillation frequencies of the two eigenmodes as a function of kz for εdiel = 3, ωp/(2π ) = 5 THz,

 = 0.03ωp, and (i) ω0/ωp = 0, (ii) ω0/ωp = 0.15, and (iii) ω0/ωp = 0.3. For ω0/ωp = 0, the solid and dashed blue curves are coincident in
both panels.

As expected, accounting for losses in the dielectric re-
sponse (ε′′

diel �= 0) diminishes or even suppresses the gain (see
Fig. 3). Finally, it should be noted that by reversing the sign of
ω0, which according to Eq. (16) implies a reversal of the sign
of either E0 or D, the roles of the two eigenmode polarizations
are interchanged.

C. Stability

Let us analyze the conditions to have a stable material
response. The material is stable when the bulk modes with
an arbitrary real-valued kz are associated with eigenfrequen-
cies in the lower-half frequency plane (ω′′ < 0). To study
this point, first we find the frequency ω where the disper-
sion diagram [ω = ω(kz )] crosses the real-frequency axis. As
kz = (ω/c)

√
εdiag ± εg, it follows that the crossing occurs for

a frequency ω such that Im{εdiag ± εg} = 0. Solving this equa-
tion, it is found that ω is linked to the gain term (ω0) as

|ω0| = 1

ω


[
ε′′

dielω(ω2 + 
2) + 
ω2
p

]
. (22)

In order that ω(kz ) crosses the real-frequency axis exactly
at the point ω the gain must be as in the above formula. The
minimum gain to have a crossing can be found by minimizing
the above expression with respect to ω. The minimum occurs

FIG. 3. Imaginary parts of the oscillation frequency of eigen-
mode 2 as a function of kz for ε′

diel = 3, ω0/ωp = 0.3, and 
 =
0.03ωp. (i) ε′′

diel = 0; (ii) ε′′
diel = 1 × 10−4; (iii) ε′′

diel = 1 × 10−3.

at the frequency ωth =
(


ω2
p

2ε′′
diel

)1/3
. Thus, the gain threshold is

given by

|ω0,th| = 1

ωth


[
ε′′

dielωth
(
ω2

th + 
2
) + 
ω2

p

]
. (23)

For |ω0| < |ω0,th| the material response is unconditionally
stable. When the gain matches the threshold value, the band
diagram reaches the real-frequency axis exactly at the point
ω′ = ωth. Note that for ε′′

diel = 0, ωth → ∞ and |ω0,th| = 0, in-
dicating no instability threshold. This means that for ε′′

diel = 0
and sufficiently large frequencies, the system can always be-
come unstable, consistent with the results shown in Fig. 2(b).

Figure 4(a) shows the dependence of |ω0,th| on the scatter-
ing rate 
 and on the imaginary part of the dielectric response
ε′′

diel. It is evident from Fig. 4(a) that reducing ε′′
diel results in a

decrease of |ω0,th|, whereas decreasing 
 leads to an increase
of |ω0,th|. Note that |ω0,th| ∼ 1/
1/3, and hence, for 
 = 0,
|ω0,th| → ∞.

Figure 4(b) shows how the threshold oscillation frequency
ωth (i.e., the instability frequency when the gain parameter
matches the threshold) varies with 
 and ε′′

diel. For ε′′
diel <


/(2ωp) the instability frequency is larger than ωp [purple
region in Fig. 4(b)], whereas for ε′′

diel > 
/(2ωp) it is smaller
than ωp [green region in Fig. 4(b)].

FIG. 4. (a) |ω0,th| and (b) ωth as a function of the scattering rate

 and of the imaginary part of the dielectric response ε′′

diel.
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FIG. 5. (a) Absorptance and (b) transmittance as a function of the normalized frequency for an incident wave polarized as either mode
1 or mode 2. The normalized thickness of the material slab is dωp/(2πc) = 100. (c) Absorptance and (d) transmittance as a function of the
normalized thickness of the material slab for an incident wave polarized as either mode 1 or mode 2. The normalized frequency is ω/ωp = 5. In
all the panels, the material slab is characterized by ε′

diel = 3, ωp/(2π ) = 5 THz, and 
 = 0.03ωp. For ω0/ωp = 0 (blue curves) the absorptance
and transmittance are polarization independent.

D. Transmission and absorption spectra

To study the impact of the non-Hermitian EO effect on the
optical response of the 3D material, next we consider that a
slab of thickness d is illuminated by a circularly polarized
electromagnetic wave. We assume that the material slab in-
terfaces are perpendicular to the trigonal axis (z direction).
As before, the static electric bias (E0) is applied along the
z direction, and the wave propagates along the direction of
the bias (normal incidence). The material is surrounded by a
vacuum.

For normal incidence, the gyrotropic material behaves as
a standard dielectric with permittivity εeff,1 (εeff,2) for an in-
cident electric field polarized as E1 ∼ x̂ + iŷ (E2 ∼ x̂ − iŷ)
[Eq. (21)]. Thus, the reflection and transmission coefficients
take the form [57]

R = i
(
η2

0 − η2
)

sin (βd )

2η0η cos (βd ) − i
(
η2

0 + η2
)

sin (βd )
, (24a)

T = 2η0η

2η0η cos (βd ) − i
(
η2

0 + η2
)

sin (βd )
, (24b)

where η = η0
√

1/εeff and β ≡ kz = ω
c

√
εeff are the intrin-

sic impedance and propagation constant of the equivalent
medium (εeff,1 or εeff,2), and η0 is the intrinsic impedance of
the vacuum. The reflectance R and transmittance T can be
written in terms of the reflection and transmission coefficients

as R = |R|2 and T = |T |2. Finally, the absorptance A can be
calculated from A = 1−R − T .

For an incoming wave that propagates along the +z direc-
tion, an incident field of the type E1 ∼ x̂ + iŷ corresponds to
a right circularly polarized (RCP) wave, whereas an incident
field of the type E2 ∼ x̂ − iŷ corresponds to a left circularly
polarized (LCP) wave. Conversely, when the incoming wave
propagates along the −z direction, illuminating the opposite
face of the material slab, the mode E1 ∼ x̂ + iŷ is associated
with an LCP wave and the mode E2 ∼ x̂ − iŷ is associated
with a RCP wave. Thus, the transmittance for an RCP wave is
T = T1 when the direction of the incoming wave is +z, and
T = T2 when the direction of the incoming is –z. When the
transmittances of modes 1 and 2 are different (T1 �= T2) the
system exhibits nonreciprocity [58].

In Fig. 5, we depict the absorption and transmission
characteristics of the material, presenting their frequency de-
pendence in panels (a) and (b), and their sensitivity to the
variation of the material thickness in panels (c) and (d). The
curves across all panels of Fig. 5 exhibit prominent Fabry-
Perot oscillations, where the absorption and transmission
peaks of the unbiased system (blue curves) are determined by
(ω/c)

√
ε′

dield = nπ . Due to the very close proximity between
adjacent Fabry-Perot resonances within the plotted scales, the
curves exhibit a multitude of tightly packed oscillations. This
creates a visual perception of curves with large thickness
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dictated by the minima and maxima of the oscillations. The
thickness of the curves is primarily influenced by the dielectric
permittivity contrast between the material and the surrounding
air region.

Figure 5(a) shows the absorptance of the electrically biased
3D slab as a function of frequency, for different values of
ω0/ωp and ε′′

diel, and for a normalized thickness dωp/(2πc) =
100. When ω0/ωp = 0 (i.e., for an unbiased material or for
a material without electro-optic response), the absorptances
A1 and A2 of modes 1 and 2 are identical due to the ro-
tational symmetry of the permittivity tensor [see Eq. (20)].
When ω0/ωp �= 0, the material EO response combined with
the intrinsic material loss induce circular dichroism, result-
ing in unequal absorptance for incident waves with opposite
handedness (A1 �= A2). Crucially, for sufficiently large val-
ues of ω0/ωp, the absorptance for incident waves polarized
as E2 diminishes and may even become negative (A2 < 0)
[see Fig. 5(a)], indicating the emergence of optical gain. In
contrast, the absorptance for waves with the E1 polarization
rises as ω0/ωp increases. The polarization-dependent optical
gain is rooted in the non-Hermitian EO effect, the strength of
which becomes significant for large enough ω0/ωp.

Remarkably, for large values of ω0/ωp the non-Hermitian
EO response of the material may also lead to gain in trans-
mission for waves with the E2 polarization. This is shown in
Fig. 5(b), where the transmittance T2 can surpass unity for
high enough ω0/ωp. Conversely, the transmittance for waves
with the E1 polarization decreases as ω0/ωp increases, and
never exceeds unity.

As expected, an increase in the value of the dielectric losses
(ε′′

diel) leads to a decrease in the gain, both in terms of absorp-
tion and transmission, potentially leading to its suppression
[see the red curves in Figs. 5(a) and 5(b)].

Figures 5(c) and 5(d) depict the absorptance and trans-
mittance of the electrically biased 3D material as a function
of the slab thickness d , for different values of ω0/ωp and
a fixed frequency of operation ω = 5ωp. It is evident from
Fig. 5(c) that increasing the slab thickness leads to a larger |A|
(dissipation if A > 0 or gain if A < 0) for both polarization
handednesses. Moreover, an increase in slab thickness results
in higher (lower) transmittance values for mode 2 (mode 1)
[see Fig. 5(d)].

IV. NON-HERMITIAN LINEAR ELECTRO-OPTIC
EFFECT IN TELLURIUM

A. Optical response with DFT calculations

Tellurium (Te) is a promising material for the observa-
tion of the non-Hermitian linear EO effect. Under typical
conditions, tellurium is a slightly p-doped chiral semicon-
ductor with a gyrotropic noncentrosymmetric crystal structure
[44]. However, it is noteworthy that under certain conditions,
n-doping can also be achieved [59–63]. Interestingly, tel-
lurium showcases the ability to exhibit large Berry curvature
dipoles (D) near the Weyl points [44]. Various phenomena ob-
served in tellurium, such as kinetic Faraday rotation [44–47],
current-induced magnetization (kinetic magnetoelectric ef-
fect) [44,48,49], and the circular photogalvanic effect

[44,64–68], find their origin in the existence of the large Berry
curvature dipoles.

Figures 6(a) and 6(b) illustrate the relation between the
Berry curvature dipole (D) and the carrier density [hole den-
sity p in (a), and electron density n in (b)] as a function of
the Fermi energy EF. In addition, the dependence of the dc
conductivities on EF is shown in Figs. 6(c) and 6(d). The data
is obtained from first-principles DFT calculations [44] (see
the Appendix for the calculation methods). Notably, Fig. 6
reveals that n-doping of tellurium leads to larger magnitudes
of the Berry curvature dipole compared to the more com-
mon p-doping scenario. Crucially, these large Berry curvature
dipoles in n-doped tellurium emerge under conditions of low
dc conductivities [see Fig. 6(d)]. Low conductivities are ad-
vantageous as they minimize Joule loss arising from the dc
bias.

Elemental tellurium is a nonmagnetic semiconductor that
forms two enantiomorphic trigonal structures with space
groups P3121 (or D4

3; right-handed structure) and P3221 (or
D6

3; left-handed structure), belonging to the 32 point group
[44,69] discussed in Sec. III. Besides the screw symmetry
along the trigonal z axis, the crystal structure also displays
twofold rotational symmetry along three axes perpendicular
to z. It is noteworthy that this screw symmetry along the
trigonal z axis is directly linked to the helical-type current
orbits discussed in Sec. II.

The Berry curvature dipole tensor of tellurium is equiv-
alent to that given in Eq. (14) [44]. However, due to the
anisotropy of the material, its electromagnetic behavior can-
not be described by the relative permittivity tensor (20).
Instead, tellurium is characterized by the following relative
permittivity tensor:

ε̄(ω)

ε0
= ε⊥1t + iεgẑ × 1t + ε‖ẑ ⊗ ẑ, (25)

with 1t = 1 − ẑ ⊗ ẑ, ε⊥(ω) = εdiel,⊥ − ω2
p,⊥

ω2+i
ω
, ε‖(ω) =

εdiel,‖ − ω2
p,‖

ω2+i
ω
, and εdiel,l = ε′

diel,l + iε′′
diel,l (with l = ⊥, ‖

denoting the directions perpendicular and parallel to the
trigonal axis, respectively). As in Sec. III, for a static electric
bias along the trigonal z axis, εg(ω) = ω0


ω

(
2



+ iω+

ω2+
2

)
.

For simplicity, in Eq. (25) we neglect the chiral response
of tellurium, which is responsible for its natural optical
activity [46,70]. In what follows, relying on Eq. (25), as
well as on first-principles calculations that provide the
Berry curvature dipole D and the dc conductivity [44],
we investigate several optical effects that arise from the
gyrotropic and non-Hermitian linear EO responses of
tellurium. For propagation along the z direction, the equivalent
permittivities for modes 1 and 2 are now εeff,1 = ε⊥ + εg and
εeff,2 = ε⊥ − εg.

B. Kinetic Faraday effect, dichroism, and optical gain

To begin with, we investigate the rotation of light polar-
ization in electrically biased tellurium. This current-induced
Faraday effect was experimentally observed for the first time
in Ref. [45] at a temperature of 77 K, and subsequently,
new measurements were reported in Ref. [46]. We consider
a system formed by a block of tellurium biased by a static
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FIG. 6. (a) and (b) Berry curvature dipole D and carrier density (p or n) as a function of the Fermi energy EF (measured from the top of
the upper valence band) for (a) p-doped Te and (b) n-doped Te. (c) and (d) dc conductivities as a function of the Fermi energy EF (assuming a
scattering relaxation time τ = 0.64 ps [46]) for (c) p-doped Te and (d) n-doped Te.

electric field oriented along the z direction (trigonal axis)
in between two linear polarizers [see Fig. 7(a)]. The linear
polarizers consist of wire grids designed to fully absorb the
electric field component parallel to the wires and allow the full
transmission of the orthogonal component. The wires orienta-
tion of the input wire grid polarizer (WPG) is fixed along the
x direction. As a result, for an incident wave propagating from
the right to the left (+z direction), the input WGP ensures that
the field that illuminates the tellurium slab is oriented along
the y direction. On the other hand, the output WGP is free to
rotate in the xoy plane. The angle α defines the orientation
of the wires of the output WGP [see Fig. 7(a)]. The output
WPG fully suppresses the electric field component parallel to
the wire axis direction defined by ûα = cos(α)x̂ + sin(α)ŷ,
while allowing the orthogonal component to pass through un-
changed. We assume an operational frequency f = 28.3 THz
and a scattering relaxation time τ = 0.64 ps, consistent with
the parameters used in Ref. [46]. Additionally, the thickness
of the Te block is d = 12.5 mm, as in Ref. [46]. Moreover,
we estimate that for f = 28.3 THz the dielectric response
εdiel,⊥ = 21.9 + 6.4 × 10−4i. The dielectric response was
determined through extrapolation from the experimental data
presented in Ref. [71], using a fit with a Lorentz dispersion
equation.

Figure 7(b) depicts the light intensity at the output (after
the polarizer) as a function of the angle α for (i) an unbi-
ased p-doped Te block and (ii) a biased p-doped Te block
with E0 = 35.57 V/mm (which corresponds to |ω0/ωp,⊥| ≈
2.2 × 10−3). The transmission and reflection coefficients for
an incoming wave with linear polarization can be found from

Eqs. (24), by writing the incident wave as a superposition of
two circularly polarized waves with opposite handedness.

Notably, our results (blue dashed line) and the experimen-
tal results of Ref. [46] (blue star symbols) for the unbiased
Te slab exhibit a good agreement. Note that the experimental
results of [46] already exclude the field polarization rotation
arising from the natural optical activity in tellurium. The E0

values for these experimental results are estimated from the
data available in Ref. [46] using E0 = jz/(pμe), with jz the
electric current density along the z direction and μ the hole
mobility. In this example the output light intensity |Eout|2 for
the biased system exhibits a slight decrease compared to the
unbiased case. However, it is important to note that owing to
the presence of Fabry-Perot resonances, the output intensity
|Eout|2 exhibits strong sensitivity to both the slab thickness d
and the magnitude of the static electric field bias E0. Even
slight adjustments of d and/or E0 can lead to a substantial
change in the output amplitude. The system could be easily
tuned to have an |Eout|2 for the biased system larger (or
smaller) than that for the unbiased system.

More interestingly, Fig. 7(b) shows that for E0 =
35.57 V/mm the polarization of an electromagnetic wave
passing through the biased p-doped Te slab is rotated by
±45◦. This suggests the potential for creating an optical
isolator using an electrically biased (along the trigonal z
axis) slab of p-doped Te. However, it is crucial to acknowl-
edge that the required static electric bias magnitude is high
(five times larger than the maximum E0 employed in the
experimental work [46]), probably rendering practical im-
plementation unfeasible. One approach to circumvent this
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FIG. 7. (a) Electrically biased block of Te placed in between two linear polarizers. (b) and (c) Light intensity (|Eout|2) at the output (i.e.,
after the polarizer) as a function of orientation of the output WGP. (b) For p-doped Te with p = 4 × 1016 cm−3, D ≈ 8.385 × 10−5, and
ωp,⊥/(2π ) ≈ 5.773 THz, without a static electric bias (blue dashed line and star symbols), and with a bias E0 = 35.57 V/mm. (c) For n-doped
Te with n = 0.784 × 1016 cm−3, D ≈ −8.99 × 10−3, and ωp,⊥/(2π ) ≈ 1.857 THz, without a static electric bias (blue dashed line), and with
a bias, E0 = 0.39 V/mm. (d) Electric field rotation (ϕ = α1 − α0) as a function of the static electric bias E0. α1 (α0) corresponds to the angle
α that provides maximum light intensity after the output WGP for a system biased with a static electric field E0 (for an unbiased system);
blue solid line and star symbols: p-doped Te slab with the same parameters as in panel (b); orange solid line: n-doped Te slab with the same
parameters as in panel (c). In panels (b), (c), and (d) the frequency of operation is f = 28.3 THz, the thickness of the Te block is d = 12.5 mm,
εdiel,⊥ = 21.9 + 6.4 × 10−4i, and 
 = 1.5625 × 1012 rad/s. The blue star symbols in panels (b) and (d) correspond to the experimental results
of Ref. [46].

problem is to use materials with much larger Berry curvature
dipoles [72]. Another possibility involves using n-doped tel-
lurium [59–63] instead of p-doped tellurium. Remarkably,
n-doped tellurium can offer large values of the Berry curvature
dipole D with low dc conductivity (see Fig. 6). Specifically,
for p-doped tellurium and p = 4 × 1016 cm−3, D ≈ 8.385 ×
10−5, σ0,⊥ ≈ 7.44 S/mm, and σ0,‖ ≈ 1.1 S/mm, whereas for
n-doped tellurium and n = 0.737 × 1016 cm−3, D ≈ −8.99 ×
10−3, σ0,⊥ ≈ 0.770 S/mm, and σ0,‖ ≈ 1.229 S/mm. How-
ever, it is important to note that for n-doped tellurium, when
the optical frequency is non-negligible compared to the domi-
nant interband transitions, the corrections to the semiclassical
approximation used here can reduce the magnitude of D [44].

In Fig. 7(c), we show how the output light intensity |Eout|2
varies with the angle α for (i) an unbiased n-doped Te block
and (ii) a biased n-doped Te block with E0 = 0.39 V/mm
(which corresponds to |ω0/ωp,⊥| ≈ 0.808 × 10−2). By com-
paring Figs. 7(b) and 7(c), it becomes evident that the
relationship between the sign of the static field bias E0 and
the direction of the polarization rotation in a biased p-doped
tellurium slab is opposite to that observed in a biased n-doped
tellurium slab. This is a consequence of the differently signed
Berry curvature dipoles: positive for p-doped tellurium and

negative for n-doped tellurium (see Fig. 6). More importantly,
the results of Fig. 7(c) demonstrate that a 45◦ polarization
rotation in the n-doped Te slab can be achieved by applying
a much lower electric bias (specifically, E0 = 0.39 V/mm),
almost two orders of magnitude smaller than that needed for
the same polarization rotation in the p-doped Te slab. Quite
interestingly, E0 = 0.39 V/mm is almost 18 times smaller
than the maximum value of E0 = 7 V/mm employed in the
experiments reported in Ref. [46]. Thus, n-doped tellurium
emerges as an interesting candidate for the practical realiza-
tion of electrically biased optical isolators.

The sharp difference in the required static electric bias (E0)
for achieving equivalent polarization rotation in n-doped and
p-doped Te becomes even more evident in Fig. 7(d). The
figure depicts the dependence of the angle of rotation ϕ of
the plane of polarization of Eout on the static electric bias E0

for both p-doped and n-doped Te slabs. Notably, our theoret-
ical results (blue solid line) and the experimental data from
Ref. [46] (blue star symbols) for the p-doped Te slab concur
very closely. Furthermore, as seen in Fig. 7(d), p-doped and
n-doped Te slabs exhibit polarization rotations in opposite
directions, in agreement with the results of Figs. 7(b) and
7(c). Finally, Fig. 7(d) shows that an n-doped Te slab requires
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FIG. 8. Absorptance as a function of the thickness of the Te slab for a (a) p-doped and (b) n-doped material. Dashed blue lines: unbiased
(E0 = 0) Te for arbitrarily polarized incident waves; solid orange lines: biased Te for an incident wave polarized as mode 1 (E1 ∼ x̂ + iŷ);
solid green lines: biased Te for an incident wave polarized as mode 2 (E1 ∼ x̂ − iŷ). (a) p = 4 × 1016 cm−3 and E0 = 75 V/mm (which
corresponds to |ω0/ωp,⊥| ≈ 4.638 × 10−3); (b) n = 0.784 × 1016 cm−3 and E0 = 0.75 V/mm (which corresponds to |ω0/ωp,⊥| ≈ 1.546 ×
10−2). The frequency of operation is f = 28.3 THz, εdiel,⊥ = 21.9 + 6.4 × 10−4i, and 
 = 1.5625 × 1012 rad/s.

electric bias magnitudes (|E0|) almost 100 times smaller than
those needed by the p-doped Te to provide the same rotation
of polarization ϕ.

Next, we investigate optical dichroism in an electri-
cally biased tellurium slab. As before, we suppose that
the tellurium slab is subjected to a static electric bias
(E0) along the z direction (trigonal axis) and is illumi-
nated by circularly polarized light propagating in the same z
direction.

In Fig. 8, we present the absorptance characteristics of
unbiased (dashed curves) and electrically biased (solid curves)
p-doped [Fig. 8(a)] and n-doped [Fig. 8(b)] tellurium slabs
as a function of slab thickness d and for a fixed frequency
f = 28.3 THz. It is evident from Figs. 8(a) and 8(b) that the
absorptance curves display a Fabry-Perot oscillation pattern.
The absorption peaks of the unbiased system (dashed curves)
are determined by (ω/c)

√
ε′

diel,⊥d = nπ , where n is an inte-
ger.

For an unbiased system (E0 = 0) and propagation along the
z direction, the permittivity of tellurium is isotropic, leading
to polarization-independent absorptance [see the blue dashed
curves in Figs. 8(a) and 8(b); as before, we ignore the natural
optical activity]. Notably, under a static electric bias (E0 �= 0),
the absorptance becomes polarization dependent, and the ab-
sorptance peaks undergo a relative shift with respect to the
unbiased case. The absorptance peaks associated with E1 ∼
x̂ + iŷ and E2 ∼ x̂ − iŷ polarized incident waves undergo op-
posite shifts, with one polarization shifted rightward and the
other shifted leftward. Therefore, electrically biased tellurium
exhibits optical dichroism. This optical dichroism arises from
the combination of the gyrotropic Hermitian EO response
with the intrinsic loss of Te and can become significant when
E0 (or ω0/ωp,⊥) reaches sufficiently high magnitudes. Within
the parameter range considered in Figs. 8(a) and 8(b), the
absorptances for modes 1 (A1) and 2 (A2) can differ by more
than 54%. The results of Figs. 8(a) and 8(b) demonstrate
that to achieve a comparable level of optical dichroism, the
required magnitude of E0 in the n-doped tellurium is two
orders of magnitude lower than that needed in the p-doped
tellurium. Notably, the magnitude of E0 considered for the

n-doped tellurium (E0 = 0.75 V/mm) is almost one order of
magnitude below the maximum E0 used in the experiments
of Ref. [46] (specifically, E0 = 7 V/mm). Furthermore, it
is important to highlight that the value of E0 can be fur-
ther reduced by increasing the thickness of the tellurium
block.

To conclude this section, we demonstrate that due to the
non-Hermitian linear EO effect, tellurium may also provide
optical gain. Figures 9(a) and 9(b) display how absorptance
varies with the magnitude of the static electric bias (E0) for
both p-doped [Fig. 9(a)] and n-doped [Fig. 9(b)] tellurium.
Quite remarkably, Figs. 9(a) and 9(b) show that when E0

surpasses a certain threshold, the absorptance for circularly
polarized incident waves of a certain handedness can be-
come negative [see the green curve in Fig. 9(a) and the
orange curve in Fig. 9(b)], indicating the emergence of optical
gain. This gain regime emerges due to the nonconserva-
tive (transistor-type) light-matter interactions associated with
the Berry curvature dipoles, which create the opportunity to
have optical gain controlled by the polarization handedness.

For p-doped tellurium, E0 > 0, and propagation along the
+z direction, the gain regime, associated with negative ab-
sorption, occurs for LCP incident waves [see the green curve
in Fig. 9(a)]. However, achieving this gain response in p-
doped tellurium requires exceptionally high values of E0,
exceeding 9.07 V/μm. In contrast, for n-doped tellurium the
optical gain emerges for RCP incident waves [see the orange
curve in Fig. 9(b)]. Crucially, in the case of n-doped tellurium,
the gain response is unlocked for much lower static electric
bias E0, specifically E0 > 57 V/mm. It is worth noting that
these E0 thresholds are consistent with the values obtained
using Eqs. (16) and (22). Therefore, the magnitude of E0

required for achieving optical gain in n-doped tellurium is
more than two orders of magnitude smaller than that needed
in p-doped tellurium. Unfortunately, applying an E0 of the
order of 57 V/mm poses significant practical challenges. Such
a value is eight times larger than the maximum value of E0

employed in the experiments of Ref. [46]. In future work, we
will study other more practical configurations, or more advan-
tageous materials with larger Berry curvature dipoles [72].
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FIG. 9. (a),(b) Absorptance and (c),(d) transmittance as a function of the static electric field bias E0 and ω0/ωp,⊥. (a),(c) p-doped Te
with p = 4 × 1016 cm−3; (b),(d) n-doped Te with n = 0.784 × 1016 cm−3. Dashed blue lines: unbiased (E0 = 0) Te for arbitrarily polarized
incident waves; solid orange lines: biased Te for an incident wave polarized as mode 1 (E1 ∼ x̂ + iŷ); solid green lines: biased Te for an
incident wave polarized as mode 2 (E1 ∼ x̂ − iŷ). The frequency of operation is f = 28.3 THz, the thickness of the Te slab is d = 10 mm,
εdiel,⊥ = 21.9 + 6.4 × 10−4i, and 
 = 1.5625 × 1012 rad/s.

In Figs. 9(c) and 9(d), we depict the transmittance as a
function of the static electric bias magnitude (E0) for both
p-doped [Fig. 9(c)] and n-doped [Fig. 9(d)] tellurium. No-
tably, these results show that for large enough E0, the p-doped
(n-doped) tellurium may also provide transmission gain as
the transmittance for LCP (RCP) incident waves may exceed
unity. Analogous to the absorptance case, n-doped tellurium
requires an E0 roughly 100 times smaller to achieve the same
transmission gain as with p-doped tellurium.

V. CONCLUSIONS

In this work, relying on first-principles DFT and Boltz-
mann transport theory, we have conducted a theoretical
analysis of the linear EO effect within low-symmetry 3D
conductive materials characterized by large Berry curva-
ture dipoles. In line with Ref. [38], our study reveals the
presence of two distinct contributions to the linear EO ef-
fect: one stemming from a gyrotropic Hermitian contribution
linked to a conservative response, and another arising from
a non-Hermitian electro-optic response characterized by its
nonconservative nature. The gyrotropic Hermitian EO re-
sponse may be pictured as being the result of helical-type
microscopic currents induced by the static electric bias, lead-
ing to the generation of an internal static magnetic field.
Remarkably, the Berry curvature dipole tensor may be un-
derstood as a magnetoelectric coupling tensor that relates the
equivalent internal magnetic field to the static electric bias.

Our analysis was centered on 3D materials with D3 sym-
metry under a static electric bias along the trigonal axis.
It was demonstrated that such electrically biased materials

may potentially provide negative absorption (i.e., optical gain)
and transmission amplification. Finally, we have identified
trigonal tellurium as a promising material for exploring and
leveraging the non-Hermitian EO effect. It was demonstrated
that the gyrotropic Hermitian response of tellurium may en-
able realizing electrically biased electromagnetic isolators, as
well as induce significant optical dichroism. Moreover, under
extreme conditions of operation, the non-Hermitian electro-
optic response of tellurium can lead to optical gain. In such
scenarios, n-doped tellurium is especially noteworthy due to
its larger Berry curvature dipoles and lower dc conductivity,
as compared to the commonly used p-doped tellurium.
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APPENDIX: DFT CALCULATION METHODS

Here, we provide a detailed description of the methodology
used for the first-principles DFT calculations. Drawing from
previous studies [44,73,74], our approach involved density
functional band-structure calculations using the VASP code
[75]. These calculations incorporated spin-orbit coupling and
employed the HSE06 hybrid functional [76], utilizing a 6 ×
6 × 8 grid of k points. This way, we obtained an energy
gap of 0.312 eV, which agrees well with both the calculated
value of 0.314 eV from the GW method [77] and the ex-
perimental value of 0.323 eV [78]. In order to interpolate
the bands and Berry curvature on an ultradense grid of k
points, we construct Wannier functions, as implemented in

the WANNIER90 code [79] using the s and p orbitals of Te as
initial projections (24 Wannier functions in total). More de-
tails on the DFT calculations and Wannierization can be found
in [73].

The difference here is that we do not use the maxi-
mal localization technique [80], but just disentanglement and
projections [81]. Furthermore, to avoid any artifacts arising
from numerical inaccuracies causing the Wannier functions
to break symmetries, we symmetrize the Wannier Hamilto-
nian and position matrix elements, following the procedure
described in [82] and implemented in the WANNIERBERRI code
[83]. To accurately evaluate the integral for the Berry curva-
ture dipole, we note that only k points in the vicinity of the H
point contribute significantly. Thus, we sample the irreducible
wedge around the H point with a grid of points spaced by
no less than 0.004 Å−1, and then perform 400 adaptive refine-
ment iterations [83] to ensure convergence. We use the “Fermi
sea” formulation [right-hand side of Eq. (11)] with the Berry
curvature gradient evaluated following [84] and Fermi factors
evaluated with the tetrahedron method.
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