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Fractional Chern insulators (FCI) were proposed theoretically about a decade ago. These exotic states of matter
are fractional quantum Hall states realized when a nearly flat Chern band is partially filled, even in the absence of
an external magnetic field. Recently, exciting experimental signatures of such states have been reported in twisted
MoTe, bilayer systems. Motivated by these experimental and theoretical progresses, in this paper, we develop a
projective construction for the composite fermion states (either the Jain’s sequence or the composite Fermi liquid)
in a partially filled Chern band with Chern number C = =1, which is capable of capturing the microscopics, e.g.,
symmetry fractionalization patterns and magnetoroton excitations. On the mean-field level, the ground states’
and excited states’ composite fermion wave functions are found self-consistently in an enlarged Hilbert space.
Beyond the mean field, these wave functions can be projected back to the physical Hilbert space to construct
the electronic wave functions, allowing direct comparison with FCI states from exact diagonalization on finite
lattices. We find that the projected electronic wave function corresponds to the combinatorial hyperdeterminant
of a tensor. When applied to the traditional Galilean invariant Landau level context, the present construction
exactly reproduces Jain’s composite fermion wave functions. We apply this projective construction to the
twisted bilayer MoTe, system. Experimentally relevant properties are computed, such as the magnetoroton band

structures and quantum numbers.
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I. INTRODUCTION

Fractional Chern insulators (FCI) were theoretically pro-
posed about a decade ago [1-6] as fractional quantum Hall
states in the absence of the external magnetic field. Different
from the traditional fractional quantum Hall (FQH) states
realized in Landau levels (LL), in FCI the electrons partially
fill a nearly flat Chern band, and the Berry’s curvature from
the Chern band plays the role of the magnetic field. When
Coulomb interactions are strong enough compared with the
bandwidth of the Chern band, fractional quantum Hall states
may be realized, which may host Abelian or non-Abelian
anyon excitations. Although the theoretical possibility of such
fascinating correlated states of matter in realistic materials has
been known for quite some time, and intensive experimental
efforts have been made in various candidate materials [7],
only recently the experimental signatures of FCI have been
reported in twisted MoTe, bilayer systems [8—11] and rhom-
bohedral pentalayer graphene/hBN moiré superlattice [12].

In traditional FQH states, the energy scale of the excita-
tions is determined by the Coulomb energy scale % where
Ip is the magnetic length and € is the dielectric constant.
In FCI, however, Iz should be essentially replaced by the
lattice constant a of the crystalline order. This suggests that
FCI states, as a matter of principle, may host dynamics with
much larger energy scales, and could be ideal experimen-
tal platforms to investigate quantum phenomena like anyon
statistics. The ongoing theoretical development mainly fo-
cuses on clarifying the criterion to realize FCI phases, from
ideal flat-band condition to vortexability [13—17], and on
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constructing analytic ground-state wave functions in certain
limits [15,18,19]. However, the microscopic theoretical tools
suitable to study FCI states are limited: the main theoretical
tools currently available include exact diagonalization (ED)
and density matrix renormalization group (DMRG) numerics
[20-26]. Several outstanding issues are directly related to
the ongoing experimental efforts, yet they are challenging to
answer using the available theoretical tools. Below, we remark
on some of them.

Some of these issues concern the ground-state properties
of FCI systems. One crucial question is whether the exper-
imental FCI states realize entirely new states of matter, that
are not adiabatically connected to the traditional LL. FQH
states. Theoretically, from the classification viewpoint, such
new states of matter could exist from two perspectives. First,
the topological order, namely, the anyon contents of the FCI
states, may not be realized in traditional FQH states. Second,
even if the topological orders of the FCI states are identical
to the traditional FQH states, the presence of the crystalline
symmetry may enrich the topological orders, giving rise to
different symmetry-enriched topological (SET) states [27,28].
One such SET phenomenon that has been discussed in the lit-
erature is the analog of the Wen-Zee shift [29] for the discrete
crystalline rotation symmetry group [30-33], which is related
to the spin angular momentum carried per quasiparticle. Non-
trivial Wen-Zee shift would lead to, for instance, fractionally
quantized charges at lattice disclinations in the bulk [32,33].

In the traditional FQH context, the composite fermion
states [34] are associated with a simple mean-field picture.
After the flux attachment [35], the electron in a physical
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FIG. 1. Illustration for the possible change of Wen-Zee shift due
to the CF band inversion when tuning the parameter A, so that the CF
states at A = 0 and 1 belong to different SET phases.

LL becomes a composite fermion (CF) that sees an effec-
tive magnetic field: a fraction of the physical magnetic field.
Consequently, the CF fills an integer number of effective com-
posite fermion LLs. The Jain’s sequence at filling v = FPH
corresponds to attaching 2 s unit of flux to the electron, and the
CF fills p CF LLs. Note that the CF wave function is a free-
fermion state in this mean-field picture: a Slater determinant.
The physical electronic wave function, e.g., the Laughlin’s
wave function, obviously, is not a Slater determinant.

In the FCI context, this mean-field picture is expected
to be modified naturally: the electron LL is replaced by a
Chern band, while the CF Chern bands also replace the CF
LLs. Physically, the different CF LLs are characterized by
the spin angular momentum carried per CF: for the nth (n =
0,1,2...) CF LL, the CF carries spin angular momentum
| = n. Although continuous rotation symmetry is absent in
the FCI context, the angular momentum mod m is still sharply
defined for C,, crystalline rotation symmetry.

As a thought experiment, one may imagine smoothly de-
forming the electronic Hamiltonian H(X) with a parameter
A while preserving the physical symmetries so that a LL CF
state at A = 0 is connected with an FCI CF state at A = 1.
The question is whether or not the two states are in the same
quantum phase. The physics of topological insulators teaches
us that band inversion may give rise to new states of matter.
Indeed, when the CF Chern bands have a full band inversion
from A =0 to 1, the system would have a corresponding
change of the Wen-Zee shift, in which case the two states are
in different SET phases. See Fig. 1 for illustration.

Some other theoretical issues are about the dynamical
properties of the FCI states. For instance, the magnetorotons
are the charge-neutral bulk excitations and have been exper-
imentally probed using Raman scattering in the traditional
FQH systems [36-38]. In the presence of the Galilean in-
variance, the magnetoroton at wave vector ¢ = 0 has been
recently interpreted by Haldane as the collective mode of
the geometry fluctuations [39,40], analogous to the graviton,
carrying angular momentum / = =£2 [41]. In the FCI systems,
there is no reason these magnetorotons necessarily catrry an-
gular momentum / = +2. What are the crystalline quantum
numbers carried by the magnetorotons in FCI systems? How
to theoretically compute the magnetoroton spectra in FCI sys-
tems? These questions are also relevant to the quantum phase
transitions involving FCI states. For instance, when magne-
torotons become gapless at certain momenta, the system is

expected to break translational symmetry and develop charge
density wave order.

Due to the limitation of the small system sizes for ED
and the difficulty of implementing DMRG on sizable torus
samples, answering questions about the crystalline quantum
numbers has been challenging for FCI systems. Developing
new theoretical tools to investigate these important questions
would be desirable.

On the other hand, a different class of quantum systems
hosting topologically ordered phases is the quantum spin
liquids. There, a nice theoretical tool is available: projective
constructions such as the Schwinger-boson and Abrikosov-
fermion methods [42-50]. These projective constructions are
very helpful: they provide mean-field theories for the topolog-
ically ordered states by enlarging the physical Hilbert space.
The mean-field wave functions can be improved by projection
back to the physical space, leading to physical wave functions
that can be directly compared with other numerical methods,
e.g., ED and DMRG. The detailed microscopic information,
such as the crystalline symmetry quantum numbers carried
by the ground states and excited states, is accessible in these
methods. However, in FCI systems, similar projective con-
struction has been lacking.

Motivated by these issues, we establish a projective con-
struction for the composite fermion states in fractional Chern
insulators in this paper. Our main results can be summarized
as a general procedure. The procedure input is the Hamil-
tonian Hcp describing a partially filled Chern band with
Chern number C = £1, which we want to investigate. The
procedure output is twofold. First, on the mean-field level,
the procedure outputs a Hartree-Fock (HF) mean-field Hamil-
tonian for the CF states in an enlarged Hilbert space, whose
ground state is the CF wave function |1p}§’{f) and is a Slater
determinant. The excitations of the system (e.g., the mag-
netoroton collective modes) can be calculated within the
time-dependent Hartree-Fock (TDHF) framework. Second,
beyond the mean-field level, the CF wave function can be pro-
jected into the physical electronic wave function [, (Y MF)) =
Py YY) (P is a projector), which turns out to be a so-called
hyperdeterminant of a tensor and can be compared with wave
functions obtained from ED.

The paper is organized as follows. Because we will dis-
cuss both |Y0F) and [ (YMF)), to avoid confusion, below
we will denote the former wave function as the mean-field
(MF) CF state, while the latter wave function as the elec-
tronic (or projected) CF state. To present a self-contained
discussion, in Sec. II we briefly review several related pieces
of previous works, including Jain’s CF construction [35],
Murthy-Shankar’s Hamiltonian formalism [51], the construc-
tion of v = 1 bosonic composite Fermi liquid developed by
Pasquier-Haldane [52] and Read [53]. In Sec. III we discuss
the general projective construction on finite-size crystalline
systems for composite fermion states (either in the Jain’s
sequence or the composite Fermi liquid), which is based on
Murthy-Shankar’s construction. This projective construction
leads to the MF CF ground states and excited states on the
mean-field level, as well as a projection operation P to go
beyond the mean field. In Sec. IIT E, we study the mathemat-
ical details of the projection P operation and show that the
general projected CF states are hyperdeterminants of tensors.
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We then connect our results with previous works including
Jain’s construction in the traditional FQH context and the
parton construction in the FCI context. Interestingly, despite
the current construction reproduces Jain’s wave functions in
the traditional Galilean invariant Landau level context, in the
absence of the Galilean invariance (e.g., in a FCI system),
the present construction and the naive generalization of Jain’s
prescription are different in general. In Sec. IV, we apply
this general procedure to two microscopic FCI models: a
toy model of mixed Landau levels introduced by Murthy
and Shankar [54], and the realistic model for the twisted
bilayer MoTe; [55]. Experimentally relevant properties of the
FCI states are computed, such as the magnetoroton quantum
numbers and spectra. Finally, we discuss possible future de-
velopments of our construction and conclude in Sec. V.

II. A BRIEF REVIEW OF RELATED PREVIOUS WORKS
A. Jain’s composite fermion construction

Jain’s wave functions for composite fermion states
[34,35,56-58] are based on the seminal idea of the flux at-
tachment. To describe the fractional quantum Hall states at
filling v = Zm% where p, s € Z are integers, Jain proposed
the following wave functions in the symmetric gauge of the
lowest Landau level with the open boundary condition [59]

P =

2psHl

L [ [G— 2% % 2. ey

i<j

Here x,(z,Z) is the Jain’s composite fermion wave func-
tion with p-filled Landau levels. The flux attachment in this
scheme is achieved by the Jastrow factor (z; — zj)zs: when
one electron moves around another electron by a circle, this
factor gives a 4ms phase shift, similar to when an electron
moves around 2s-flux tube. The projection operation Py,
ensures the final wave function is within the lowest Landau
level (LLL). Precisely, Jain proposes the prescription to re-
place Z by the derivative Prp : Z — 2162(,%, where [/, is the
electron’s magnetic length. By moving all the derivatives to
the left, the obtained wave function is holomorphic as re-
quired by the LLL. Jain’s wave functions, after adapted to
appropriated boundary conditions, have been demonstrated
to have excellent overlap with those obtained from the exact
diagonalization.

Jain’s composite fermion wave function x,(z, Z) is a single
Slater determinant. In the simplest p = 1 case, it is the Van-
dermonde determinant together with the Gaussian factor:

2 2D
[
det %L B e |z
Xp=1 =det| > 2 2 eXp —E oy
g a0 B — 42
1

|z
Zl_[(Zi_Zj) exp —24—12 . 2)

i<j i

In this particular case, the projection Pryp is unnecessary
since Z is not present, and Jain’s wave functions become
Laughlin’s wave functions [60].

Despite the success of Jain’s wave functions in the FQHE,
how to generalize them to the context of FCI remains unclear.
In fact, we want to mention two conceptual puzzles in Jain’s
original construction, which motivated us to develop the new
construction. First, the physical meaning of the composite
fermion Landau levels needs to be clarified. For instance, how
many composite fermion Landau levels are there? In a finite-
size system, the dimension of the physical electronic Hilbert
space is finite. It would be unphysical to have a construction
involving an infinite number of composite fermion Landau
levels. So, if this number is finite for a finite-size sample, what
is it?

Second, let us pay attention to the Gaussian factor

expl— D, %] in the composite fermion state (2). The puzzle
is the appeafance of the electronic magnetic length /,. On the
one hand, this is required by Jain’s prescription to obtain a
wave function wzpil : within the LLL of the electrons. On the
other hand, physically, if the composite fermion sees a weaker
magnetic field with an effective magnetic length Icg > [,
would not /cr be appearing in the Gaussian?

We will come back to these two puzzles in Sec. Il F, where
we demonstrate that the new construction solves both puzzles

naturally.

B. Murthy-Shankar Hamiltonian theory

Focusing on the composite fermion states, Murthy and
Shankar developed a Hamiltonian theory for FQHE [51]. Let
us first set up some basic notations. The electron’s full position
operator r, can be separated into the mutually commuting
guiding center R, and cyclotron 7, degrees of freedom:

r. =Re+ e, 3)
satisfying the algebra

[Re.m Re.y] = _1182’ [ne,m ne.y] = llez (4)

For the dynamics within the LLL, the n, degrees of free-
dom are frozen and one needs to focus on the guiding-center
part of the density operator (i labels the particle)

poae) =) &40, (5)
i

which satisfies the Girvin-MacDonald-Platzman (GMP)
algebra [61]
. 9e X q/e /

[0.(4e), p.(q;)] = 2i sin [Tlf}pg(qe +q,). (6
The electron Hamiltonian constrained within the LLL can be
represented using this density operator. For instance, for the
Coulomb interaction,

)
_ e

e — ﬁ - e 2 U(qe) : pe(qe)pe(_qe) 5 (7)

where v(q,) = i’la 62‘ and A is the real-space sample size.

To achieve the flux attachment, Murthy and Shankar intro-
duced auxiliary degrees of freedom, the vortex guiding center
‘R, to enlarge the Hilbert space:

[RU,Xv Rv,y] = llf (8)
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Here the vortex magnetic length [, = % with ¢ = v/ 22ps .

. . . pstl
Physically, R, describes the vortex that carries an electric
charge ¢, that has an opposite sign of the electron’s electric
charge g.: g, = —Z;fi]qe. With these auxiliary degrees of
freedom, the full composite fermion degrees of freedom can
be constructed, including the mutually commuting guiding

center and the cyclotron components:

R, — R, c

Rer = [—2 o F=

5 (R =R, ()

satisfying the algebra
[Rer.s Reryl = —ileg, Dickx nery] = ileg.— (10)

Here the CF magnetic length Icp = ﬁ = ./2ps+ 11,
which can be interpreted as the CF electric charge gcr =

2piﬁ We also list the inverse transformation of Eq. (9):

1
Re =Rcr+cnce, Ry =TRcr+ ~TICE- (1D

If we denote the electron’s and the vortex’s single-particle
Hilbert spaces as H, and ‘H,, the composite fermion lives in an
enlarged Hilbert space Hcr = H. ® H,, that can be decom-
posed into CF’s guiding center and the cyclotron components:
Her = HRCF ® HUCF' .

Any physical operator O, acting in the electronic Fock
space, including the Hamiltonian H,, then can be mapped to
the composite fermion Fock space. As a fundamental exam-
ple, the electron’s density operator can be identified with

i Re(i iqe [ R criy+Cncr
p.(q.) = Ze'q D — Ze"l [Reri+encrn] (12)
i i

The composite fermion states with p-filled CF LLs can be
viewed as the Hartree-Fock mean-field ground states of H,. In
addition, the bulk excitations such as the magnetoroton spec-
tra can be computed within the time-dependent Hartree-Fock
framework [62,63]. These mean-field results are qualitatively
consistent with other calculation methods.

More recently, Murthy and Shankar generalized this
Hamiltonian approach to the context of FCI [54]. This gen-
eralization is based on two important observations. First, the
bloch states in a Chern band with Chern number C = %1
can be mapped to the wave functions in the LLL on a torus
[64]. Accordingly, an FCI Hamiltonian with C = %1 can be
exactly mapped to an electronic Hamiltonian in the LLL, with
the presence of a crystalline potential. Second, the density
operators as p.(q.) in Eq. (5) on a finite-size torus actually
form a complete basis for any fermion bilinears (i.e., single-
body operators). Therefore, any density-density interactions
can also be straightforwardly mapped into the LLL problem
based on Eq. (12).

In the Murthy-Shankar Hamiltonian construction, the
physical origin of the CF LL is clear as it is a consequence
of the enlarged Hilbert space. The relation with Jain’s wave
functions, however, remains a puzzle. It is also unclear how to
improve beyond the mean-field treatment, a challenge related
to the gauge structure of the construction that was first studied
by Read [53] in the context of the bosonic v = 1 composite
Fermi liquid, as we will discuss shortly.

C. Pasquier-Haldane-Read construction for the bosonic
v = 1 composite fermion liquid

The Pasquier-Haldane work [52] considered bosonic
charged particles at v = 1. Here, one may argue that after at-
taching one unit flux, the boson becomes a composite fermion
that sees no effective magnetic field, which forms a composite
Fermi sea. The boson’s Fock space is enlarged by introducing
fermions with two indices c,,, satisfying the usual algebra:

= 6ml71’5nn’ . (] 3)

+
{Cmn, Cm,n,}

Here m,n € 1,2,....N, and N is the number of bosonic par-

ticles and the number of orbitals in the LLL. The basis states

of the physical Fock space of bosons are then constructed as
ny,ng,....ny .t

,my) =€ el e el a0y, (14)

|lmy, my, ... sy Cgmny * + + Criy

where |0) is the vacuum of the ¢, fermion’s Fock space,
and € is the fully antisymmetric Levi-Civita symbol, and
we have used the Einstein notation. Read [53] studied the
mean-field theory and gauge fluctuations of this theory. As
any theory involving an enlarged Hilbert space, the physical
state is obtained only when the gauge redundancy is removed.
In the present case, the constraint that the physical states
need to satisfy is exactly the invariance under the SU(N )g
transformation generated by (apart from the trace)

Pr = ChConr - (15)

On the other hand, the physical density operators are

L T
[ —_— Crum Crn - ( 16)

Note that p, and p;, commute. The constraint can then be
implemented as the identity on the operator level: pf , = §,,,
which is treated using the Hartree-Fock and time-dependent
Hartree-Fock approximation (also called the conserving ap-
proximation) in Ref. [53].

The Pasquier-Haldane-Read construction, although only
applicable to the bosonic v = 1 CFL, is closely related to the
Murthy-Shankar Hamiltonian theory, which we will explain
below.

III. PROJECTIVE CONSTRUCTION
ON A FINITE-SIZE SYSTEM

In this section, step by step, we present a general projective
construction of CF states applicable for both traditional FQHE
and FCI systems. Several steps of this construction are based
on the Murthy-Shankar Hamiltonian theory but on finite-size
systems.

In this paper, to avoid confusion, we will always use the
regular font for operators in the single-particle Hilbert spaces
and the bold font for corresponding operators in many-particle
Fock spaces.

A. Mapping a Chern band to the lowest Landau level

Soon after the theoretical proposal of the FCI, it is under-
stood that a generic Chern band with Chern number C = +£1
can be mapped to the LLL preserving the crystalline sym-
metries [65—67]. Recently, further investigations have been
made on various ideal Chern band conditions which could
allow exact mapping of ground-state wave functions between
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FIG. 2. Geometry setup of the LLL Bloch basis: The torus sam-
ple, equivalent to a parallelogram, is parametrized by a real length L,
and a modular parameter t. The N, N, . zeros {z,} (red hexagons)
of the Haldane-Rezayi wave function are equally distributed on the
torus sample by construction [see Eq. (32)]. There are also N; N .
independent groups of {k, zym} satisfying the boundary condition
(28), i.e., Ny .N,, independent basis parametrized by different val-
ues of z; 0, which also forms N, N, . grids as green triangles [see
Eq. (33)].

FCI systems and FQH systems, in the presence of certain
short-range interactions [13—19]. However, in work, we are
motivated to investigate generic FCI states which potentially
are far away from the FQH systems. Therefore, we will focus
on the generic Chern band mapping [65-67] without invoking
ideal band conditions.

In this section, we present a detailed construction for such
a mapping. The main results are summarized as follows. We
construct the bloch basis in the LLL in Egs. (30) and (36),
represented using the Jabobi’s ¢ function introduced by Hal-
dane and Rezayi [64] as illustrated in Fig. 2. A Hamiltonian
in a generic Chern band Hcp can then be exactly mapped
to a Hamiltonian in the LLL H, following the Hilbert space
mapping in Eq. (46). The crystalline translation and rotation
symmetries in Hep are mapped into the magnetic translation
and rotation symmetries in H, in Eq. (45). Note that since the
Hamiltonian H, in the LLL faithfully contains all the lattice-
scale physics of Hcp, H, generally does not have Galilean
invariance as in the traditional FQH problems. Finally, for the
purpose of performing practical calculations, it is convenient
to represent H, using the electron density operators in the LLL
as shown in Eq. (50).

First, let us introduce the single-particle Bloch basis in the
LLL. The mutually commuting guiding center and cyclotron
degrees of freedom in the LLL are (e > 0)

l2
Re =T — Ne, Ne = éz X (pe + EAe)v (17)

where the magnetic length [, = v/-. The usual Kinetic

Hamiltonian only depends on the 7,:
2
= (pe+6Ae)2 . h 2

H, - .
K 2m, 2m It

(18)

Without loss of generality, we choose the Landau gauge A, =
(B.y, 0) in this section. The subscript e highlights the objects
for physical electrons because, in the next step, we will intro-
duce similar objects for vortices and composite fermions.

Throughout this paper, unless explicitly stated otherwise,
we focus on the case with B, > 0, whose LLL has a Chern
number C = —1. For Chern band systems whose Chern
number C = +1, one needs to perform a time-reversal trans-
formation to map to the LLL discussed here.

To save notation, we will interchangeably use the complex
number z = x + iy to represent a vector r = (x, y). The single-
particle magnetic translation operator is

D.(20) = Ur,e(20)Te(20), 19)

where T,(zg) is the usual translation operator: T,(zo)V.(z) =
Yo(z — 20), and Ur .(zo) is the associated gauge transforma-
tion that is fixed up to a U(1) phase factor. One choice to fix
this U(1) phase ambiguity is to define D,(zp) as the density
operator:

.20
where q.,,, = ll—z. (20)
‘We will fix this definition in the discussion below. One may
straightforwardly check that the explicit form of Ur .(z9) is
now

D.(z0) = pe(qe,ZQ) = eiqe'FU-Re»

UT,e(ZO) _ eﬁ(xnyo*z}‘ox). @1

The magnetic translations satisfy the algebra

De(z)De(z) = e " Dz +21),  (22)
and, consequently, they satisfy the commutation relation

[De(Z0)7 DE(ZI)] = 2i sin xoylz;lzyoxl

This is just another way to write the GMP algebra (6).

Note that, although on the single-particle level we have
Eq. (20), the many-particle versions of the density operator
and the magnetic translation operator in the Fock spaces are
defined differently. In the first-quantization language,

pe(qt?) = Z pe(qe)(i)»

D.(z0 +z1). (23)

D.(z0) = [ [ De(zo)ii- (24)

where the subscript i means the operator is acting on the ith
particle. They satisfy

D,(20)p,(q.)Dc(20)" = € %% p,(q,). (25)

We will come back to these many-particle operators later.
On a finite-size torus, the boundary conditions can be de-
scribed by the operator identities

De(Ll) = e_i%'l , DE(LIT) = e—i%‘z’ (26)

where L; > 0, T is a complex number with positive imaginary
part capturing the shape of the sample, and L; and |L;t| spec-
ify the real-space sample size. Note that D.(L;) and D.(L;7)
must commute to apply the boundary conditions, leading to
the flux quantization condition: the total number of fluxes
through the sample is an integer Ny .
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Haldane and Rezayi [64] pointed out that the orbital wave
functions in the LLL, in the present gauge, can be compactly
written in terms of the odd Jacobi-9¥ function, parametrized
by Ng . zeros z, (v =1,2,..., Ny .) and a complex number
k (note that the convention for the magnetic translation in this
work differs from that in Ref. [64] by a minus sign):

V() o f2)e E
Ny
with f(z) = e** l—[ V17 (z — zv)/Ly|7], 27

v=1

where the value of k and the sum of zeros zgym = Y, z, need
to be consistent with the boundary conditions

eikL] — (_I)sz,egi(ﬁm ,

eiZNZsum/Ll — (_ 1 )N¢,peilﬂe,2—ikL| T (28)

Although it appears that the wave function can be smoothly
tuned, there are only Ny, linearly independent wave func-
tions. Let (ko, zsum,0) be one solution of Eq. (28), the other
solutions have the form

2ml 1

k=ko+——,

l,' eZ.
L

(29)

Zsum = Zsum,0 + L2L1 — L1 LT,

In order to study a Chern-band sample with N; N, unit
cells, one can construct the corresponding Bloch basis in the
LLL. Namely, we consider the two real-space basis vectors
aj., ay, with L; = Ma;,, and Lt = May .. D.(a;,) and
D.(ay ) need to commute as the usual lattice translations.
To have a one-to-one mapping between the Chern band and
the LLL, one further chooses the area spanned by a; ., as,
contains exactly one flux unit, so that Ny N, . = Ny .. With
this setup, the minimal magnetic translations along a; ., as .
directions allowed by the boundary conditions are ;’,‘2 , Iav’le s
respectively. S

The Bloch basis in the LLL is formed by N, N, . simulta-
neous eigenstates of a ., ay , magnetic translations:

Do(ar)|ke)iir = e ™[k, ),

De(ao)lke)iin = e ™ K,)LLL, (30)
where
mle+(ple/(27f)
ke, Mo, Mre) — é(}l,e
(my,e,ma.c) Nl,e
my e+ @r./(2m
4 et ® /( )Gz,e,
NZ,e
_iaZ e ial e
Gle=——, Gro,=—-. 31
1, P 2, B (3D

Here, G, ., are the reciprocal basis vectors of a; ., where the
complex factor i is used in the last line because the reciprocal
vector is expressed in complex coordinates, and one may
choose a Brillouin zone (BZ) with m; , € [0, N;, — 1] being
integers. These Bloch states can be written in terms of infinite
sums, as performed in Refs. [54,67] for the case of a square
lattice. Here, instead, we simply represent them using the
Haldane-Rezayi Jacobi- function via parameters k and z,,.

To satisfy the eigencondition (30), obviously the zeros z,
of |k,)LrL need to form a Ny N, . grid in the real space:

2y =271 +niag . + may,, (32)

where n; € [0, N; . — 1] are integers, and z; can be completely
determined by zgm (see Fig. 2 for an illustration). Different
|ke)LrL’s correspond to different values of z;. According to
Eq. (29), one finds that the possible values of z; are related as

al,e i aZ,e
— )
NZ,e Nl.e

z21=2z10+0h (33)

where z; ¢ is determined by zgm,0. Since the pattern of zeros
returns to itself after [; — [; + N, . in Eq. (32), the linearly in-
dependent choices of z; correspond to /; € [0, N; . — 1]. These
allowed values of z; ¢ also form a grid (see Fig. 2 for an illus-
tration), related by magnetic translations De(lzﬁ -1 ;ZT)
There is a one-to-one mapping between the values of k. in
Eq. (31) and the values of z; in Eq. (33).

At this point, an instructive observation is that the magnetic

translations De(lzi,;—'” — ll%) are exactly the density oper-

ators in Eq. (5) for the finite-size sample. The relation (20)
leads to the correspondence

l I}
De <12 Ale — ll 32$€> = Pe (qe = _lGl,e + _2G2,e>-

N2,e Nl,e Nl,e NZ,
(34)
Due to the GMP algebra, we know that for q, = ]JT‘GLE, +
l Na
sz’e Gz,ea

Pe(qe) KoL o 1qe + Ke)rrr. (35)

Therefore, if one chooses zjo corresponding to k. (.0
in Eq. (31), we have the identification [; = m;, between
Egs. (33) and (31), as expected.

To have a concrete discussion, we still need to fix a gauge
for these Bloch states. In this paper, we choose the Landau-
type gauge of |Kk,)r 1L so that

G,
Pe (qe = Nl,:) |ke.(m1_k,mz,e)>LLL

e,\yq‘%(mz.ﬁ-m.y/(h))

|Ke, (my o+1,m5 ) )LLL »

G,
Pe ((Ie = Nz,j) [Ke, (1 0omo0) JLLL

= |Ke,(my ¢, o+1))LLL- (36)

The phase factor in the first line is to satisfy the GMP alge-
bra. Applying the GMP algebra, the matrix elements of any
density operator are analytically known in this LLL bloch
basis. In particular, as noted in Ref. [54], the Nz,e density
operators with /1, [, € [0, Ny, — 1] form a complete basis of
single-body operators in the LLL. In fact, one can show that
for any single-body operator A,, one can expand it by the
density operators

A G, G,
Ae = Z anl, - P, <q€ = ll Nl’ + lzNi), (37)
1,1 €[0.Np o—1] Le .
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where

an, =

1 ~ Gl e G2e
Tr [Acpe| qe = —1 — —1 - s 38
N¢,e ' |: P <q : Nl,e g N2,e >:| ( )

which follows the GMP algebra and the fact that p.(q.) is
traceless unless g, is a linear superposition of N, .G, and
N, G2, with integer coefficients.

One could extend the smooth gauge (36) of the LLL Bloch
states beyond the BZ specified by m; , € [0, N; ., — 1], leading
to the BZ boundary condition

ke + Gio)iir = [Ke)rie,
ke + Goe)iir = e M|k, ). (39)

It is known that the Bloch wave functions in a C = %1
Chern band (CB) can be mapped to the orbitals in the LLL,
preserving the rotation and translation symmetries [67]. To
this end we need to discuss the magnetic rotation operation
by an angle 6 in the LLL:

Ve(2) = U o (O)R(OWe(2) = Ur () e(e "), (40)

where R,(0) : Y.(z) = ¥.(ez) is the usual rotation,
Ug.(0) is the associated gauge transformation, determined
up to a U(1) phase factor. In this paper, we fix this phase
ambiguity by choosing

—i [sin 26

Ug.(0) = exp [— >

o (o =) + (1 = cos 20>xy]],

41)
satisfying Ug (27 )R, (2r) = 1 and

[Ur,e(01)R(01)1[UR,(62)Rc(62)] = Ug (61 + 62)R (01 + 62).
(42)

As long as the modular parameter T and the boundary condi-
tions are consistent with the rotation angle (e.g., there exists
n; € Z such that ¢t = ny + ny1), the magnetic rotation in
the LLL is legitimate. Generally speaking, the magnetic rota-
tion sends |K,)r1 1 to a linear superposition of the Bloch basis.
If one further requires a; , to be consistent with the rota-
tion, e.g., when a; , generates a square lattice and 0 = %, the
magnetic rotation does send |k, )1 to a single Bloch state:

Ur.o(0)R(0)K )L = ¥Rk, )ppr. 43)

It turns out that, generally speaking, the rotation should be
interpreted as about the [7, 7] point, i.e., Rk, = ¢ (k, —
K.) + K, where K, = qu + G; This is the consequence of
the magnetic translation algebra (see Appendix A for details).

The phase factor @k is fixed by the gauge choice in
Eq. (36). One way to compute it is to realize the magnetic
symmetry group compatibility condition

(U ¢ (0)R(0)1D(20)[Ur «(O)R(0)] " = De(ez0), (44)

which can be established using Eqgs. (21) and (41). Choosing
20 = ;‘T";, ;\%g and applying this identity to the Bloch gauge
condition (36), an equation determining £(6, k.) can be ob-
tained and solved (see Appendix A for details and explicit
forms of e @-k)),

In a Chern band (CB), we will have the usual rotation RgB
and usual translations 78 (a, ). Generally, one can show that

the following correspondence can be made:
TP (i) < (=1De(aje),  RG® < Ue(0)R(6),  (45)

because the algebra satisfied by the corresponding operators is
identical. The minus sign in the first relation is not required for
C, and C, systems but is required for the C;5 and Cg systems.
To have a uniform discussion, we choose this minus sign as
a convention even for C, and C4 systems. Namely, the crystal
momentum for the CB system will be shifted by (7, 7) when
mapping into the LLL:

|ke)cB <> ke + Kodpir- (46)

Precisely, one needs to choose a smooth gauge in the CB
satisfying the same BZ boundary condition as Eq. (39) [67]:

|ke + Gl,e>CB = |ke)CBa
ke + Gae)cp = e ™ |k,)cp, 47

and the physical rotation RSB (6) needs to satisfy the same rule
as Eq. (43):

REB(0)|ke)cp = €Kt |k ). (48)

Under conditions (47) and (48), the identification (46) allows
one to map the original Hamiltonian Hcp in the CB into a
Hamiltonian H, in the LLL, preserving the rotation symmetry.
If Hcg has the form

1
HCB = Z h(Ge)pCB(Ge) + E Z V(qe)pCB(qe)pCB(_qe)’
GP qe

(49)
then H, is [54]

H, = Zh(G»[Ze(Ge, G,)p.(G, + Gb}
G,

e G,

1
+ 3 qZ V(qe>[ GZ c(qe, G,)p,(q. + Gg)} [H.c.].
‘ (50)

Here, pcp(q.) is the density operator Y, 9™ projected into
the CB. The first term in Hcp represents the CB dispersion,
and the second term is the density-density interaction. Be-
cause the LLL density operators p,(q,.) form a complete basis
for single-body operators, one has the expansion

pes(@) = Y c(q.. G)p,(q. + G). (51)
G,

where the summation is over N,.N;, reciprocal lattice
vectors.

Finally, we comment on the conditions (47) and (48). One
may wonder whether certain obstruction is present in the
CB so that these conditions cannot be satisfied in a smooth
gauge. The BZ boundary condition (47) can always be satis-
fied provided the CB has C = —1 that is identical to the LLL.
The rotation condition (48) requires further discussion. It is
known that the Chern number of a band gives a constraint to
the rotation eigenvalues at the high-symmetry points in the
momentum space [68]. We list these constraints in Eq. (A12)
in Appendix A.
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These eigenvalues are preserved in the CB to LLL map-
ping. What if the CB and the LLL have different rotation
eigenvalues? As computed in Appendix A, the magnetic rota-
tion eigenvalue for the LLL is e~ at K, point, corresponding
to the I' point in the CB, while it is trivial for all other high-
symmetry points. It turns out that one can always redefine
the physical rotation operator, after which exactly the same
eigenvalues are realized in the CB, and the conditions (47) and
(48) can be satisfied in a smooth gauge following the prescrip-
tion in Ref. [67]. This redefinition is a source of the possible
nontrivial Wen-Zee shift. We leave details in Appendix A.

B. Composite fermion substitution

From the previous section, we have the Hamiltonian H,
in the Fock space constructed with the single-particle Hilbert
space H, in the LLL, which is exactly mapped from the CB
problem. In this section, following the Murthy-Shankar con-
struction [51], we need to enlarge the single-particle Hilbert
space and construct the composite fermion single-particle
Hilbert space for the finite-size systems:

He &® Hv = HCF = HRCF ® HUCF- (52)

First, we introduce the vortex single-particle Hilbert space
H,. H, describes the guiding-center degrees of freedom
of a particle carrying charge ¢, = —c’q, = —Z;S%qe in
the same sample size specified by L; and t as the elec-
tron. Consequently, the number of flux quanta seen by
the vortex, i.e., the dimension of H,, is Ny, = 62N¢,,e =
2ifilN¢,e. One cannot define guiding-center operators as in
Eq. (8) for a finite system. However, the density operators
(magnetic translation operators) are well defined for dis-
crete momentum points (discrete displacements). We define
them as

R
9

Dy(20) = py(Qu ) = €40 where q -, = i—2. (53)

12
Here, the additional minus sign in the exponent is due to the
sign of the vortex’s charge. The periodic boundary condition
is specified as

Dy(Ly) = e, Dy(Lit) = €. (54)

A simple way to understand the vortex’s density opera-
tor p,(qy) = e and H, is to consider the antilinear
complex-conjugate operator K. K sends the Z in a wave func-
tion in H, to z, and consequently sends 7, to the Hilbert
space H, of LLL wave functions of a particle carrying —g,,
with the same sign of the electrons’ charge. At the same
time,

Kpy(q,)K = @R, (55)

where R, = KR K also satisfies the guiding-center algebra
for the charge —¢,. Namely, our results for the density oper-
ator of electrons, e.g., Eq. (36), can be directly reused for the
vortex case after the caution is made for the antilinear nature
of K:

(Vi1p(Qu)Iv2) = (T1 | |5), (56)

for any |v;) € H, and |7;) = K|v;) € H,.

TABLE I. Counting of the electronic guiding-center degrees of
freedom R,, vortex’s guiding-center degrees of freedom R,, and
composite fermion’s both guiding-center R and cyclotron 1 degrees

of freedom on a finite-size sample for Jain’s sequences v = sz%.
Re. Ry R n
No. of particles N N N N
Sample size A A A 2ps(2ps + DA
2ps 1 1
Charge g/q. 1 “Se It il
No. of fluxes %N 2sN IN 25(2ps + 1N

P 1

Filling fraction pr 2% p

1
2s(2ps+1)

Next, we decompose the tensor product of the enlarged
Hilbert space H, ® H, by introducing the full composite
fermion with both the guiding-center and cyclotron degrees
of freedom. We consider two cases separately: the Jain’s se-
quence for v = zps%, and the composite Fermi liquid (CFL)
case forv = Zis In the main text below, we focus on the Jain’s
sequence, and the CF substitution for CFL can be found in
Appendix B.

Jain’s sequence. The CF carries an electric charge gcp =
Wﬂrlqg as dictated by the algebra (10). To save notation,
we neglect the subscripts for Rep and nep from now on.
We similarly define the density operators (magnetic transla-
tion operators) for the CF degrees of freedom on finite-size

systems:

<0

‘R
) 12 ’

Dr(z20) = pr(QR,;) = €M% where qr ;, =i

Dn(ZO) = pn(qn,zo) = e_iq”'z()'nv where An,z = ll (57)

CF

The CF guiding center R lives on a real-space sample with the
same size as R, and R, specified by the boundary condition

Dr(L) = e '®, Dg(Lit)=e """, (58)

For reasons that will be clear shortly, the CF cyclotron
coordinates 7, however, should be viewed as living on a
sample whose linear size is enlarged by a factor = =

2ps(2ps + 1) where ¢ = v zp—zfjl, satisfying the boundary

condition

D,,(l_ L1> ¢, Dn<1_ le) ¢ (59)

Consequently, the total number of flux quanta seen by

R is Nyr = 2p3+1N¢ «» while that seen by n is Ng, =

2
Ful(ﬁ) Ny, = 2psNy .. The Hilbert space dimensions
must be consistent with the decomposition relation (52):

Ng.eNg.v = Ny, RNg 5. (60)

Note that states in the space H, label the CF LL indices.
Namely, on a finite-size system, the number of CF LLs is finite
and is equal to Ny ,. We list these results in Table I for the
convenience of readers.

After taking the exponential, the linear superposition
Egs. (9) and (11) in an infinite system become the operator
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identities together with boundary condition relations

1 c
D.(z0) = DR<1 — C2Z0>Dn <— T (:220)’
2
c c
Dy(z0) =Dr <_mZO)Dn <mZO>,

o Wie — miCpstoiR~igiy ,

ei‘pi.v — ei(2P5)¢i.R+i<ﬂi.q (61)
and their inverse

DR (z0) = D.(20)Dy(20),

e PR — e—iwim-‘rﬂﬂi,v,

Dy (z0) = D.(cz0)Dy(z0/¢),

¢¥in = gPTDE—ICI  (62)

These identities can be translated as identities of the den-
sity operators

pe(qe) = PR((]e),On(—C(Ie),
Pu(Qy) = pr(=qu) oy (qu/c), (63)

and the inverse

1 c?
PrR(QR) = /k(m(hz)pv <HQR>,
C C
pn(ay) = Pe(l_—czqn)l)v <1——czq")' (64)

One can check that the dictionary above indeed provides a
one-to-one mapping between the (finite number of) single-
body operators in the electron and vortex spaces and those
in the CF space.

Importantly, after choosing the bloch bases in H,, Hg,
and H, similar to that in H, [see Eqs. (30) and (31)], as
well as the real-space magnetic translation unit-cell choice in
Eq. (75)), this dictionary also specifies the fusion coefficients
(kr, ky|K., K,) (up to an unimportant overall phase factor):

D kg, Ky ke, ko) [kr) © [ky).  (65)
kR’kr]

k) ® [ky) =

One way to compute these fusion coefficients is as follows.
In the first step, due to Eq. (36), one knows the matrix form

of the four fundamental density operators p.(q. = G"'”) and

ou(qy = ) (where i =1, 2) in the electron-vortex basis

{Ik.) ® |kv)} All other density operators can be generated by
these four fundamental ones. Second, again due to Eq. (36),

one similarly knows the matrix form of pr(qr = G 7z) and

on(q, = ’”) (where i = 1, 2) in the CF basis {|kr) ® |k,)}.
In the third’ step, due to Eq. (63), one knows the matrix form

of pe(qe = (qu = 2

CF basis {|k73) ® k) }. Fmally, usmg results from steps 1
and 3, we are left with a linear algebra problem: finding the
unitary transformation U between the electron-vortex basis
and the CF basis so that the matrices of the four fundamental
density operators are transformed from one basis to another
basis. Because p.(q. = w=<) and p,(q, = G‘ *) commute with
each other, it is strarghtforward to dlagonahze both operators
simultaneously, in either set of basis. The unitary transforma-
tion U must transform an eigenvector of these two operators

in the electron-vortex basis to the corresponding eigenvector
in the CF basis, with the same eigenvalues. One, therefore,
can fix U up to Ny Ny, phase factors, each of which is for
one eigenvector. These phase factors can then be fixed by the
matrix elements of p.(q, = (q, = ij ), up to an
unimportant overall phase factor

The composite fermion substitution can now be performed.
The number of electrons, vortices, and composite fermions
are all the same. Following Eq. (63), the Hamiltonian H, in
Eq. (50) is then mapped to the composite fermion Hamil-
tonian H, — Hcr by substituting p.(q.) = pr(qe)p0,(—cq.).
One can perform the Hartree-Fock as well as time-dependent
Hartree-Fock analysis for Hcp, after caution is taken with
respect to the constraint. However, before that, we need to
discuss the consequence of the auxiliary vortex space.

C. Gauge redundancy and projective symmetries

The Fock spaces for electrons K, and composite fermions
Kcr (including both the CF guiding-center and cyclotron
degrees of freedom) are fermionic spaces. The vortex Fock
space C,, should be bosonic: fusing a fermionic electron with a
bosonic vortex gives rise to a composite fermion. On the other
hand, the construction above leads to a vast gauge redundancy.
Given a state |y.) € K., one can tensor with an arbitrary state
|Y,) € K, and obtain a state |,) ® |¥,) € Kcr. Note that the
reverse is not true: it is generally impossible to write a state in
Kcr as a linear superposition of states in K, ® K,. Namely,
Ke® Ky € Ker.

In order to go back to the physical Fock space IC,, one
needs to constrain states in K¢ by explicitly choosing some
state [§) € K,, and only consider states in Kcr with the form
[¥.) ® |¥$). This choice of |1/§) is a gauge choice (hence the
superscript g) and, in principle, it can be arbitrary. One may
write the constraint as the projector

P, = |i){vil.

and the partition function of Hcr and the original H, are
identical after the projection

(66)

Z = Tr[e "] = Tr[e PHer . P (67)

A physical electronic state can be obtained from any state
|¥cr) € Kcp using this projector:

[Ws(per)) ® |9g) = [ wEver).  (68)

Here |¥&(Ycr)) € K, is the projected wave function in the
physical Fock space. We may view g as a “label” for the
physical state |¥$(¥cp)). As in all projective constructions,
this is a many-to-one labeling, and caution needs to be taken
when considering the symmetry and low-energy fluctuations
of [Yé(Ycr)).-

In terms of the first quantization, this projection is imple-
mented as follows. The bosonic state |§) can be expanded in
the Bloch basis using the wave function

|v) = va

g|¢CF

oo Koy o Koy ) Koy Kuys o Ky ) (69)
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We may expand the fermionic state |{/cg) in the Bloch bases
in H, and H,:

|l/,CF Z 1// (317 v]a""kevaUN)
ke, ko, )
X [Keys Koy, Ky Ky )- (70)
The electronic state is then
[WE(Yer)) = Z VE(Ke, Ky - Key ) [Ker Koo o Key ),
(71)
where
I/fég(kew kez’ ) k N) = Zl/fﬁ*(kvw kvzv cee ka)
{ky, }
X wé’}!(ke,,kul, N kUN).
(72)

The fully symmetric nature of ¥§ and the fully antisymmetric
nature of Y&y dictate that ¥ is fully antisymmetric.

In the case of bosonic v = 1 CFL, this projection can be
exactly implemented by the SU(N)g (N is the number of
physical particles) singlet condition, giving rise to a field-
theory treatment by Read [53]. This is because in that case,
the electron is bosonic and vortex is fermionic, both at fill-
ing fraction v = 1. This leads to a simple and technically
helpful fact: the fermionic Fock space K, is only one di-
mensional because one is filling N-fermionic vortices in an
N-dimensional single-particle Hilbert space. Equation (14) is
simply the second-quantization version of Eq. (72).

However, in the present fermionic electron case, we do not
know how to implement P, in an elegant field-theory fashion.
Instead, in this paper, we will focus on the wave-function
perspective of the projective construction, and comment on
the associated effective field theories towards the end of the
paper in Sec. V.

In the remaining part of this section, we implement phys-
ical symmetries in the enlarged single-particle Hilbert space
‘Hcr, including the magnetic translation D,(a; ) and the mag-
netic rotation Ug .(6)R,(0). In principle, one may combine the
physical symmetry operations in H, with an arbitrary opera-
tion in H,, as long as |v§) is invariant under that operation
up to a phase factor. Namely, there is a gauge choice for the
symmetry operation in H,. In order to have symmetries in
‘Hcr consistent with physical intuitions of composite fermions
[see Eq. (74) below], we choose the projective symmetry
transformation as

De(ai,e) - De(ai,e) & Dv(ai,e) = D'R(ai,e)a
Ur,e(0)R:(0) — Ug,(0)R.(0) @ Ug,,(0)R,(0)
= U r()RR(0) ® Ug ,(O)R,(6).  (73)

In addition, we will choose |5) to be symmetric under
D,(a;.) and Ug ()R, (6). Here, the magnetic translations in
various spaces were already defined before, and the magnetic
rotations Ug ,(0)R,(0) (¢ = v, R, n) are defined similarly
to Eq. (41) after the magnetic length is replaced [, — I,
and complex conjugate is taken for ¢ = v, n, ie., i > —i
in Eq. (41) due to the negativity of charges. For an infinite

system, consistent with Eq. (9), these transformations are
Re Re + a; . R R+ a; .
(%)~ (1) = ()~ (73)
R i R R it R
(&)= @)= ()=() o

It is convenient to choose the Bloch bases in H,, Hr, H,
so that these projective symmetries are (partially) explicit.
For instance, one can choose the real-space basis vectors and
lattice sizes as

14 2ps 2ps
a, = aj., = ,
1,v 2pS l,e 1,v 1+2ps 1,e
A2y = A2, NZ,U = N2,e;
1
air =(1+2ps)aLe, Nig=——Ni.,
LR = ( ps)ag . LR T+ 2ps Le
DR =, Mpr=DN,
c 1
Ay = 1 — 6‘2 2psal ) Nl,n = (2PS)N1,e,
c
a, = 2 ., N,;,=N,. (75)

Here we have assumed that the lattice size N; . is a multiple
of (1 + 2ps). Note that the unit-cell size needs to enclose
one flux quantum in the corresponding space. For instance,
the unit cell for R is enlarged (1 4 2ps) times along the a;
direction. On the other hand, the a, for v and R are purposely
chosen to be identical to a, ., so that the D,(a, ) projective
symmetry is explicit. With these Bloch bases, the D.(az,)
projective symmetry dictates the selection rule for the fusion
coefficients:

(ke, ky kg, ky) # 0
only if me — Ny y =N R mod NZ’R. (76)

Notice that we choose the convention for the momentum
eigenvalues as (the signs in the exponents are due to the signs
of the charges)

De(a;)lk,) = e "% |K,),
Dy(a;,) k) = €™ [k,),
Dr(ajr)kg) = e ** %% k),
D, (a; k) = €™k, (77)

and m; , € Z are the momentum quantum numbers defined as
Eq. (31) for the relevant spaces.

The D [(1 + 2ps)a; ] symmetry is also explicit, leading to
the selection rule

(kea kvlk’R» kr]) 7é 0
only if (1 + 2ps)m; , — 2ps)m; , =m; g mod Ny r.
(78)
How about the D, (a, ) projective symmetry? For instance,
in CF space ‘Hg, it is implemented as Dg (a; . = %zpsamg).
According to the Bloch basis gauge choice Eq. (36) (after
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modified for the Hx space), we know that

G
2R, (79)
1 +2ps

If the CF mean-field state satisfies this projective symmetry,
it means that the CF band structure will have a (1 4 2ps)-
fold periodicity in the CF BZ: a well-known phenomenon

Dr(ar ) kr) = ‘kR +

for translational symmetry fractionalization [48,69,70].
Similarly,
(zps)sz
Dv e kv = ku —_ ). 80
(ay,¢)Kky) + sy (80)

As aremark, in order to respect D,(a; . ) projective symme-
try, the sample size N, . must also be a multiple of (1 4 2ps)
in the current construction [we have already assumed that N, ,
is a multiple of (1 + 2ps) in Eq. (75)], otherwise, D,(a; )
and D (a; .) change the boundary conditions in #, and Hx.
To implement D,.(a; .) projective symmetry in the case that
mod[N; ., (1 + 2ps)] # 0, the construction needs to be gener-
alized which we will leave as a future project.

The projective magnetic rotation symmetry, when im-
plemented in the o =v,R,n spaces, sends a Bloch
basis state |k, ) to a linear superposition of Bloch basis states.
These transformation rules can be computed analytically us-
ing the gauge conditions similar to Eq. (36) and numerically
using the Haldane-Rezayi wave function.

D. Hartree-Fock and time-dependent Hartree-Fock analyses

In this section, we describe how to perform the Hartree-
Fock analysis for the CF mean-field ground state, and to
perform the time-dependent Hartree-Fock analysis for CF ex-
cited states.

In an exact study, one should have implemented the
full constraint as in Eq. (67), and only states of the form
[V.) ® |¥8) € Kcp are physical. In a Hartree-Fock analysis
or time-dependent Hartree-Fock analysis, this constraint is
implemented on a mean-field level: the variational states un-
der consideration are free CF states WCNIEF) (i.e., single Slater
determinants in Kcp) satisfying

(V| 0, (@) WAF) = (8] oy (@), ¥ py(a).  (81)

Note that since p,(q,)’s form a complete basis for single-body
operators, Eq. (81) means that the expectation value of any
single-body operator in |1ngFF) is the same as in [/§).

We have not specified the bosonic vortex state |y5) yet.
But we know it should respect the magnetic symmetries in
the vortex space, and at the filling fraction v = % We make

a natural choice: |§) will be one of the 2 s-fold degenerate

. 1 . . Laughlin
bosonic v = 5. Laughlin wave function [, —; /2s,v> on the

torus in our discussion below. We will comment on exactly
which state we choose for practical simulations in the 2s-
dimensional subspace in Appendix F.

With this choice, we know that [71], apart from the trivial
condition for q, = 0, (V¥ 0,(q,)|¥§) = 0 except for a few

. L Lyt

Mnatn i)y, my € (0,25 — 1] are
integers). Even for these specific values of qu, (Y50, (qu)[¥s)
exponentially decays to zero as the system size increases (see
Appendix C for a detailed discussion).

specific values of q, =

For the simplicity of presentation, we choose the thermo-
dynamic limit values for (¥§|0,(q,)|¥5) for the discussion
below, and require the CF mean-field state to satisfy

(V¥ [, (@)|¥r ) =0, Vqu#0. (82)

Notice that [p,(qy), Hcr] = 0 by construction. This mean-
field level constraint is imposed via Lagrangian multipliers. In
terms of second quantization, the CF mean-field Hamiltonian
obtained from the Hartree-Fock treatment of the interacting
Hamiltonian (50) (after the CF substitution) can be expressed
as

HYf = Z Z f]jR,k”ihkn,.,k”,. (kR ) fir X, + Z)\qupu(qv)»
ql'

kr kWi’kUj

(83)

where we have used the Bloch bases defined in Eq. (75),
and fl;z,kv are the corresponding CF creation operators. Here

kr being conserved in HM! is a consequence of the transla-
tion symmetry, implemented projectively as Eq. (74). p,(q,)
operators can be expressed using the CF operators as de-
scribed in Eq. (63). When the sample size is consistent with
D.(a;.) projective symmetry [i.e., a multiple of (1 4 2ps)
along both directions], these projective symmetries can be
exactly implemented in HIgIF, and consequently expectation
values (Y MF|p,(q,)|¥ M) may be nonzero only when q, =
G, is a reciprocal lattice vector of electrons. In this situation
only Lagrangian multipliers Ag, are needed.

ngFF and its ground state |1pgff ) are determined self-
consistently as in a standard Hartree-Fock calculation, during
which the projective symmetries can be implemented exactly
(as long as the sample size is consistent with them.). The
mean-field energy does have a variational meaning despite the
fact that the Hilbert space is enlarged.

After ngf:F) is determined, one may proceed to perform
the time-dependent Hartree-Fock (TDHF) calculation for the
excitations. TDHF is an approximation scheme to compute
excited states (e.g., particle-hole excitations or collective
modes) in quantum systems. We are not aware of a systematic
TDHEF treatment in the presence of constraints and Lagrangian
multipliers in the literature. We briefly present the main pro-
cedure and leave the details in Appendix D.

TDHEF is known to be a conserving approximation. Simi-
lar to static Hartree-Fock, in TDHF one considers the Slater
determinant states, which are completely determined by their
single-body density matrix P. Let the static Hartree-Fock
self-consistent solution be Py, the perturbed state can be
parametrized by P = UPU", where U = ¢ is a unitary rota-
tion generated by a small composite fermion bilinear operator
¢. The time evolution of ¢ can be computed self-consistently:
L - ¢ = ih¢, where L is a linear operator acting in a space
W, spanned by fermion bilinears having nontrivial commu-
tator with Py. The eigenvalues of L are the energies of the
excitation modes.

In the present situation, constraints (82) need to be imposed
on both Py and P. This reduces the dimension of W by
N., the number of nontrivial constraints. N, = Né,v — 1 since
the q, = O constraint is trivial. In addition, each symmetry
generator p,(q,) (except for q, = 0) leads to an exact zero
mode (the Goldstone mode) in TDHF. There are also totally
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N, exact zero modes. The nonzero eigenmodes can be found
in the remaining subspace ¥V C W, whose dimension is 2N,
smaller than the dimension of V. In the subspace V, the
eigenproblem of £ can be mapped to the diagonalization
problem of a free-boson Hamiltonian using the symplectic
Bogoliubov transformation: the eigenvalues are real and form
+hw pairs.

A single composite fermion transforms projectively under
the symmetry group, as mentioned before. The fermion bi-
linear ¢, however, transforms as a regular representation of
the symmetry group. Namely, ¢ carries well-defined crys-
talline momentum under D,(a;.): ¢qu, where q, is inside
the Brillouin zone (BZ) of the electronic Chern band. The
magnetoroton collective modes in the FCI phase form a
gapped band structure /iw,(q,), where a labels the bands. At
the high-symmetry points in the BZ, the crystalline rotation
eigenvalues of the magnetorotons can be computed explicitly
using the TDHF eigenstate ¢ .

Special consideration needs to be made for q, = 0. Here,
there is a £hwy pair of approximate zero modes in the TDHF
calculation, and w( goes to zero in the thermodynamic limit.
This is again related to the gauge redundancy in the projective
construction. In the infinite system, the guiding center R, is a
well-defined operator at q = 0, corresponding to R, = R +
%77 on the CF side. Just like p,(q, ), this operator does not act
in physical Hilbert space and commutes with Hcp, giving a
pair of exact zero modes.

To appreciate the physical picture of R, let us consider the
CF state in the traditional LL case. It is convenient to write R,
in terms of the ladder operators asinEq. (90): a! oc ar + 1aT

For instance, Laughlin’s v = 3 state is represented asa smgle
filled CF LLL: |Ycp) = |1//R ®[1:10,);, where |yz) is the
fully filled state in the R space, and all composite fermions
have the same wave function in the 7 space: the coherent state
|0,) that can be annihilated by a,,. It is then easy to see that
of ), aI_iW/CF) Xy, a;’ilwc}‘» since |y) is annihilated by
> ;ar.i. Because a;|0n) =11,), R, is creating the q. =0
particle-hole excitations between the CF LLL and the first
LL. This excitation was known to be a zero mode in an
infinite-system TDHF calculation previously [63]. Here we
have shown the physical origin of this zero mode.

The exact zero modes p,(q,) as well as the zero mode due
to R, are gauge modes and do not correspond to physical
excitations. One way to see this is via the projective construc-
tion: the electronic ground state is given by |55) ® |y§) =
P,|¥cr), and the would-be excited state corresponding to
p,() is [WX) @ |¥E) = Pyp, (qu)|¥icr). The latter one can
be equivalently obtained via P, = |/§) (8]: [ FX) @ |978) =
13g|1pCF), where [¥5) = pu(q,)"|¥8). But the difference be-
tween P, and f’g is really a gauge choice: In an exact study,
[Yer) = |Yy) ® |1ﬂeGS) where |1,) can be an arbitrary state
in KC,. Therefore, |¥EX) oc |y55) is the same wave function
in the exact study (unless |,) being orthogonal to |/f), in
which case |FX) = 0 is annihilated by the projection).

E. Projection to physical states: Hyperdeterminant

We have demonstrated the procedure to perform static
Hartree-Fock calculations to obtain the mean-field CF ground

state | o) and to perform TDHF calculations for excited
states. The physical electronic state is obtained via the pro-
jection P, as in Egs. (68) and (72). In this section, we study
the mathematlcal structure of |¥§ (WcE)).

We will focus on a single Slater determinant |ycg) before
the projection (|ycg) could be either the mean-field ground
state |y M) or the unitary rotated states e®|yMr) related
to excitations). It turns out that |¥&(Ycp)) is mathemati-
cally represented as the combinatorial hyperdeterminant of
a tensor.

Given a rank m tensor T;, ;, . ; , with each index i; =
1,2,...,N (N is the dimension of the tensor), the combina-
torial hyperdeterminant [72] is a direct generalization of the
determinant of a matrix:

(—D=DP ...

Hyperdet(T') = Z (—1)Pn1

P,P,,....,P,_1€Sy
X TP (1. Po(De Pt (D T2,P 2. o). Py 2) - -

X TN.PI (N),P(N),....P,_1(N)> (84)

where Sy is the permutation group and (—1)” is the signature
of the permutation.

We will demonstrate the FCI states in Jain’s sequence at
V= 21”% with s = 1 as an example. To perform the pro-
jection, we need an expression for the bosonic Laughlin’s

1 Laughlin

state at v = 5 since [y = |¢V:1/2,U>. It turns out that the

Laughli : .
state |¢,215,")) can be constructed via the same projective

construction mentioned before, but for s = % We will prove
this later in Sec. IIIF. Precisely, one views the bosonic v
particle as the “electron” and then attaches a single unit of flux
(2s = 1) to form a composite fermion. The corresponding vor-
tices and composite fermions for v particles will be denoted as
v — v and v — CF, respectively, both are fermionic. Following
the projective construction,
Laughlin g _ g

‘wv:I/Z,UHWU—v) = Wv—v)( Wu CF) (85)
But here, both |5_) and WU CF) are single Slater determi-
nants: |$_,) is the full filled state in the Fock space KC,_,,
which is only one dimensional. |1//U CF) is the filled v — CF
LLL state. In terms of the first quantization, we may represent
them using the filled orbitals as

i) = D (D |6pdhs) - o)y
PESN

voler) Z( D |6505 bray - bpay )- (86)
PeSy

It is easy to see that, if one chooses a basis {¢,} in H,, the
Laughlin

wave function of |, ~, 20) will be the hyperdeterminant of
a rank-3 tensor C formed by the fusion coefficients similar to
Eq. (65):

v |¢Laugh1in> _

(o0 By ... retaw) = Hyperdet(C), where

Cip = (¢5, (" [&™ ). 8D
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Next, we will perform the projection W‘ﬁlﬁg}iﬂ )(g[fi‘iﬁgh:

[W &), where the CF mean-field state |y> ) is a single Slater
determinant filling p-CF bands:

V) = 3 oS 0S5 g 59)

PESN

Similarly, after choosing a basis {¢} in H,, the wave func-
tion of |§(Ycr)) will be the hyperdeterminant of a rank-4
tensor T formed by the fusion coefficients in the projective
construction:

(@8 #%, ... 8%, |WE(Wer)) = Hyperdet(T'), where

Tju = (05, [(@) oy )|er™).  (89)

A very special situation is when the tensor T can
be represented as a product of matrices: T; ...,
Afll,)izAfi)i} f:"l_ Y, in which case the hyperdeterminant is
the product of the conventional determinants of the ma-
trices: Hyperdet(T') = ]—[';’;11 det(AY)). This is exactly the
situation for the Laughlin’s v = 1/(m — 1) states with the
open boundary condition, when the electron basis {¢;} is
chosen to be the overcomplete basis of coherent states
(see Sec. IITF).

Generally speaking, the tensor 7' cannot be decomposed as
a product of matrices, and computing a generic hyperdeter-
minant is known to be a NP-hard problem [73]. Nevertheless,
the crystalline momentum conservation leads to the selection
rules in the Bloch bases [see Eqgs. (76) and (78)], slightly re-
ducing the computation complexity. Following the algorithm
in Ref. [74], utilizing the selection rules, we have tested that
on a laptop computer, computing one hyperdeterminant of a
rank-4 tensor for N = 8 electrons takes about two seconds.
This allows us to perform variational Monte Carlo calcula-
tions for the projected FCI wave functions and compare them
with the wave functions obtained from exact diagonalization
(see Sec. IV).

F. Connections with Jain’s wave functions

We have shown that the projected wave function |5 (¥cg))
is represented as the hyperdeterminant of a tensor. In this sec-
tion, we first analytically show that under the open boundary
condition and in the traditional LL context, these projected
wave functions are identical to the ones obtained from Jain’s
construction.

We will use the coherent state basis extensively in this
section. For this purpose, we define the ladder operators satis-
fying [a, a'] = 1 in the relevant single-particle Hilbert spaces:

Rex —iRey Ryx+iRyy
Qe = ———F—>, Q= —"f1>,
V2, V21,
Rx — iRy Ny +iny
ap=2_" 0, = . (90)
V2icr " V2er

The relation (9) between e, v and CF R, n spaces becomes
the bosonic Bogoliubov transformation between these ladder

operators:

—i—< 5]
ar = a. —ca,),
1—¢2

a, = = (ar +ca)), ay= —(ca;a + ap).

1
V1 —c¢

These operators and the magnetic translation operators de-
fined in Egs. (20), (53), and (57) satisfy the algebra

20
V21,

D (z0)a.D.(20) = a, +

Z
DZ(ZO)avDu(ZO) =a, + \/—Tolv’
D, (20)ar Dr 20) = ax + —
e V2Icr’
20
D! (z0)a,D,(z0) = ay + ———. 92
Vl( 0) n r]( 0) n \/EZCF ( )

Let |0,) (¢ =e,v,R,n) be the coherent state annihilated
by the a, operator, the coherent state basis can be obtained
via magnetic translation: |z,) = Dy(2)|04). In additiqn, the

n
Ay

occupation number basis can also be defined: |n,) = o [Og)-
For instance, the nth CF LL corresponds to |n,).

We will work in the symmetric gauge in this section. The
many-particle wave functions can be obtained using the coher-
ent state basis. We focus on the CF space as a demonstration.
Defining the position basis for CF |{cp) corresponding to a §
function located at ¢, one may project it into the nth CF LL.
After choosing the appropriate normalization factor, it turns
out that

Iny)(nylgcr) = (=1)"Iny) Dr(§)InR). 93)

We leave its derivation in Appendix E. Therefore, for a single
CF in the nth LL: |¢cF) = |¢r)|n,), its wave function is

(¢crlger) = (= 1) (n|DR(E)'19R). (94)

If n = 0, the wave function is identical to the overlap with the

coherent state basis (¢cr|Pcr) = ((rIOR).

Since the e and v particles only contain the guiding-center
density of freedom, they may be viewed as if they are in the
LLL:

Ye(z1, 22, - -

Yo (w1, wa, ..

i) ZN,ehZfe)v
SonlYy). (95)

.y ZN) = (Zl,w Zz,ea .

S oN) = (@10, W20, -
. . Laughlin .

For instance, the Laughlin state |/~ 125 ,) in the vortex space

is

i Xjloj?
Laughl L o, —Eif
wvil;g/zi?v(wl? w, ..., Cl)N) = 1_[((1), — a)j) Se 43

i<j

_Zj\m,'lz
=g,({w;e %,  (96)

where we introduced the polynomial g,({w;}) =[]
(,()j)zs.

i<j(wi -
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Next, we study the many-body CF wave function with p-
filled CF LLs, which is a Slater determinant:

lﬁ (é-la §-2, RN Q'N) = <§1,CF7 §2,CF1 el gN,CF}wgi:LL)
i o oy
] 6o Oy

glp:;QM_l éfzp:;Céw_l §§:c§“
g & oo Ly

e de e |
§1 éfz EN
181 £26 tneN
ag'™ o agh B!
! 1 DU
& & cey
it e e

Zk\;k\z
= gr (G e " ©7)

where M = N/p, and gf:'FL({Ek, Cx}) is the polynomial part of
the Slater determinant.

In order to perform the projection, it is crucial to
compute the fusion coefficient in the e, v-coherent state
bases (z.|{wy|¢cr). Using properties of the transformation in
Eq. (91), it can be computed as

C —drlof+ o g4 e
ellwwlier) = 1< e ()

—1 1 12
2 P+ L2

X e 212 1‘e 4 (98)

We leave its derivation in Appendix E.
Usmg the resolution of identity in coherent state basis, e.g.,
2711’ [ dwlw,){w,| = 1, following Eq. (68), we know that for

an arbztrary CF wave function,

>y lgl?

Yer((G)) = (Gcrdlver) = ger(ln, Ghe &, (99)
|

Vellz)) = & 3 = [gvuw,})g@({

Due to the partrcular form of g’éF in Eq. (97), it is easy to see
that the derivatives -- 3 7 can be neglected in both expressions.

Consequently, up to the unimportant overall normalization
factor, they give identical electronic wave functions. Essen-
tially, any term involving % would appear in the determinant

as (%)m(%)"{i[ . Varying i, these terms form a row in the

determinant, which will be canceled by another row formed
by (%)’"(3%)”’1{[1_1, unless n = 0.

212 (9 L_C 9 }]
c (% 1+ca—a)">
phin((zy) = e S [&({wﬁ)gep({yz(i * %) 4})}

the electronic projected wave function is given by

dw; d auohli
wltan = [ H ) ] oyt ()

2rl? 2713

X WCF({Q})(Z:’,A(wi,u|§CF,i)- (100)

One only needs to integrate out the complex variables
{w;}, {¢k}. Noticing the identity

m,n loi? +35 2 d " n
/27[12 w'e 22 712 (2[ d_z> z, (101)
one finds that
N 1 i
C C
sl Fgg )], o
8CF 1 +cog’ i .

Here, the derivatives % should be moved to the leftmost of the
polynomial expression in the second line. The identification
w; = 1? i— L is anticipated' from Eq. (9), we know the
operator {cr = j +CR + 3 R R. and R, can be viewed
as the position operators ze “and w, projected into the LLL,
leading to {cr = § +Cze + 1= +C

However, in Jain’s prescrrptlon the electronic wave func-
tions is obtained as

, S P 9
Pl ((e)) = ¢ 2 [g”({“})g“q%z Fr 9‘})}

which is apparently different from Eq. (102).

In fact, for a generic CF wave function {¥cp in the FCI
systems, Jain’s prescription and our prescription (102) indeed
give different electronic wave functions! However, for the
Galilean invariant CF wave function gcp = g’éFL Yin Eq. (97),
the two prescriptions give identical electronic wave functions,
which we show below.

One may rewrite Eqs. (102) and (103) in an equivalent
fashion:

&=z,
(103)

)

=Wi=Z;

(104)

ti=wi=z;

(

Basically, in the traditional Galilean invariant FQH con-
text, we find that the single projection P, = |v5)(y§| in
Eq. (68) in the present construction, after choosing |y5) =
|1//La“ghlm) plays the role of both the Jastrow factor [];_;(z; —

zj)? and the LLL projection Pryr in the original Jain’s
construction (1). For the present construction, Py is un-
necessary because we have always been working within the
electronic LLL.
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A nice feature of the current projective construction is the
clarification of the Gaussian factor: in Jain’s construction,

2
_ 2

the Gaussian factor e “ is attached to the CF mean-field
state, which is physically alarming since the CF should

have the magnetic length Icg, not /,. In the current construc-
Ic2

tion, the Gaussian factor is indeed e “¢r for the CF rnean-ﬁelgi

state. Only after the projection the Gaussian factor e_LTIZ

emerges.

Finally, we comment on the torus boundary condition.
In this case, Jain’s construction becomes more sophisticated
[75], and we do not pursue the analytical relationship with the
present construction. However, Laughlin’s wave functions are
still well known and represented using the Jacobi-¢ function
[64]. We have numerically tested that, for small system sizes
with N = 3, 4 electrons, the projected |y (¥cE)) is indeed
identical to one of m-fold degenerate Laughlin’s wave func-
tion. Here, a technical detail needs to be clarified: in order to
define the CF LLL, one needs to define the coherent state |0,,)
on a finite-size torus corresponding to H,. It is known that
there exist different definitions of coherent states on a finite
torus. We find that one needs to use the so-called continuous
coherent state [76] for |0,) in order to reproduce Laugh-
lin’s wave functions on the torus after projection. We leave
the discussion for the continuous coherent state on torus in
Appendix F.

G. Connections with parton states for FCI systems

Previously, there have been efforts to write FCI wave func-
tions using the parton construction [77]. For example, in order
to constructa v = % FCI state with the same topological order
as the Laughlin’s state, one splits the electron ¢ into three
fermionic partons f @ (¢ =1, 2, 3) in the real space [56]:

o =fULPE9. (105)

Each parton carries % of the electron’s charge and trans-
forms projectively under the crystalline symmetry group. It
is then possible to have each £ to fill a Chern band with
Chern number C = —1. The electron wave function after the
identification (105) is obviously a product of three Slater

determinants ¥ ¢ :

3
Veri. vy, .orw) = [ [V @rr. . ory). (106)

a=1

where ¥ pw) = det[¢i(°‘)(r )] is formed by the wave function of

the filled parton orbitals |d)i(°‘)).

Although this parton construction is conceptually use-
ful in classifying symmetry fractionalization, as focused in
Ref. [77], it has difficulty dealing with practical microscop-
ics. One problem is that the electronic wave function ¥, in
Eq. (106) does not need to be within the electronic CB. In the
regime where electronic band mixing can be neglected, such
as the system in Eq. (49), one would need another projection
Pcg to project ¥, into the electronic Chern band. A related
problem is that the construction (105) involves the real-
space Wannier orbitals, which necessarily go beyond a single
electronic CB. From the practical variational wave-function

viewpoint, this construction involves an unnecessarily large
number of fictitious degrees of freedom.

First, we would like to point out that, after projection to
CB, Pcg|v,) is nothing but a hyperdeterminant. Introducing
the fusion tensor

5108".0%.05%) = [ alos el o),
(107)

where ¢¢’s are a collection of electronic orbitals in the CB,
one can easily show that the following overlap is the hyperde-
terminant of this tensor:

(65, 5. - ... 0% |Pcs|ve) = Hyperdet[(¢¢ |6'", o>, 7))
(108)

Second, we want to mention that the current projective
construction is not equivalent to the usual parton construc-
tion for Jain’s series in the absence of Galilean invariance.
This is mostly easily seen in the disk geometry using the
symmetric gauge, as discussed in Sec. III F. In the usual con-
struction, one would consider the (2s + 1) fermionic partons:
fY(i=1,2,...,2s+ 1). The first (2s) partons each carry
p/(2ps + 1) of the electron’s charge at v = 1, while the last
parton carries 1/(2ps + 1) of the electron’s charge at v = p
[56]:

Usual parton construction:

e = fUVFD L fe9 psED (109)

Putting the first (2s) partons each in the lowest LL, and putting
the last parton in p CF Chern bands (note that here we are
considering generic FCI systems in the absence of Galilean
invariance, but with the disk geometry), we have the wave
function for each parton as
_pYjle?
Yro({wj}) =e 42psthi H(a)i —wj), a=1,2,...,2s

i<j

>y lg

Ppeen ({6 =€ % ger((Zr. ).

The usual parton construction (109) identifies w; = ¢ = z;,
where z;’s are the coordinates of electrons. After projecting
into the LLL of the electrons, one reproduces the Jain’s pre-
scription in Eq. (103):

PP ((2) = Y (@),

As discussed earlier, this is not the same wave function ob-
tained by the current projective construction in Eq. (102).
This brings up an interesting question: Is there a real-space
prescription similar to Eq. (109) to obtain the projected wave
function in the current construction?

It turns out that the projected wave function in Eq. (102)
can be obtained using the following real-space prescription:

Current construction:

(110)

(111)

40 7. _ =
=49 z-20) L 2 2 25+1
¢ = /d{e N s SO - I el
(112)
where we used complex numbers to label the positions of
particles. Again the identification w, = %CCF - %Ze is in-

volved, where w, is the position of the first (2s) partons that
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corresponds to the vortex. Different from the usual parton
construction (109), the electron operator is not the onsite
combination of parton operators.

IV. BENCHMARK RESULTS
A. Models

We will study two models in this section: a toy model
describing Landau levels mixed due to a periodic potential
with Cy rotation symmetry and a realistic model for twisted
bilayer MoTe, with C; rotation symmetry.

1. Mixed Landau level (MLL) model

Landau levels inherently possess a uniform distribution of
Berry curvature with Chern number C = —1. One way to
introduce the FCI physics into the system is to turn on a
periodic potential Vi (r.) = Y ¢, Vpp(Ge)eS™ between LLs,
e.g., between n =0 and 1 LLs. Such an LL-based model,

J

~

G 1, — _ -k
(nl|el " |n2) = pnz,nl(qe) =e

n<

3¢ [n.!
T | =L
n.!

named mixed Landau level model, or MLL, is previously in-
troduced in Ref. [54]. The periodic potential has three effects:
it mixes the LLs and thus modifies the Coulomb interaction
projected into the lowest Chern band, which has a nonzero
bandwidth, and leading to a nonconstant distribution of Berry
curvature.

For illustrative purposes, we consider the square lattice
potential and keep only the lowest harmonics of it, cor-
responding to +£Gj ., £G,, with the constant coefficient
Vop(Ge) = Vig/2. The matrix element of periodic potential in
the Bloch basis between ny, n, = 0, 1 LLs then reads as

Vio iG.. iG..
7<n1 "5 ) (K| €% R K, )
Vio —®G, Gy if? (Ge,vkey—Geyke )
= oy (Gee™ ¥ O llGuker Gl (113)

where the cyclotron part of the matrix element takes the form
of (see, for example, the Appendix of Ref. [51])

2,0 ileZge \ Im—ma|
n]nzl:qegei| ( V2 ) ’ ny>n;

ilezg, \ 11—
2 J1(=%) . m<m

and the guiding-center matrix element follows from the guiding-center algebra (4). As a result, the MLL model is represented in

the LL Bloch basis [54] as
% (cosk, . + cosky)

V(i sink, y — sink,,y)

where we define V = ¢/ 2/mVy, and the LL separation
diag{0, w} is inserted. The MLL model (114) stays in a topo-
logical regime with Chern number C = —1 as long as the
periodic potential satisfies Vg ~ 0.766w.

2me?

We consider the bare Coulomb interaction V(q,) = AR
This interaction is projected to the lowest Chern band, and
we fix the LL separation to be @ = 2 in unit of %, leaving
periodic potential Vjo as the only remaining tunable param-
eter. When Vjy = 0 the system returns to the traditional LL
problem, whose many-body gap (magnetoroton gap) has been
estimated ~0.066 in units of & ‘?2 [78], in the thermodynamic
limit. When Vj is large enough a gap-closing quantum phase
transition is expected.

V=5 _“’

2. TMD moiré (tMoTe,) model

A very recent experimental progress on searching for the
zero-field FCI phase is the reported realization in R-stacked
twisted MoTe, [8-10]. A realistic continuum model is to
consider the K valley moiré Hamiltonian [55,79]

e — [hbm T(r)}

T'r)  h(r) (1>

where ), (r) = —1(k, — Ky, )2 /2m* 4 Ay (r) is the top
and bottom layer Hamiltonian subject to the moiré poten-
tial Ay (r) =2v) ,_ 35cos(gi-r+ ), and T(r) = w(l +
e 8T 4+ ¢7i87) ig the interlayer tunneling. Here m* ~ 0.6m,

V(—i sink,, —sink,,,)

, (114)

w+ %V(cos ke + cosk,y)

[
Jt(l 1)

is the effective mass, g; = fgﬂ (cos , sin 24— 1)) are
moiré reciprocal vectors with ay ~ a/0 = 3 52 A/3. 89° and
v =20.8 meV, ¥ = +107.7°, w = —23.8 meV are parame-
ters extracted from the large-scale DFT study of tMoTe, [55],
different from that obtained by fitting different stacking re-
gions in Ref. [79]. The moiré Hamiltonian for K’ valley can be
obtained via time-reversal transformation: Hgx: = [Hg(k, —
—k,)]*. Due to the spin-orbit coupling, the spin and valley
degrees of freedom are locked: spin up for Hk and spin down
for Hg'.

The observed FCI states appear at filling v = —3, —2 in
the presence of ferromagnetic order. In the mean-field picture,
this means that the topmost band for the minority spin is at
filling v = 3, 5, while the majority spin bands are fully filled.
This topmost Chern band has a bandwidth ~9 meV using the
above parameters in Eq. (115) in the absence of the Coulomb
interaction introduced below.

We consider the Coulomb interaction tMoTe, model:

Hy = — Zqu) p(@Ip(—aq.):,  (116)

where the electron density p is the summation from both
valleys and both layers. V(q.) is the dual-gate screening
Coulomb interaction

¢? tanh(|q,|d)

V(q,) =
@) 280&/1q.|

(117)
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with a typical gate distance d = 300 A and the relative dielec-
tric constant &, = 15, as is used in Ref. [55].

In our calculation, we assume the existence of ferromag-
netism and project the Coulomb interaction (116) into the
spin-minority topmost Chern band. Note that the Chern num-
ber C = +1 (C = —1) for this topmost band of Hx (Hk).
To map to the C = —1 LLL, we simulate the case Hg' being
partially filled (i.e., the minority spin is down spin).

It is known that upon hole doping, the bandwidth of this
Chern band is significantly renormalized from ~9 meV to a
smaller value due to the Coulomb interactions between this
band and other filled bands, as shown in Ref. [23]. Another
way to see this effect is to perform a particle-hole transforma-
tion, as done in Ref. [55].

Here, as a benchmarking exercise, we are motivated to in-
vestigate the effect of bandwidth in the FCI system. Therefore,
we choose the bandwidth via a tuning parameter A instead of
fixing a specific value. Precisely speaking, we simulate the
model

H = APHg P + PHy P (118)
with the projection operation P eliminates any fermion op-
erator ¢ or cZ outside the partially filled Chern band. When
A = 0 the CB is completely flat.

B. Exact diagonalization, Hartree-Fock, and time-dependent
Hartree-Fock analyses

1. CF mean-field ground states

We construct both the MLL model and the tMoTe, model
on6 x 4,6 x 6,and 9 x 9 samples at the same filling fraction
V= % The original models have trivial periodic boundary
conditions. However, to map to the LLL, for the 9 x 9 sample
of the tMoTe; model, twisted boundary conditions in the LLL
¢1.. = @2, = 7w are introduced, due to the identification of
the operator algebra in Eq. (45). Other samples have triv-
ial periodic boundary conditions after mapping to the LLL
01 = @2 = 0. In the projected wave-function simulations,
we always choose the vortex space 7, to have trivial periodic
boundary conditions: ¢, = @2, = 0.

For both samples of 6 x 6 and 9 x 9 unit cells, the system
sizes are consistent with the Dx (a; ) projective translational
symmetry in both directions as well as the projective C,
rotation symmetry for the CF (n =4 for the MLL model
and n = 3 for the tMoTe, model). Particularly, Eq. (79) tells
that CF dispersion will display a threefold periodicity in the
CF Brillouin zone (BZ), a well-known feature due to the
translation-symmetry fractionalization. We perform Hartree-
Fock self-consistent study for the 9 x 9 sample to obtain the
composite-fermion band dispersion (see Fig. 3 for the filled
CF Chern band).

2. Overlap between projected wave functions and ED ground states

We perform exact diagonalization (ED) on the sample of
6 x 4 unit cells with the tuning parameter: the periodic po-
tential Vjo for MLL model, and the band scaling factor A for
tMoTe, model. The many-body spectra for selected parameter
values are shown in Fig. 4. As the parameter is large enough,
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M -0571

-0.572

E [e/el.]

-0.573

-0.574

(b)

-6.30
-6.35
-6.40
-6.45

-6.50

E [meV]

-6.55

-6.60

FIG. 3. Filled CF band dispersion obtained using the Hartree-
Fock approximation. The calculation is done for MLL model (a) with
parameter Vi = 0.12 units of % and MoTe, model (b) with pa-
rameter A = 0.6 on a 9 x 9 lattice. These Hartree-Fock CF bands
turn out to be nearly flat. As is shown in Eq. (79), a threefold
periodicity of CF band dispersion emerges as a manifestation of the
translation-symmetry fractionalization, as is seen in both subfigures
on the right. Note that we have used the electron’s Brillouin zone
(BZ) to plot the CF dispersion for better visualization of the sym-
metry fractionalization (in the tMoTe, model the electron’s BZ is
the moiré BZ.). The CF’s BZ should be % of the electron’s BZ due to
the enlarged real-space unit cell along the a; direction.

we observe a gap-closing phase transition (Vi ~ O.lS% for
the MLL model and A ~ 1.0 for the tMoTe, model).

Both the Laughlin state and our proposed projected wave
function (in the form of combinatorial hyperdeterminants) can
be obtained by projecting the CF states back to the elec-
tronic many-body Fock space. The only difference is that
for Laughlin’s state nonoptimized mean-field states are used
(corresponding to fully filled CF LLL), while for our projec-
tive construction, the Hartree-Fock self-consistent mean-field
states |WMF) are used (corresponding to fully filled lowest-
energy CF Chern band).

Due to the 6 x 4 system size, the projected wave function
Pg|\llg{f) is not translational symmetric along the a,; , direc-
tion with six unit cells. Namely, P,|WMF) is a superposition of
sectors with the center-of-mass (c.m.) crystalline momentum
at I, %Gl,e and %Gl.e. When we perform the overlap cal-
culation with the threefold ground states obtained from ED
at these three c.m. momenta, we use the corresponding c.m.
sector of the same projected wave function Pg|\Ifé’[FF).

It turns out that this projective construction outperforms
Laughlin’s states across the entire parameter space for all
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FIG. 4. Selected many-body spectrum obtained from exact di-
agonalization on 6 x 4 unit cells. (a), (b) For MLL model and (c),
(d) for tMoTe, model. (a), (c) Close to the flat-band limit, while
(b) and (d) have much smaller many-body gaps. The three nearly
degenerate topological ground states are highlighted in dark purple.

the three c.m. sectors, as is shown in Fig. 5. Notice that our
optimization is performed only for the CF mean-field ground
states, not on the level of the projected electronic wave func-
tions. These benchmark results indicate the present projective
construction can indeed capture the microscopics of the FCI
states.

3. Magnetoroton spectra and quantum numbers

For the samples of 6 x 6 and 9 x 9 unit cells, we obtain the
magnetoroton spectra using the time-dependent Hartree-Fock
(TDHF) approximation, where eigenmodes come into pairs
+hw,(q,.), with a labeling the magnetoroton band. The pos-
itive bands correspond to excitations above the ground state.
In our TDHF calculation a nearly dispersionless CF particle-
hole (PH) continuum in both models is observed, consistent
with the nearly flat mean-field CF bands. This PH contin-

uum occurs at energy ~0.23§ for the MLL model at Vg =

0.04%, and at energy ~11.2 meV for the tMoTe, model
at A =0.2.

Below the PH continuum, we observe four (three) branches
of magnetoroton bands for the MLL (tMoTe;) model. We plot
the magnetoroton bands w,(q,.) from the TDHF calculation in
Fig. 6. In both models, the lowest-energy magnetorotons are

found near the BZ boundary. The high-energy magnetoroton

TABLE II. Rotation eigenvalues for high-symmetry points of
TDHF bands. For MLL model, unlike I" or M points, the rotation
eigenvalue for X and Y points are defined for C, rotation instead of
C,. For tMoTe,; model, all high-symmetry points are defined for Cs
rotation, and the magnetorotons at K and K’ points are related by
the C,,7 symmetry [79] and thus have identical eigenvalues. Note:
when the magnetoroton band merges into the particle-hole (PH) con-
tinuum, the corresponding rotation eigenvalue is not presented since
one cannot separate the magnetoroton state from the PH continuum.
See Fig. 6 for details.

Band No. r XorY M
MLL model 1 -1 —i
2 1 1
3 -1
4 i
Band No. r K K’
tMoTe, model 1 1 1
2 o—i27/3 o—i27/3
3 £27/3 o27/3

bands (i.e., band 3 and band 4 for the MLL model and band 3
for the tMoTe, model) are visible below the PH continuum
only in a small region of the BZ. Even the lowest magne-
toroton band (band 1) merges into the PH continuum near
the I point. The rotation eigenvalues for the high-symmetry
points of the magnetoroton bands are computed in Table II.
We find that the energy scale of the magnetoroton excitations
obtained using the TDHF approximation is larger than the
excitation energy scale obtained from ED (by a factor ~3 in
both models for the parameters chosen in Fig. 6). Performing
the projection P, is expected to improve the energetics sig-
nificantly. Due to the complexity of the calculation, we leave
computing the projected magnetoroton energies as a future
project.

Finally, for the models studied here, no CF LL band in-
version is observed. Namely, the FCI quantum phase remains
adiabatically connected to the traditional Laughlin’s wave
functions. It would be very interesting to identify and simulate
a model where CF band inversion actually occurs. We again
leave this as a future direction.

V. DISCUSSION AND CONCLUSIONS

In this paper, we present a general projective construc-
tion for the composite fermion states in a partially filled
Chern band with Chern number +1. In the context of the
traditional fractional quantum Hall liquids, the current con-
struction clarifies a few physical puzzles and unifies several
previous studies. In the context of FCI, the current con-
struction paves a route to extract important and experimental
relevant microscopic information for the FCI states, includ-
ing magnetoroton spectrum, magnetoroton quantum numbers,
and anyon quasiparticle band structures and crystalline sym-
metry fractionalization pattern, the Fermi surface shape of the
composite Fermi liquid, etc. Some of these seem difficult to
access using other methods. We demonstrate how to apply
our construction and extract microscopic information in some
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FIG. 5. (al)—(a3) and (c1)—(c3) exhibit the overlaps between our electronic hyperdeterminant states and the ED ground states (red line),
and the overlaps between Laughlin’s states and the ED ground states (blue line) for both MLL and tMoTe, models. Here, the overlap is defined
as |(¥ep|¥prj) | where the two wave functions are obtained from ED and the projective construction, respectively. There exist three sectors of
ground states carrying center-of-mass momentum I', %G 1.e> and %G 1. (the dark purple points in Fig. 4). The ribbon around each overlap curve
represents the error bar due to variational Monte Carlo samplings. The many-body gap (i.e., the energy difference between the ground-state
manifold and the first excited state) as a function of the tuning parameter is plotted in (b) and (d).

model systems, including the model for the twisted bilayer
MoTe;.

This work also leaves many open questions. A practical
question is about the computation of a hyperdeterminant,
which is known to be NP hard. In this work, we have used
translational symmetry to slightly reduce the computational
complexity. This allows us to compute hyperdeterminant
exactly up to a system size comparable to those used in
exact diagonalization. Is it possible to compute hyperdeter-
minants for larger systems? There may be two directions to
proceed. First, instead of computing hyperdeterminant ex-
actly, there may be algorithms to perform the projection
approximately. Second, instead of considering the general
hyperdeterminant wave functions, one may focus on a sub-
class of wave functions whose hyperdeterminants are easier to
compute.

On the conceptual side, one open question is about the
non-Abelian fractional quantum Hall states. The simplest state
in this regard may be the Pfaffian state obtained via pairing on
the composite Fermi surface [80-84]. We expect the present
construction, after moderate revision, can be applied to such

states in the FCI context. The mathematically relevant object
is the so-called hyper-Pfaffian [85], which is the natural gen-
eralization of Pfaffian, but defined for tensors.

Another crucial conceptual question that we did not an-
swer in this work is the effective theories associated with
the projected wave functions. We have demonstrated that
in the context of the Galilean invariant traditional fractional
quantum Hall liquids, the projected wave functions in our
construction are identical to those obtained by Jain’s prescrip-
tion, whose low-energy Chern-Simons effective theories have
been studied previously using various methods [28,86-93].
Even in this Galilean invariant case, finding the correct long-
wavelength effective theories can be nontrivial. A remarkable
example was established by Dong and Senthil recently [94],
where they investigated the composite Fermi liquid for the
v = 1 bosonic system. This system has two apparently differ-
ent theories: the Halperin-Lee-Read theory (HLR) theory [95]
and the Pasquier-Haldane-Read (PHR) theory [52,53]. The
former theory is not within the LLL, leading to an effective
theory with a Chern-Simons term. The latter theory is within
the LLL, but apparently leads to an effective theory with
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FIG. 6. Magnetoroton bands for samples of 9 x 9 unit cells obtained using the TDHF approximation. (a), (b) Are for the MLL model
with the parameter Vo = 0.04 units of €?/¢l,, and (c), (d) are for the tMoTe, model with the parameter A = 0.2. (a), (c) The fitted 2D surface
contour of the lowest magnetoroton band (band 1), while (b) and (d) exhibit the full magnetoroton spectra, where scattering points represent
the raw data along the path, and the higher horizontal crosses are from the particle-hole (PH) continuum. See Fig. 3 for the definitions of the
high-symmetry points. Note: There is no raw data point along the X-M line in the MLL model due to the choice of 9 x 9 sample size. We
provide the raw data for a smaller 6 x 6 MLL sample in Appendix G for comparison. We do not perform band fitting for the magnetoroton
band 3 and band 4 for the MLL model due to the limited number of points outside the PH continuum. The appearance of the nearly zero-energy
modes (red dots in all four figures) at the I" point is due to the R, gauge degrees of freedom discussed in the main text near the end of Sec. III D.

no Chern-Simons term. Dong and Senthil showed that the
effective theory of PHR is defined in a noncommutative space.
After approximately mapping to a commutative field theory,
the same Chern-Simon term as HLR emerges.

The present construction includes the effects of the crys-
talline potential and generally applies to Jain’s sequence and
the composite Fermi liquid in FCI systems. Similar to the
PHR theory, our construction is explicitly within the partially
filled Chern band. The HLR theory, however, is parallel to the
usual parton construction without projecting into the Chern
band [see Eq. (109)]. We leave the investigation of the long-
wavelength effective theories for the proposed projected wave
functions to future works.

Note added. Recently, we became aware that Shi [96]
generalizes the Pasquier-Haldane-Read’s construction for the

v = 1 bosonic composite Fermi liquid to the case of Galilean
invariant v = % fermionic composite Fermi liquid in the disk
geometry, where a projection to the v = % bosonic Laughlin
state in the vortex space is used, and coincides with our con-

struction in this case.
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APPENDIX A: ROTATION TRANSFORMATIONS OF LLL
BLOCH STATES AND THE CB-LLL MAPPING

Let us consider a two-dimensional (2D) rotation symmetric
sample with e’a;, = )" r;;a;, and N1, = N», = N, where
rij € Z and i, j € {1, 2}. Choosing zop = a; . in Eq. (44), then

D.(a; ) = [Ug o(0)R.(0)] "' D (e a; ) [Ug . (0)R(6)]

= [UR,ew)Re(e)]lDe(Za,-,e) [Ur.e(0)R.(0)].
ij

(AD)

Applying to the Bloch basis
D.(_;;a;) using the GMP algebra

ko)L, and expanding

De < Z rijaj,€> = eiﬂrilrlzDe(rilal,e)De(riZaZ,e)v (A2)

J

[UR,e(G)Re(Q)]pe( )[UR AOR(O)] 7 =

[UR,gw)Re(e)]pe( )[UM@)R o' =

Applying to Eq. (36), one obtains

G
(Re ke—ry) R

#e@(g’k‘,)

o (a,k

Gle Jkeap o i 212
LAY S

voo=¢e "N '

Gy,
2.1:) m'“ 12 . Roketri) —g= )22,
N ) — —irp Sy ———

=e e N

eis(e,k CEOR) (AG)

Namely,

Ry 4’32('

POkt Bhe) | im lee e, POk

e N2 e N e

Gy, . . R, .
S0+ Ge) _ mim i, e k)

(A7)

These equations fully determine ¢**"* up to an overall shift,
which can be fixed by computing ¢’ @9

For instance, for a C; symmetric lattice, the matrix
(ry) = oy, Rokee = Ryt 5 Sk o) = [(—k +21) 5 +

kl 521, one finds

ikika

Cy: eié(%qke) — e i m . (A8)

Using the BZ boundary condition (39), the rotation eigenval-
ues are

C, systems:
C4([(0, 0) shifted by (7, 7)]) = (—i),
Cy([(rr, ) shifted by (7, 7)]) =1,

C>([(r, 0) shifted by (7, 7)]) = 1. (A9)

For a Cg symmetric lattice, we choose a;, =e¢'5 a;,

and the (r;;) matrix becomes (_l1 (1)). Consequently

(o Gi,. _ ei”%p s Gy, ool =r Gy,
N ¢ N )¢ N )
G

we have

—ikeaie _ pimrirn p—i(ReKe) (¢¥aic)

e =e (A3)

Using the identity (—1)71+2+! = (—1)"2 [because
11, iz cannot be both even since det(r;;) = 1], and noting that
e~ hetic = =ik (") one can obtain the expression

—i(Rok,)-(¢"a0) _ ,—i(e" (ke—K)+K,)-(ea; )
e =e )

Gl,e + G2,e )
2 2

Therefore, generally speaking, the rotation should be
viewed as about the [, ] point K, of the BZ. For the C, and
C, systems, the phase factor ¢’ is trivial and the rotation
can also be viewed as about the [0,0] point. However, for the
C; and Cg systems, this phase factor is nontrivial, and one
does need to view the rotation as about the [, 7] point (or
momentum points differ by a reciprocal lattice vector). To
have a uniform discussion, in this paper we always view the
rotation as about the [n 7] point in the LLL.

Choosing zp = == in Eq. (44), we have

where K, = (A4)

(A5)

the rotation
Gy, Gz ¢ ) _

Gy, =¢5Gy,. As is mentioned before,
center is shifted to [z, 7], so Rgk, = Rg (k15

[—(ky — ) + 7152 + [kt — 70) + (ko —n)+n]G2‘ =
(—ky +27) 2711" + (k) +ky — ) 2;, and one finds

Co: e(80) it (g
The rotation eigenvalues are
Ce systems: C¢([(0, 0) shifted by (7, 7)]) = e_l%,
C3([(27” ZT”) shifted by (r, rr)]) =1
C>([(%.0) shifted by (7, m)]) = 1. (All)

The rotation transformation for C, and C; can be obtained by
the square of the Cy and Cg. These results show that in the
LLL, the magnetic rotation eigenvalues are ¢~* at the K, =
(7, ) point, and are trivial everywhere else.

In a general Chern band, the Chern number puts a con-
straint on the rotation eigenvalues at these high-symmetry
points [68]:

C, systems:

(=D = G0, 0)]C[ (7w, MG, 0)IC[(0, )],
Cy4 systems:

¢'2C = (=1)F G40, )IC4[(7r, MIC (7, 0],

C3 systems:
o= crremonc] (el - (2.2))
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Ce systems:

iZC

¢3¢ = (=)' Gyl 0, 0)]C3[(23n

TelG o)l

where (C,)" = (—1)F. Here, we have C = —1 and choose the
convention that (—1)F = 1. It is straightforward to redefine
the rotation operation to describe the case of (—1)" = —1.

Due to the mapping (46), we know that if the CB has a
rotation eigenvalue e~ at the I point and trivial everywhere
else (coined “the fundamental case” below), a smooth gauge
satisfying Eqgs. (47) and (48) can be found following the pre-
scription of Ref. [67]. If the rotation eigenvalues do not match
the fundamental case, one needs to redefine the rotation oper-
ation Rcp(0) following two steps as below, without changing
the algebra satisfied by Rcg(0) and Tcg(a; ).

In the first step, one redefines Rcg(6) by multiplying a
factor e (m € Z): Rcg(0) — e ™ Rcg(0), so that the
eigenvalue C,[(0, 0)] = ¢~ matching the fundamental case.
This step induces a possible nontrivial Wen-Zee shift. After
this step, the eigenvalues at the other high-symmetry points
still may not match the fundamental case, in which case we
need the second step.

In the second step, we redefine Rcg(6) by combining a
translation. For example, for C, systems, after the first step,
it is possible that C4[ (7, )] = G;[(r, 0)] = —1. In this case,
one redefine Rcp(6) — Tcp(ag.)Rcp(0), and the redefined
rotation eigenvalues match the fundamental case. Physically,
if Rcg(0) is the Cy rotation about a square lattice site, then
Tcg(ay,.)Rcp(9) is the Cy rotation about a plaquette center.
Similar redefinitions can be made for C, (using either the
link center or the plaquette center rotations) and Cs systems
(using the plaquette center rotation). For Cy systems, the sec-
ond step is not needed since one must have C3[(27”, 2?”)] =
Gl %, 0)] =1 after the first step. After these two steps of
redefinition, a complete match with the fundamental case can
always be made.

(A12)

APPENDIX B: COMPOSITE FERMION SUBSTITUTION
FOR THE CASE OF v = fls COMPOSITE FERMI LIQUID

In the case of v = 2%, the bosonic vortex carries g, = —¢e,
and forms a v = 2% fractional quantum Hall liquid. This cor-
responds to the p — oo case of the Jain’s sequence. In the
disk geometry with the open boundary condition, R, and R,
satisfy the algebra

[Re,xy Re,y] = _ilgzs [Rv,xs Ru,y] = llez (B1)
They can be used to construct the charge-neutral composite
fermion variables:

1 1
reo= E(Re,x + Rv,x)a ry = E(Re’y + Rv,y)a

—1

1
l_2 _(Re,x - Ru,x)~ (BZ)

ke = 7

(Re,y - Rv.y)a ky =

It is straightforward to check that these CF variables satisfy
[y, k] = [ry, k,] =i, while all other commutators vanish.

Note that k can be represented as
1
k= 1_22 X (Re - Ru)a (B3)

indicating that the CF’s momentum is related to its electric
dipole moment.

On a finite-size system with N; N, . unit cells, one may
choose either the real-space or momentum-space basis for the
CF. For example, the momentum-space basis is given by the
eigenstates of the translation operator:

Ter(z) = %% = D,(2)D, (2). (B4)

The boundary-condition allowed z is given by z = lz Zle

11 %2¢ I, € Z. And the physically distinct k eigenvalues are
@lv)Gl,e ( (ﬂZU)&
271 t\m + 271 Ny’

k = (I’l’ll =+ Nl,e
(BS)

where m; € [0, N; N, — 1] are integers. Since the number
of fluxes Ny, = Ny, = Ni N2, one finds that these Né’e
number of momentum eigenstates exactly reproduce the di-
mension of the Hilbert space H, @ H,.

In the presence of crystalline potential, these momentum
eigenstates will hybridize and form the CF band structure with
the Brillion zone characterized by G; ., and each band has N .
momentum points. On the mean-field level, the composite
Fermi liquid is formed by ﬁlhng the lowest (mean-field) en-
ergy band by the filling fractlon 5-. This CFL mean-field state

can then be fed into the prOJector P, to obtain the projected
electronic wave function, which is st111 a hyperdeterminant.

APPENDIX C: DENSITY OPERATOR EXPECTATION
VALUES IN LAUGHLIN STATES ON THE TORUS

The discussion here largely follows Ref. [71], apart from
the numerical results. It is known that Laughlin’s states at v =
1/m form an m-fold irreducible representation of the many-
body magnetic translation algebra on a torus:

D@)Du(z2) = ¢ E Dz + ) = ¢ 7 Dy(z)De(z1).
(1)

For convenience of discussion below, we introduce the min-
imal translation displacement §; (8) along the L; (L;1)
direction of the sample that is consistent with the torus bound-
ary condition,

81 = ;o &= ; (C2)

leading to

D.(81)D.(8) = ¢' 7 D(8:)D.(51). (C3)

One can choose a gauge for the m-fold Laughlin’s states |y;)
(i € [0, m — 1]) as the eigenstates of D,(8;), satisfying

D)WY = €D 1Y), D)) = Y1), (C4)

where |¥;.,) = ¢/®2|v;) and the phase factors e/® depend on
the boundary condition.
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TABLE III. A(n; = 1,n, =0) [see Eq. (C7)] for Laquhlin’s

V= % state, with the sample shape parameter = i and ¢'3 , and

boundary condition ¢; , = ¢, ., = 0 [see Eq. (20)].

Ny T=1 T=¢7
2 1 1

4 -2 —1.156(1)
6 1.267(1) 1.000(1)
8 —0.8652(4) —0.5591(7)
10 0.5658(7) 0.3273(7)
12 —0.3423(8) —0.1831(9)
14 0.1993(8) 0.0932(5)
16 —0.1139(3) —0.0461(3)
18 0.0641(4) 0.0228(2)

The many-particle density operator satisfies a relation with
the magnetic translation operator:

i71

Do, (0 = )’ = ¢ g (a0 = 7). (©

Plugging in zg = md; or zg = md,, using Eq. (C4), the above
identity leads to

(Vilp.(qo)l¥j) # 0

m m
2 3
lé’

i(n1 Loy no L‘—T) (C6)

only if q. = q.(n, ny) =
where n; € [0, m — 1] are integers.
Let us define the operators

A(ny, m) = D,(n18; +n282) "' p,Iqe(n1, m)].  (C7)

One can show that A(n;, ny) commutes with both D,(§;) and
D.(5,) and, consequently, must be a constant in the ground-
state manifold.

We have checked numerically that A(ny, ny) ~ e~ Noe in
the ground-state manifold exponentially decay in the thermo-
dynamic limit (c is a constant for a given t and boundary
condition.). For instance, in Table III we list the val-
ues of A(n; = 1,n; =0) in the ground-state manifold for
Laughlin’s v = % states (electron is bosonic), computed via
variational Monte Carlo.

APPENDIX D: TIME-DEPENDENT HARTREE-FOCK
APPROXIMATION IN THE PRESENCE OF CONSTRAINTS

Here we describe the general prescription to compute the
excitation spectrum in the framework of TDHF in the presence
of constraints and Lagrange multipliers. The original many-
body Hamiltonian H = Hy + V, where Hj is the two-body
term. For simplicity, we consider V as the density-density
interaction:

1
V=2 Var@p(—a), (D1)
q

where p(q) is a fermion bilinear. We assume a collection
of linearly independent Hermitian symmetry generators {S;}
that are fermion bilinears. They commute with H, and form a

closed algebra:

[S;;H] =0, Vi

[Si,S;1=1i)_ cijeSk. (D2)
k

In the main text, the symmetry generators {S;} are vortices
density operators {p,(q,)}-

The mean-field free-fermion states |1)’s under considera-
tion are those that satisfy the constraints

(VISily) =0, Vi
[Yr) is completely captured by its single-body density matrix
P = WL £ 15,

a.p

where «, B labels a basis in the single-particle Hilbert space.
For any single-body density matrix P, we define the
Hartree-Fock approximated Hamiltonian

Hur(P) = Ho + Vur(P),

(D3)

(D4)

(D5)

where

1
Vur(P) = Y Vol Trlp(@Plp(—q) + p(q) Trip(—q)P]
q

= p(@Pp(—q) — p(—q)P p(q)].

The standard static Hartree-Fock calculation boils down to
finding Py that minimizes the variational energy (¥ |H|v),
subject to the constraints (D3). One can show that under a
small perturbation Py — Py + 8P, the linear order change
of variational energy is

0 =46(y[H|Y) = Tr[Hup(Po)sP].

Quite generally, such a small perturbation can be parametrized
by a small unitary rotation Py — UP,U" where U = ¢4, ¢ is
a small fermion bilinear operator. To the leading order, 6P =

il¢, Pol, so
0 =i Tr[Hup(Po)l¢, Poll = —i Tr[¢[Hur(Po), Poll, (D8)

where we have used the trace identity Tr[A[B, C]] =
Tr[B[C, A]].

At this point, it is helpful to introduce the symplectic struc-
ture of the space of the fermion bilinear operators. We can
separate any fermion bilinear operator A into two parts:

(D6)

D7)

A= {A}phys + {A}unphym where
{A}phys = [[A, Pol, Pol
=1 —"PoAPo+ PoA(l — Py).
Using the fact that P, is a projector, one can easily show
that [A, Po] = [{A}phys, Pol. Namely, to consider the small
unitary rotation above, it is sufficient to consider the linear
space spanned by {A},ys, which we denote as V. Note that

for one has [A, Py] € W, V fermion bilinear A, and there is
a useful identity

Tr [’PO[Av B]] =Tr [PO[{A}phyS7 {B}phys]]~

In W, we can define two different inner products. The first
(single angle brackets) is a conventional one while the second

(D9)

(D10)
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(double angle brackets) is a symplectic one:
({A}pnys: {Blpnys) = Trl{A pnys - (Bpiysl,
({{A) phys» (Bl phys)) = Tr [{A }pnys - [{B}phys» Poll
= Tr [Pol{A"}phys, (Blpnys]l-

The condition that §P does not change the constraint rela-
tions (D3) can also be written as —i Tr [Py[S;, ¢]] = 0, or in
terms of the symplectic inner product introduced above:

(({Si}phys, {@}pnys)) = 0. (D12)
We may denote the subspace in VW spanned by {S;}pnys as
Ws. The above condition means that {¢}pnys € Ws, where

Ws is the symplectic complement of Wg. Drastically dif-
ferent from the conventional complement subspace, here we
have

(D11)

Wy CWs,

which is a consequence of Eq. (D2). The variational mini-
mization problem now becomes finding P so that Eq. (D8)
is satisfied for all ¢ € W.

If the objective was to find Py so that Eq. (D8) is satis-
fied for all ¢ in the entire space W, then it would lead to
the well-known self-consistent condition [Hyr(Py), Pol =
0. However, since Wg is smaller than W, as long as

[Hur(Po), Pol € Wsl, P, is a legitimate optimal solution
to satisfy Eq. (D8) satisfied. Here V\)sL is the conventional
complement subspace of Ws. (Here and below we always use

-1 to denote the conventional complement and ~ to denote
the symplectic complement.)

(D13)

One can show that WSL is actually the symplectic dual of
the subspace Wg. Namely, they are orthogonal to each other
with respect to the conventional inner product, have the same
dimension, and the linear map x — [x, Py] is a one-to-one
mapping between the two subspaces. One way to see this
is to decompose Ws into the direct sum of two mutually
orthogonal subspaces (with respect to the conventional inner
product): Ws = Ws & V. It follows that, by definition, YV
is the direct sum of three mutually orthogonal (with respect to
the conventional inner product) subspaces:

W=WsoWs @V.
Now by choosing an arbitrary x € Wsg, from above
decomposition we know ((Ws,x)) = ((V,x)) =0, ie.,
Ws, [X, Pol) = (V, [x, Pol) =0. Thus, we must have
[x. Pol € Ws . Noting that [[x. Po], Po] = . we showed
that x — [x, Py] is a one-to-one mapping between Wg and
WSL. This mapping also sends V back to V.
Therefore, there exist a collection of Lagrange multipliers
A, so that [Hup(Po), Pol = —[)_; 2:Si, Pol. This is equiva-
lent to the condition

(D14)

[Hur(Po), Pol = [HHFm) + Y ASi, 'Poi| =0. (D15)

This is the well-known prescription: one can introduce La-
grange multipliers so that the ground state of Hyp(P)
satisfies the constraints (D3), and perform the self-consistent
calculation as usual.

Now we are ready to study the time evolution of the single-
body density matrix near Py:

[(Hur(P), P] = iiP.
To the linear order of ¢, this leads to

[Hur:(Po), [d, Poll + [Vur([d, Pol), Pol

(D16)

+ H{Z S1(P)S:, 'Poj| = in[$,Pol.  (DI7)

8Ai(¢) o @ is the adjustment of the Lagrange multipliers due
to ¢, so that the ground state of Hyp(P) satisfies the con-
straints (D3). Equivalently, we can define the operator H.:

H- {¢}phys = [[ﬁHF(PO)a {¢}phys]» Pol
+ [Vur([{®}phys» PoD), Pol,

and introduce the linear operator L to represent the
eigenequation (using Jacobi identity and static condition)

L (Plonys = [H - {$lphys: Pol + (=) Y 81i($){Siphys

(D18)

= ifi{$)phys = h>()phys-

One can show that if {¢}pnys € W, then £ - {@}pnys € Ws as

well. To see this, it is sufficient to show [H - {@}phys, Pol €
Ws or equivalently H - {@}pnys € Wy

In fact, one can show that the operator H is Hermitian

(with respect to the conventional inner product) in the full
space W. It the follows that V i and {¢}pnys € W,

({Si}pnys: H - {@)phys) = ({Dphys: H - {Silphys)™ = 0. (D20)

This is because

(D19)

H- {Si}phys € WSL,

as a consequence of the symmetry, which we will explain next.

TDHEF is known to be a conserving approximation. For
instance, the Goldstone mode computed in TDHF is gapless.
This can be demonstrated explicitly. A symmetry generator
S; should satisfy both [S;, Hy] = 0 and [S;, V] = 0. The latter
condition leads to an important identity:

[Si, Vur(P)] = Vue([Si, PD.

Therefore, if Py is a static Hartree-Fock solution with La-
grange multipliers A;, then eSiPye~S is automatically
another static Hartree-Fock solution with Lagrange multipli-
ers unitary rotated by ¢S, One finds that

with 5)»1'(5,‘) = chij)‘«k-
k

(D21)

(D22)

L - {Si}phys = 0, (D23)

Namely, each S; corresponds to an exact zero mode:
the Goldstone mode. This result in turn tells that [H -
{Si}phys, Pol € Ws, which, under the one-to-one corre-

spondence X — [x, Pol, Ws — WSL, also establishes the
validity of Eq. (D21).

We are now ready to find all the eigenmodes in TDHF.
Note the decomposition of W in Eq. (D14). We should solve
the eigenproblem of £ in Wg = Wg @ V, and the subspace
Ws is the null space of £. One then only needs to consider
the operator £ in the subspace V, where the eigenvalues
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are generically nonzero. Introducing the projector Py, into
the subspace V, we need to solve the eigenproblem for the
operator Ly;:

Ly -¢=[Hy- ¢ Pol

where Ly, =Py, - L-Py, and Hy =Py -H-Py.

(D24)

If Ly - ¢ = hwe with w # 0 for ¢ € V, one can always ex-
tend ¢ to Wg by adding a unique component in W so that
Eq. (D19) holds.

The eigenproblem of £y, can be shown to be equivalent
to diagonalizing a free-boson Hamiltonian via the bosonic
Bogoliubov transformation (i.e., symplectic transformation):
the eigenvalues are real and appear as +/iw pairs. This is
because Hy, satisfies the following conditions:

Hy ¢ = Hy -9,

which can be easily seen from Eq. (D18) using [AT, Bf] =
—[A, B]". Consequently, if Ly¢ = hwg, then Ly’ = —
fiwg'.

Let us summarize some main results here. Let the dimen-
sion of the linear space YW be Dyy. In the energy eigenbasis
of ﬁHp(Po), W is spanned by the fermion bilinears c;d,-
and d;ca, where i labels the filled single-particle orbitals
and o labels the empty single-particle orbitals. Only these
bilinears have nontrivial commutator with P,. Therefore,
Dyy = 2NgiteaNempty, Where Niea (Nempty) i the number of
filled (empty) single-particle orbitals.

In the presence of N, constraints, the perturbations corre-

(D25)

. . . . AL
sponding to violation of the constraints span a subspace Wy,
which is N, dimensional. The exact zero-energy Goldstone
modes span a subspace Wg, which is also N. dimensional.
The nonzero-energy modes can be found by studying the
subspace V, which is Dyy — 2N, dimensional. WV has the
important decomposition (D14).

APPENDIX E: DERIVATION OF EQS. (93) AND (98)

We always work within the symmetric gauge in this Ap-
pendix. First of all, let us prove Eq. (93). The basic idea is
to realize that the Dirac delta function at the origin carries
zero angular momentum L, = a;a,7 — a;aR =0, so that the
nonvanishing expansion of it comes from states with equal ng
and n,,:

10ck) = Y _(=1)"Ing, ny), (E1)

which can be seen from the known Laguerre polynomial wave
functions of |ng)|ny):

612~
(¢celn®)Iny) = (=1)"L, <W>€ Ve (E2)
CF
So the projection to nth LL reads as

In) (g Scr) = |y) (ny | T (£)10cr)
= |ny) (ny|Dr(£/2)Dy (£ /2)|0ck)

(Tt
“'CF

= |ny) (1| D(Z /2)D,y (£ /2)e ’10cr)

= [ny) (ny|Dr(& /2)Dyy (£ /2)Dr(E /2)Dy (=& /2)|0ck)
= Dg(&)|ny) (ny|Ock)
= (=1)"Iny)Dr(5)Ing). (E3)

Here, in the second line, we use an identity of the usual trans-
lation operator T(¢) introduced in Eq. (E21), and in the third
line we insert an identity using the exponential operator (since
the position operator is vanishing when acting on |Ocg)), and
in the fourth line we use the operator identity (E20). Thus,
Eq. (93) is established.

Following the notation in Eq. (98) in the main text, we will
first compute a simpler fusion coefficient:

A(Z) = (¢crl0e)0y). (E4)

Notice that the bosonic Bogoliubov transformation (91) is
generated by the unitary

Ule) = earctanh(c)(aj,'aifaeav) _ earctanh(c)(a;zagfana,,). (ES)
U (c) satisfies U(c)" = U(—c) and
U(c)aU(c)' =ar, U(c)a,U(c) =a,  (E6)

We thus have the relation between the coherent states and the
occupation number basis:

0¢)10,) = U(=¢)I0R)10,) = v'1 — ¢? Z(-C)”I'm)lnn),
n=0

(E7)
leading to

A@G)=+1=¢Y (=) (¢celnr)Iny), (E8)

where zero angular momentum wave functions ({cr|ng, ;)
are the Laguerre polynomials (E2). In addition, the Laguerre
polynomials have the generating function

1 x
> t"Lyx) = = (E9)
1—1t
n
In the current situation, t = ¢, and one has

A =1 = exp|:— ¢ ﬁ—ﬁ}
1—c

1 —c2i2, 4%

l+c¢ 14+c\¢)?
= exp | — .
1—c P \1=c)a,

Next, we compute the complex conjugate of Eq. (98):

B(z, , §) = {¢crlze) lwy) = (Scp|De(2)Dy(@)]0,)10,).

(E10)

(E11)
Using Eq. (61), one can show
D.(2)Dy(®) = Dr(X)D,(Y), (E12)
where
2
Z—Ccw c(w—2)
X = , Y= ——". E13
1—c? 1—c2 E13)
Introducing
X+Y X-Y
s=——, d=——, (E14)
2 2
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FIG. 7. Magnetoroton bands for the 6 x 6 MLL model.

one has
2s

d
V2Icg 2k
X Dy (—d)DR(s)Dy(s),

D.(2)Dy(w) = ®< )Dn(d)

(E15)

where we have defined the phase factor involved in the mag-
netic translation algebra:

O, f)=e"7", (E16)
whose exponent is bilinear in ¢, 8 and satisfies
O, B) = OB, ), O, B) =O(a, ). (E17)
For instance,
Zo 7
D.(z20)D.(z1) = 8(—, —)Dg(z +z1),
0 : V21, V21, o
Dy(@0)Dy (1) @( sl )D( + o). (EIB)
vw(@wp)Dy(wy) = —, —— |Dy(w wi).
O NN o
Finally, in the symmetric gauge,
x N 9 N
me=5= legky,  my = 5 + ke,
Ro=3 41k, Ry=3 k. (E19)

leading to the operator identities

A @-yd)

DR(z)D,(—z) = e'cr , (E20)

Dr(2)D,(z) = T(22), (B21)

where z = x + iy and T'(z) = e~ k%) g the usual transla-

tion operator in the CF space. Therefore,

d 2¢

NG \/_Z—ZCF)KCF>’

Dr(=$)Dy(—=9)l¢cr) = (& — 2)cr).

Plugging these results into Egs. (E15) and (E11), one finds
d 2s —2¢

V2er” Vler

After some basic manipulations and taking the complex con-
jugate, Eq. (98) is established.

Dr(—=d)Dy(d)|icr) = ®(

(E22)

B(z,w,¢) = ®< )A({ — 2s). (E23)

APPENDIX F: CONTINUOUS COHERENT STATE
AND THE PROJECTIVE CONSTRUCTION
FOR LAUGHLIN STATES ON THE TORUS

The mean-field CF picture for the Laughlin states corre-
sponds to fully fill the CF LLL. On a finite torus, one needs to
define the coherent state |0,)) in the cyclotron space of the CF.
One natural definition for such a coherent state is to project
the § function at the origin |{cr = 0) to the CF LLL, which
has been termed as the continuous coherent state in Ref. [76].
We have numerically tested for a small number of electrons
N = 3, 4, the projected CF wave function is identical to one
of the m-fold degenerate Laughlin states on the torus.

This choice of |0,) naturally preserves the magnetic ro-
tation symmetry. Namely, when the sample size and the
boundary conditions are consistent with the magnetic rotation
symmetry, the projected wave function obtained with this
prescription is a rotational eigenstate.

APPENDIX G: EXTENDED DATA

In Fig. 7, we provide the magnetoroton band’s raw data of
the 6 x 6 sample for the MLL model, as a supplement to Fig. 6
in the main text. Still, the points mixed with the particle-hole
continuum are removed.
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