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Finite-temperature detection of quantum critical points: A comparative study
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We comparatively study three of the most useful quantum information tools to detect quantum critical points
(QCPs) when only finite temperature data are available. We investigate quantitatively how the quantum discord,
the quantum-teleportation-based QCP detectors, and the quantum coherence spectrum pinpoint the QCPs of
several spin-1/2 chains. We work in the thermodynamic limit (infinite number of spins) and with the spin chains
in equilibrium with a thermal reservoir at temperature T . The models here studied are the XXZ model with and
without an external longitudinal magnetic field, the Ising transverse model, and the XY model subjected to an
external transverse magnetic field.
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I. INTRODUCTION

The use of quantum-information-based tools to charac-
terize a quantum phase transition (QPT) brought to light
the existence of genuine quantum correlations during a QPT
[1–15]. A QPT is characterized by a drastic change in the
ground state describing a macroscopic system while we
modify the system’s Hamiltonian [16–19]. Traditionally, to
properly observe a QPT, we need to reduce the system’s
temperature such that the thermal fluctuations become small
enough to not excite the system away from its ground state.
In this scenario, the system can be considered for all practical
purposes at the absolute zero temperature (T = 0) and we can
be reassured that all measurements give information about the
system’s ground state alone.

When the temperature T is high enough, the probability to
find the system in one of its excited states is no longer negli-
gible. In this case, the analysis of a QPT, a genuine feature of
the system’s ground state, is more subtle. Some tools may not
work at all, furnishing no clue to the existence of a quantum
critical point (QCP) for the ground state. For instance, the
entanglement of formation [20] between two spins is zero for
some models in the vicinity of the QCP if the system is above
a certain temperature [21,22].1

Fortunately, there are quantum information tools that still
allow us to infer the correct location of a QCP when only finite
T data are at hand. Our main goal here is to comparatively
study the efficacy of the most promising tools to detect QCPs
with finite T data. Specifically, we will study the three tools
that stand out in this scenario, namely, the thermal quantum
discord (QD) [22], the quantum coherence spectrum [23], and
the teleportation-based QCP detectors [24,25]. The first tool is
the QD [26,27] computed for systems in thermal equilibrium

*Contact author: rigolin@ufscar.br
1Note that the same conclusion applies to the concurrence (C),

an important entanglement monotone [20]. This is true because the
entanglement of formation (EoF) is a monotonically increasing func-
tion of C and EoF is zero if and only if C = 0 [20].

[21], the second tool is a spin-off of the quantum coherence
(QC) [8,9,28], and the third is based on the quantum telepor-
tation protocol [29–31].

It is worth mentioning that the comparison among the tools
described above does not take into account their computa-
tional complexity. Furthermore, we do not take into account
their operational meaning and experimental feasibility either.

Indeed, the computation of the QD is not an easy task
and for high spins it is extremely difficult [32]. The reason
is related to how the computational resources needed for its
evaluation scale as we increase the size of the system under
investigation (QD is an NP-complete problem [33]). Also,
QD does not have a direct experimental meaning and, so far,
no general method for its direct measurement is available.
A similar analysis applies to the spectrum of the QC [23].
Its computation is also resource intensive and no direct way
for measuring it is available [24]. The third set of tools,
namely, the quantum-teleportation-based QCP detectors, does
not suffer from those problems, having a direct experimental
meaning and being amenable to theoretical analysis for high-
spin systems [24,25].

II. THE CRITICAL POINT DETECTORS

The key ingredient needed to theoretically compute the
following quantum-information-based QCP detectors is a
two-qubit density matrix. This density matrix completely
characterizes a pair of nearest-neighbor spins within the spin
chain and is obtained by tracing out all but these two spins
from the canonical ensemble density matrix describing the
whole chain. In Sec. III, we will come back to this point,
providing further details. However, the important point now is
that for all the models investigated in this paper, this two-qubit
density matrix has the following form [2,22,24,25]:

ρ23 =

⎛
⎜⎜⎜⎝

a 0 0 e
0 b c 0
0 c b 0
e 0 0 d

⎞
⎟⎟⎟⎠, (1)
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where a, b, c, d, e are real numbers.2 The values of these
numbers depend on the particular model and on the temper-
ature of the heat bath. In Eq. (1), subscripts 2 and 3 denote
any two nearest-neighbor spins while we reserve the num-
ber 1 to represent an extra qubit from or outside the spin
chain that is teleported from Alice (qubit 2) to Bob (qubit 3)
(see Sec. II C).

A. Thermal quantum discord

The QD aims to capture all genuine quantum correlations
between two physical systems (a bipartite system). It is de-
fined as the difference between two nonequivalent ways of
extending to the quantum realm the classical mutual informa-
tion between a bipartite system [26,27]. For density matrix
(1), the QD is [34–36]

QD = S(ρ3) − S(ρ23) + min
θ∈[0, π

2 ]
S̃(θ ), (2)

where ρ3 = Tr2ρ23 is the reduced state describing qubit 3,
obtained after tracing out qubit 2 from ρ23; S(ρ3) and S(ρ23)
are, respectively, the von Neumann entropy of the states ρ3

and ρ23:

S(ρ3) = −(a + b) ln(a + b) − (b + d ) ln(b + d ), (3)

S(ρ23) = −a + d −
√

(a − d )2 + 4e2

2

× ln

(
a + d −

√
(a − d )2 + 4e2

2

)

− a + d +
√

(a − d )2 + 4e2

2

× ln

(
a + d +

√
(a − d )2 + 4e2

2

)

− (b − c) ln (b − c) − (b + c) ln (b + c), (4)

and

S̃(θ ) = �1 ln �1 + �2 ln �2 −
4∑

j=1

λ j ln λ j . (5)

In Eq. (5), we have

�1,2 = 1
2 [1 ± (a − d ) cos θ ], (6)

λ1,2 = 1
4

(
1 + (a − d ) cos θ ±

√
[a − d + (a − 2b + d ) cos θ ]2 + 4(|c| + |e|)2 sin2 θ

)
, (7)

λ3,4 = 1
4

(
1 − (a − d ) cos θ ±

√
[a − d − (a − 2b + d ) cos θ ]2 + 4(|c| + |e|)2 sin2 θ

)
. (8)

Note that in the previous expressions, ln is the natural
logarithm and the minimization of S̃(θ ) must be implemented
numerically. Once we have the two-qubit density matrix as
given by Eq. (1), we compute Eq. (5) and numerically search
for its minimum value, assuming it is a function of θ , with
θ ∈ [0, π/2].

B. Quantum coherence spectrum

The QC spectrum [23] is actually two different quantities
defined to investigate the spectrum of the operator defining
the QC [8,9]. The QC studied here [9] is a simplified version
of the Wigner-Yanase skew information [28], which aims at
quantifying the amount of information a density matrix con-
tains with respect to an observable, in particular, when the

2Note that the particular form of ρ23 does not affect the applica-
tion of the teleportation-based QCP detectors. For this set of QCP
detectors, the calculations are straightforward and can be carried out
analytically for an arbitrary two-qubit state [24,25]. For QD, though,
if ρ23 is not an X state, we cannot explicitly solve the associated
optimization problem that gives QD anymore. In this case, we have to
rely on numerical algorithms to obtain the quantum discord [32,33].
Also, the present tools can equally be applied to non-neighboring
(distant) spins or more than two or three spins. However, for compu-
tational constraints, we restricted our analysis to the minimal number
of spins needed to apply each tool.

latter does not commute with the density matrix. Note that
by its very definition, the QC is observable dependent. QC is
also related to an interesting extension of the Heisenberg un-
certainty relation for mixed states [37] or to the quantification
of the coherence of a quantum state [9].

In its more experimentally friendly version and for a two-
qubit density matrix, QC is defined as [9]

QC(K ) = − 1
4 Tr{[ρ23, K]2}, (9)

where Tr denotes the trace operation, [A, B] = AB − BA, and
K is a 4 × 4 matrix representing any observable associated
with a two-qubit system. Note that we are highlighting in the
definition above the dependence of QC on the observable K .

If one computes the spectrum of [ρ23, K]2, namely, de-
termines its four eigenvalues α1, . . . , α4, one can define the
following two quantities [23]:

SK
QC = −

4∑
n=1

|αn| ln |αn|, (10)

LK
QC = −

4∑
n=1

ln |αn|. (11)

The superscripts in Eqs. (10) and (11) remind us that
they both depend on the observable K . The first quantity,
SK

QC, is called coherence entropy and the second one, LK
QC,

logarithm of the spectrum [23]. We should also note that in
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Ref. [23] the above quantities were defined without taking
the moduli of the eigenvalues. This is inconsistent since, as
we will show next, these eigenvalues can become negative
for certain observables if we use density matrix (1). In other
words, we must take the absolute value of αn, as in Eqs. (10)
and (11), if we want the logarithm to be a well-defined real
function. Furthermore, the second quantity above, LK

QC, even
when defined with |αn| instead of αn, continues to be ill-
defined and problematic. The reason is related to the fact
that there are certain combinations of ρ23 and K that lead
to at least one αn being zero. And, if αn is zero, ln |αn|
is not defined (limx→0 ln |x| → −∞). On the other hand,
SK

QC is perfectly legitimate since limx→0 |x| ln |x| = 0. For a
clear and simple illustration of this point, see the discussion
around Eq. (19).

We will provide in Sec. III a couple of examples where
at least one αn is zero. It will turn out that the robustness of
LK

QC to detect QCPs using extremely high T data, as reported
in Ref. [23], is a consequence of its faulty definition. This
alleged high temperature robustness is not even restricted
to the QCPs either. In many cases αn is zero in regions
of the parameter space defining the Hamiltonian where no
QPT is taking place. Also, whenever αn becomes zero, at or
away from a QCP, this feature is independent of the value
of the system’s temperature and is a consequence of a par-
ticular symmetry of the system’s Hamiltonian. This is the
case for all the models investigated in Ref. [23] and where
LK

QC was shown to be insensitive to temperature increases
(see Sec. III).

Following Ref. [23], we restrict our analysis to three lo-
cal observables K , namely, K = 1 ⊗ σ x,1 ⊗ σ y, and 1 ⊗ σ z,
where 1 is the 2 × 2 identity matrix acting on qubit 2 (Alice)
and σ x, σ y, and σ z are the standard Pauli matrices acting on
qubit 3 (Bob). The matrix representation of the two-qubit
state ρ23 [see Eq. (1)] is given in the computational basis
{|00〉, |01〉, |10〉, |11〉}, where σ z is diagonal.

A direct calculation using Eq. (1) and the representation of
1 ⊗ σ x in the basis where σ z is diagonal leads to the following
eigenvalues for [ρ23,1 ⊗ σ x]2:

αx
1,2 = α(1, 1), (12)

αx
3,4 = α(−1, 1), (13)

where

α(ε1, ε2) = − 1
2 [(a − b)2 + (b − d )2 + 2(c − ε2e)2

+ ε1(a − 2b + d )
√

(a − d )2 + 4(c − ε2e)2].

(14)

Similarly, for [ρ23,1 ⊗ σ y]2 we have

α
y
1,2 = α(1,−1), (15)

α
y
3,4 = α(−1,−1), (16)

and for [ρ23,1 ⊗ σ z]2 we get

αz
1,2 = −4c2, (17)

αz
3,4 = −4e2. (18)

Note that the superscripts in the eigenvalues above mark the
corresponding operator K that we used in each one of the
three previous calculations. Also, all eigenvalues are doubly
degenerate.

If we look at the eigenvalues given by Eqs. (17) and (18),
we clearly see that they are all negative. This proves that we
must define Eqs. (10) and (11) using the magnitude of those
eigenvalues. We should not use the eigenvalues directly, as
was done in Ref. [23]. In Eqs. (12) and (13), or in Eqs. (15)
and (16), we also have that at least two out of four eigenvalues
are clearly negative. This is true because a pair of degenerate
eigenvalues is given by either −u + v or −u − v, with u and
v positive numbers. And whenever v < u, all four eigenvalues
become negative.

Before we move on, we show a very simple case where we
have two out of four eigenvalues zero. This happens for all
the operators K that we use here, proving that LK

QC, Eq. (11),
cannot be defined for all two-qubit states.

Let us take the following Bell state, namely, |
+〉 =
(|00〉 + |11〉)/

√
2. Its density matrix is

ρ
+ = |
+〉〈
+| =

⎛
⎜⎜⎜⎜⎝

1
2 0 0 1

2

0 0 0 0

0 0 0 0
1
2 0 0 1

2

⎞
⎟⎟⎟⎟⎠. (19)

Comparing with Eq. (1), we get a = d = e = 1/2 and b =
c = 0. Therefore, Eqs. (12)–(18) become

αx
1,2 = α

y
1,2 = αz

3,4 = −1, (20)

αx
3,4 = α

y
3,4 = αz

1,2 = 0. (21)

The above result is not restricted to this particular Bell state.
The same is true for the other three. Moreover, the existence
of null eigenvalues is not an exclusive feature of an entangled
state, such as the Bell state above. If we employ, for instance,
the separable states |00〉 or |11〉, we also get a pair of null
eigenvalues.

C. Teleportation-based QCP detectors

The teleportation-based QCP detectors [24,25] use a pair
of qubits (ρ23) from a spin chain as the quantum resource
(quantum communication channel) through which the stan-
dard teleportation protocol [29] is implemented. Since a QPT
induces a drastic change in the system’s ground state, it is ex-
pected that the state describing this pair of qubits also changes
substantially. This change will eventually affect the efficiency
of the teleportation protocol. As such, an abrupt change in the
efficiency of the teleportation protocol may indicate a QPT
and the exact location of the corresponding QCP [24,25].

In general, the state describing a pair of qubits from a
spin chain is a mixed state. Thus, to properly construct the
teleportation-based QCP detectors, we need to recast the
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FIG. 1. A single run of the external teleportation protocol using
a pair of qubits from a spin chain is described by the following
steps. Alice and Bob agree on which pair of qubits to use as the
quantum resource to implement the teleportation protocol. This pair
is illustrated by qubits 2 and 3 in the figure. Alice brings an external
qubit to be teleported to Bob. This is qubit 1 depicted in the figure.
Subsequently Alice projects qubits 1 and 2 onto a Bell state. This
is a standard Bell measurement (BM). See panel (a) above. Alice
then tells Bob of her BM result by sending two classical bits to Bob
since there are four possible outcomes after a BM. Finally, based
on the information received by Bob from Alice, he implements a
corresponding unitary operation on his qubit to finish the protocol.
This step is represented in the panel (b) above.

standard teleportation protocol in the formalism of density
matrices [24,25,31,38].

Qubits 2 and 3, described by ρ23, constitute the quantum
resource shared by Alice (qubit 2) and Bob (qubit 3). It is
obtained tracing out from the whole chain all but these two
qubits. The qubit to be teleported or input qubit can be an
external qubit from the chain [24] or another qubit from the
spin chain [25]. In both cases, it is formally described by
the density matrix ρ1. If the input qubit does not belong
to the chain, we have the external teleportation-based QCP
detector while if the input belongs to the chain we have the
internal teleportation-based QCP detector. In Figs. 1 and 2,
we schematically show how the two approaches work.

For the external teleportation protocol, the density ma-
trix describing the three qubits before the teleportation
begins is [24]

ρ = ρ1 ⊗ ρ23, (22)

where ρ1 is an arbitrary pure state that Alice can freely choose
and ρ23 is the density matrix describing a pair of qubits from
the spin chain. For the internal teleportation protocol, the state
describing the three qubits is, in general, given by ρ123 [25],
where the latter is obtained by tracing out all but qubits 1,2,
and 3 from the state describing the whole chain. To effec-
tively obtain Eq. (22) in the internal teleportation protocol,
Alice has to implement steps (a) and (b) described in Fig. 2
before starting the teleportation protocol. See Ref. [25] for all
the details of how this can be accomplished. At the end, Alice
and Bob will share an ensemble of states effectively given by
Eq. (22), where ρ23 is the density matrix describing a pair
of qubits from the spin chain and ρ1 is the density matrix
associated with a single spin from the chain.

FIG. 2. A single run of the internal teleportation protocol using
a pair of qubits from a spin chain is described by the following
steps. Alice projects the qubit 1 onto the computational basis [panel
(a)]. Then, she either applies onto it the spin flip operation (σ x

1 )
or does nothing [panel (b)] according to recipe given in Ref. [25].
Finally, Alice and Bob execute the standard teleportation protocol as
explained in Fig. 1 [panels (c) and (d)].

At the end of one run of the teleportation protocol, as
described in Figs. 1 and 2, qubit 3 with Bob is [24,25,31]

ρB j
= UjTr12[PjρPj]U

†
j

Q j
. (23)

In Eq. (23), Uj is the unitary operation that Bob applies on
his spin after being informed from Alice which Bell state j
she measured. The Bell measurement (BM) implemented by
Alice projects qubits 1 and 2 onto one of the four Bell states.
Also, Tr12 denotes the partial trace over Alice’s spins (qubits
1 and 2) and Pj is one of the four projectors related to a BM:

P�± = |�±〉〈�±|, (24)

P
± = |
±〉〈�±|. (25)

The Bell states are given by

|�±〉 = (|01〉 ± |10〉)/
√

2, (26)

|
±〉 = (|00〉 ± |11〉)/
√

2. (27)

The denominator in Eq. (23) gives the probability of Alice
measuring the Bell state j [24,31]:

Qj = Tr[Pjρ]. (28)
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We should note that the unitary operation Uj that Bob
applies on his qubit also depends on the type of quantum
resource shared with Alice [24,25,31]. In the standard tele-
portation protocol, where the state ρ23 is a Bell state |k〉, with
k = �±,
±, we have that Uj is given by the following set Sk

of four unitary operators:

S
+ = {U
+ ,U
− ,U�+ ,U�−} = {1, σ z, σ x, σ zσ x}, (29)

S
− = {U
+ ,U
− ,U�+ ,U�−} = {σ z,1, σ zσ x, σ x}, (30)

S�+ = {U
+ ,U
− ,U�+ ,U�−} = {σ x, σ zσ x,1, σ z}, (31)

S�− = {U
+ ,U
− ,U�+ ,U�−} = {σ zσ x, σ x, σ z,1}. (32)

Here, the state ρ23 is a mixed state that changes after a QPT.
In one phase, it is closer to one Bell state and in another phase
it is more similar to another one. Therefore, the teleportation-
based QCP detectors are defined by picking the optimal case
out of the four sets Sk above.

For the external teleportation-based QCP detector, the fi-
delity [39,40] is employed to assess the efficiency of the
teleportation protocol. The fidelity quantifies how close or
similar two states are to each other. It is employed here to
compare the similarity of the output state with Bob at the end
of the protocol with the input state teleported by Alice. Since
Alice always choose pure states to teleport to Bob, the fidelity
becomes

Fj (|ψ〉, Sk ) = 〈ψ |ρB j
|ψ〉, (33)

where |ψ〉 is any single qubit pure state external to the chain
(see Fig. 1) while ρB j

is given by Eq. (23). The fidelity is one
if the two states are identical and zero if they are orthogonal.

After several runs of the protocol, each Bell state will be
measured by Alice with probability Qj . Thus, the relevant
quantity in this case is the average fidelity [24,41]:

F (|ψ〉, Sk ) =
∑

j=�∓,
∓
QjFj (|ψ〉, Sk ). (34)

Optimizing over |ψ〉 (picking the maximum over all pure
input states on the Bloch sphere) and over Sk (the four sets
of unitary corrections available to Bob), we get the maximum
mean fidelity [24]:

F = max
{|ψ〉,Sk}

F (|ψ〉, Sk ). (35)

Equation (35) is the most accurate QCP detector based on
the external teleportation protocol. For the density matrix ρ23

given by Eq. (1), we obtain

F ext = max
[
2b, 1 − 2b, 1

2 + |c| + |e|], (36)

where we used the normalization condition Tr(ρ23) = a +
2b + d = 1 to arrive at the expression above. Note that
we append the subscript “ext” to F to make it clear
that this particular expression only applies to the external
teleportation case.

We should note that F ext depends only on the two-qubit
state ρ23, similarly to QD, SK

QC, and LK
QC. This means that once

ρ23 is measured or calculated, all these QCP detectors can
be computed. From an experimental point of view, however,
F ext has a clear direct operational meaning. If we teleport

a representative sample of pure qubits spanning the Bloch
sphere, with Bob choosing randomly the set Sk from which
he picks the unitary correction to apply on his qubit, and
then compute the corresponding mean fidelities, we have that
F ext is given by the greatest mean fidelity of all cases. The
fidelity can be determined with the knowledge of Alice’s input
state and Bob’s output state at the end of the teleportation
protocol. Alice’s state is chosen by her and is readily known
after she prepares it. Bob’s state can be experimentally de-
termined after the teleportation is finished. Furthermore, the
experimental determination of Bob’s state, a single qubit state,
is accomplished by measuring one-point correlation functions
(magnetization) alone [24,25,40]. On the other hand, ρ23

is determined by measuring two-point correlation functions
[24,25,40].

For the internal teleportation-based QCP detector, the input
state and the output state are mixed states and the fidelity
becomes a really complicated expression [25]. Therefore, we
use the trace distance [40,42,43] to quantify the similarity of
the input and output states. In Ref. [25], we also showed that
in this case not only the trace distance is simpler but more
sensitive to detect QCPs for all the models studied here.

Alice’s input state now is fixed and given by a single spin
of the chain. Since we are dealing with translational invariant
spin chains:

ρ1 = ρ2 = Tr3(ρ23) =
(

a + b 0

0 b + d

)
. (37)

The trace distance between Bob’s final state and Alice’s
input after a single run of the teleportation protocol is [25]

Dj (Sk ) = D
(
ρ1, ρB j

) = 1
2 Tr

∣∣ρ1 − ρB j

∣∣, (38)

where ρB j
and ρ1 are given by Eqs. (23) and (37) and |A| =√

A†A.
The trace distance is half the Euclidean distance between

the points on the Bloch sphere representing the two states
above. This means that two identical states have Dj = 0 and
orthogonal pure states have Dj = 1, the maximum value for
Dj . For two single qubits, we have [40]

Dj (Sk ) = 1
2

√
(
rx )2 + (
ry)2 + (
rz )2, (39)

where 
rα (t ) = Tr(ρ1σ
α ) − Tr(ρB j

σα ).
Similarly to the fidelity, the mean trace distance after sev-

eral runs of the teleportation protocol is

D(Sk ) =
∑

j=�∓,
∓
QjDj (Sk ). (40)

Since the more similar two states, the lower their trace dis-
tance, we now want the minimum over all sets Sk . As such,
the internal teleportation QCP detector is [25]

Dint = min
{Sk}

D(Sk ) = |1 − 2(b + d )| min [1 − D−, D+],

(41)

where

D± = 2b + d − (b + d )2 ± |(b + d )2 − d|. (42)
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To arrive at Eq. (41), we employed several properties of
the density matrix ρ23. We used that 0 � a, b, d � 1, that
c and e are real numbers, and the normalization condition
a + 2b + d = 1.

The experimental procedure to directly determine the min-
imum mean trace distance is akin to the one already given for
the maximum mean fidelity. Now, however, we do not even
need to cover the whole Bloch sphere since the input state is
always one spin of the chain, described by the same state ρ1

at every run of the teleportation protocol. The experimental
procedure to determine ρ1 before the teleportation begins and
Bob’s state at the end of one run of the protocol is based on
the experimental determination of one-point correlation func-
tions, as already explained when we discussed the operational
interpretation of the maximum mean fidelity [24,25]. With ρ1,
measured only once, and with Bob’s final state, measured as
already described after each run of the internal teleportation
protocol, all relevant quantities to the determination of the
minimum mean trace distance can be computed.

III. THE MODELS

The models investigated here are the local ones given in
Ref. [23], in particular, those for which LK

QC apparently beat
the quantum discord in providing the exact location of the
QCPs at finite T . We will be dealing with one-dimensional
translational invariant spin-1/2 chains in the thermodynamic
limit, i.e., with L → ∞, where L represents the number of
spins in the chain. They all satisfy periodic boundary con-
ditions, namely, σ

x,y,z
L+1 = σ

x,y,z
1 . The subscripts in the Pauli

matrices indicate on which qubit they act and the spin chains
are initially in equilibrium with a thermal reservoir at temper-
ature T (heat bath).

The density matrix describing the chain of L spins is the
canonical ensemble density matrix,

� = e−H/kT

Z
, (43)

where Z = Tr[e−H/kT ] is the partition function and the
Boltzmann’s constant is given by k.

If we trace out all but two nearest-neighbor spins from the
chain, the density matrix describing them is given by Eq. (1).
In terms of the one- and two-point correlation functions, we
obtain [2,22,24]

a = 1 + 2
〈
σ z

2

〉 + 〈
σ z

2σ z
3

〉
4

, (44)

b = 1 − 〈
σ z

2σ z
3

〉
4

, (45)

c =
〈
σ x

2 σ x
3

〉 + 〈
σ

y
2 σ

y
3

〉
4

, (46)

d = 1 − 2
〈
σ z

2

〉 + 〈
σ z

2σ z
3

〉
4

, (47)

e =
〈
σ x

2 σ x
3

〉 − 〈
σ

y
2 σ

y
3

〉
4

, (48)

where for s = x, y, z we have

z = 〈
σ z

j

〉 = Tr
[
σ z

j �
]
, (49)

ss = 〈
σ s

j σ
s
j+1

〉 = Tr
[
σ s

j σ
s
j+1 �

]
. (50)

The details of those calculations in the thermodynamic limit
(L → ∞) are in Refs. [44–55] and in Ref. [22] we review
them in the present notation. In Ref. [24], we also investigate
how 〈σ z

j 〉 and 〈σ s
j σ

s
j+1〉 behave for several values of T as we

drive the system’s Hamiltonian through its parameter space.
For the external teleportation-based QCP detector, the den-

sity matrix describing Alice’s input is ρext
1 = |ψ〉〈ψ |, where

|ψ〉 = cos(θ/2)|0〉 + sin(θ/2)eiχ |0〉, with θ ∈ [0, π ] and χ ∈
[0, 2π ). Maximizing the mean fidelity (34) over Sk and over
all states on the Bloch sphere, i.e., maximizing over θ and χ ,
gives the maximal mean fidelity F ext [Eq. (36)]. On the other
hand, Alice’s input for the internal teleportation-based QCP
detector is fixed by Eq. (37). In this case, we only minimize
the mean trace distance (40) over Sk to obtain the minimal
mean trace distance Dint [Eq. (41)].

If we use Eqs. (44)–(48), Eq. (36) becomes

F ext = max

[
1 + |xx|

2
,

1 + |yy|
2

,
1 + |zz|

2

]
. (51)

To obtain Eq. (51), we used the following mathematical iden-
tity: max[|c| + |e|] = max[|c + e|, |c − e|].

Similarly, using Eqs. (44)–(48), we can write Eq. (41) as
follows:

Dint = 1
4 [(2 − |z2 + zz|)|z| + |z3 − z × zz|]. (52)

We should note that Eq. (52) is not useful to analyze
QPTs for spin chains with zero magnetization [25]. Looking
at Eq. (52), we easily see that whenever z = 0 we always have
Dint = 0. This is why Dint does not show up when we study
the first case below.

A. The XXZ model with no field

The Hamiltonian (h̄ = 1) describing the XXZ model with
no external magnetic field is

H =
L∑

j=1

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1 + 
σ z

j σ
z
j+1

)
. (53)

The tuning parameter for this model is the anisotropy 
. At
T = 0, the XXZ model possesses two QCPs [50]. When 
 =
−1, a first-order QPT occurs and the ground state changes
from a ferromagnetic (
 < −1) to a critical antiferromag-
netic phase (−1 < 
 < 1). When 
 = 1, a continuous QPT
happens and the system enters an Ising-like antiferromagnet
phase for 
 > 1.

For the Hamiltonian (53), we have that z = 0 and xx =
yy. Therefore, the four eigenvalues used to define Sx

QC and
Lx

QC become αx
1,2 = −(xx2 + zz2 + 2zz|xx|)/4 and αx

3,4 =
−(xx2 + zz2 − 2zz|xx|)/4 [see Eqs. (12) and (13)]. If xx � 0,
we have αx

1,2 = −(xx + zz)2/4 and αx
3,4 = −(xx − zz)2/4. If

xx � 0, on the other hand, we have αx
1,2 = −(xx − zz)2/4 and
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αx
3,4 = −(xx + zz)2/4. Hence, without loss of generality, we

fix our attention to the following set of eigenvalues:

αx
1,2 = −(xx + zz)2/4, (54)

αx
3,4 = −(xx − zz)2/4. (55)

Note that for this particular model, Sx
QC = Sy

QC and Lx
QC =

Ly
QC since the eigenvalues defining those quantities are the

same. Also, for this model the authors of Ref. [23] did not
work with Sz

QC and Lz
QC and thus we will not work with them

either.
The first thing worth mentioning is that all eigenvalues,

Eqs. (54) and (55), are negative. This is another case justifying
that one should always take the absolute values of those eigen-
values when defining SK

QC and LK
QC. Otherwise, we would face

logarithms with negative arguments.
Second, if |xx| = |zz| 
= 0, we will always have two null

eigenvalues. As such, Lx,y
QC will always be undefined (diverge)

in this scenario [see Eq. (11)]. For the XXZ model with no
field, the two QPTs occur exactly when this happens. When

 = −1, we have xx = −zz and when 
 = 1 we have xx =
zz. Moreover, at 
 = ±1 we will always have |xx| = |zz|, no
matter how high the temperature is. This is a consequence of
specific symmetries of the Hamiltonian at those points. For in-
stance, when 
 = 1 we have H = ∑L

j=1(σ x
j σ

x
j+1 + σ

y
j σ

y
j+1 +

σ z
j σ

z
j+1) and it is obvious that the two two-point correlation

functions xx and zz should be equal due to the rotational
invariance of the Hamiltonian. Furthermore, this symmetry
must be respected not only by the ground state but by any
other excited state. Therefore, the canonical ensemble density
matrix describing the system at equilibrium with a heat bath
also respects it and we must always have xx = zz for any T .
A similar argument also shows that xx = −zz when 
 = −1
for any T .

The above analysis explains why Lx
QC was incorrectly con-

sidered robust against temperature increases in detecting the
QCPs for the XXZ model with no field [23]. This is a con-
sequence of the divergence of Lx,y

QC at 
 = ±1 for any T and
not of its unique ability to detect QCPs. As already stressed
before, LK

QC should not be used when any of the eigenvalues
appearing in its definition is zero.

In Fig. 3, we show both QD and Lx
QC for the present model

as a function of 
 for several values of T . Quantum discord
is, by its definition, always bounded, 0 � QD � 1, while Lx

QC
is unbounded, diverging at the QCPs (
 = ±1). This feature
is clearly illustrated in Fig. 3.

Note also that the QD is able to pinpoint the correct lo-
cation of the QCPs up to kT = 10.0. This is clearly seen by
looking at Fig. 4, where we can better appreciate the cusps of
QD at the two QCPs. And, as expected for a reasonable QCP
detector, as we increase T its efficacy decreases. This should
be contrasted with the opposite behavior of Lx

QC, being even
“sharper” to detect a QCP for higher T . As is clear now, this
fact is due to it being ill-defined at the QCP for this model.

In Fig. 5, we plot F ext and Sx
QC. Both quantities now are

bona fide QCP detectors. For T = 0, they are both discon-
tinuous at 
 = −1, while at finite T it is only F ext that has a
discontinuous first-order derivative at this QCP. This feature
is also present for F ext at the second QCP, either at T = 0 or

FIG. 3. Quantum discord, Eq. (2), and the logarithm of the spec-
trum, Eq. (11), as a function of 
 for several values of temperature.
For the upper panel, the temperature increases from top to bottom be-
tween the QCPs, while for the lower panel, it increases from bottom
to top. Here and in all other graphs, all quantities are dimensionless.

when T > 0. On the other hand, Sx
QC is less sharp to pinpoint

the second QCP when compared with its ability to detect the
first one. Also, when we increase T , Sx

QC loses its ability to

detect both QCPs before this happens with F ext. This is clearly
depicted in Fig. 6.

The results presented for this model are very illustrative
of a general trend that will show up in the following. The
most important message so far is that LK

QC, the logarithm
of the spectrum, should not be considered a reliable QCP
detector. It is unbounded and ill-defined when at least one of
the eigenvalues of the operator [ρ23, K]2 is zero. This happens

FIG. 4. Same as Fig. 3, but now we focus on higher values of
temperature.
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FIG. 5. Maximum mean fidelity, Eq. (51), and the coherence en-
tropy, Eq. (10), as a function of 
 for several values of temperature.
In both panels the temperature increases from top to bottom.

for this model exactly in the QCPs and is a consequence of the
symmetry of the Hamiltonian and not a particular ability of
LK

QC to detect QCPs. Indeed, we have shown that this feature,
the existence of null eigenvalues, will persist even when T →
∞. This means that LK

QC diverges at the two QCPs for this
model no matter how high the temperature, a clear indication
that LK

QC cannot be considered a useful or well-defined QCP
detector.

Second, the other quantities studied here are all bona fide
QCP detectors. They share key characteristics of all known
QCP detectors, namely, they are bounded and their efficacy

FIG. 6. Same as Fig. 5, but now we focus on higher values of
temperature. Note that the first-order derivatives of F ext are still
discontinuous at both QCPs, while for Sx

QC no clear indication for
the QCPs can be seen.

TABLE I. Quantum critical points 
1 and 
2 for the case of no
field and when the external field is h = 12.0. When h = 12.0, 
2

listed below is accurate within a numerical error of ±0.001.

h = 0 h = 12


1 −1.00 2.00

2 1.00 4.875

to pinpoint a QCP diminishes as we increase the temperature.
Two of these quantifies, the teleportation-based QCP detector
and the quantum discord, are more robust to temperature
increases than the other one, the coherence entropy SK

QC.
However, disregarding the issue of scalability for high-spin
systems and their operational meaning, from a strictly theo-
retical point of view they tend to complement each other in
the investigation of QCPs as we will show next for the other
models.

B. The XXZ model in an external field

Using the same notation and conventions given in
Sec. III A, the Hamiltonian for the XXZ model in the presence
of an external longitudinal magnetic field is [44–50]

H =
L∑

j=1

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1 + 
σ z

j σ
z
j+1 − h

2
σ z

j

)
, (56)

with h denoting the external magnetic field.
For a finite magnetic field h, the ground state of this model

has two QCPs [44–50]. At the first one, 
1, the ground state
changes from a ferromagnetic (
 < 
1) to a critical antifer-
romagnetic phase (
1 < 
 < 
2). At the second one, 
2, it
becomes an Ising-like antiferromagnet for 
 > 
2.

The value of 
1 is related to the external field by the
following expression:

h = 4J (1 + 
1), (57)

while 
2 is computed once we know h by solving the follow-
ing equation:

h = 4 sinh(η)
∞∑

j=−∞

(−1) j

cosh( jη)
, (58)

where η = cosh−1(
2).
In Table I, we give the solutions to Eqs. (57) and (58)

for h = 12.0, the external field we use in this paper. We
should note, nevertheless, that the results here reported are
quite general, being valid for other fields too [24,25]. For
comparison, we also provide in Table I the two QCPs when
we have no field (the model we studied in the previous
section).

When we turn on the longitudinal field, the magneti-
zation z is no longer null but we still have xx = yy. In
this case, the four eigenvalues used to compute Sx

QC and
Lx

QC are

αx
1,2 = − 1

4 (zz +
√

xx2 + z2)2, (59)

αx
3,4 = − 1

4 (zz −
√

xx2 + z2)2. (60)
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FIG. 7. Quantum discord, Eq. (2), and the logarithm of the spec-
trum, Eq. (11), as a function of 
 for several values of temperature
when h = 12.0. For the upper panel, the temperature increases from
top to bottom between the QCPs, and for the lower panel, it increases
from top to bottom when 
 < 
1.

Similar to the case with no field, we still have that Sx
QC =

Sy
QC and Lx

QC = Ly
QC. This happens because the eigenvalues

defining those quantities are all equal. We also have that the
eigenvalues Eqs. (59) and (60) are all negative.

In Fig. 7, we show QD and Lx
QC assuming a field of h =

12.0. The problematic definition of Lx
QC now manifests itself

in two different places. First, for 
 < 
1, numerical analysis
shows that αx

3,4 tends monotonically to zero as 
 → −∞.
Moreover, the lower T the faster αx

3,4 approaches zero. This
is why we see those extremely high values for Lx

QC when

 < 
1. Second, between the two QCPs there is a value of

 such that αx

1,2 → 0 and thus Lx
QC becomes undefined at this

point. This is the reason for the cusps between the two QCPs
that is not associated to any QPT seen in all curves for Lx

QC.
The curves for QD also have a cusp between the two

QCPs that are not related to a QPT. This is related to the
minimization procedure of the quantum conditional entropy
appearing in its definition [21,22]. In the present notation, it
is related to a discontinuous change in the optimal value of θ

that minimizes Eq. (2). However, as we increase T this cusp
smooths out and disappears, while for Lx

QC the cusp is always
there.

At T = 0, the curve for the QD as a function of 
 has
discontinuous derivatives exactly at the two QCPs. These
cusps are smoothed out and displaced away from the correct
location of the QCPs as we increase T . The curves for Lx

QC
behave similarly in the vicinity of the QCPs.

In Fig. 8, we show F ext and Sx
QC when h = 12.0 for several

values of T . Looking at the curves of F ext and Sx
QC when

T = 0, we note that the QCPs are all detected by discontinu-
ities in the derivatives of those quantities as a function of 
.
As we increase T , those discontinuous derivatives (cusps) are
smoothed out and displaced from the correct spot of the QCPs.

FIG. 8. Maximum mean fidelity, Eq. (51), and the coherence
entropy, Eq. (10), as a function of 
 for several values of temperature
when h = 12.0. For the upper panel, the temperature increases from
top to bottom when 
 < 
1. For the lower panel, it increases from
bottom to top when 
 < 
1.

We should also note that F ext has two extra cusps between the
two QCPs that are related to the maximization over the sets Sk

of unitary operations available to Bob [24,25]. These extras
cusps are not related to QPTs and they are located around the
local maxima and minima seen in the curves for Sx

QC between
the two QCPs.

In Fig. 9, we show Dint, the minimum mean trace distance
for the internal teleportation protocol, as a function of 
. We
have fixed the field at h = 12.0 and plotted Dint for several
values of T .

FIG. 9. Minimum mean trace distance, Eq. (52), as a function of

 for several values of temperature when h = 12.0. The temperature
increases from bottom to top when 
 < 
1.
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FIG. 10. Estimated QCPs using finite T data according to the
procedure explained in the main text. For each value of kT and for
f = QD,Sx

QC,Lx
QC,F ext,Dint, 〈σ x

j σ
x
j+1〉, 〈σ z

j 〉 (see legend), the upper
panel gives the values of 
 related to the extrema of df /d
 and the
lower panel the values of 
 associated with the extrema of d2 f /d
2.
The dashed lines mark the exact values of the QCPs. See text for
details.

In Fig. 9, we see that for T = 0 the QCPs are detected by
discontinuities in the derivatives of Dint with respect to 
 (see
the kinks at 
1 and 
2). Contrary to F ext, we now have only
one tiny kink between the two QCPs that is not associated
with a QPT. Similarly to the origin of the two extra kinks
of F ext, the single extra kink of Dint can be traced back to
the minimization over the sets Sk of unitary operations [25].
When T > 0, the kinks related to the two QCPs are smoothed
out and displaced from the exact locations of the QCPs. The
extra kink between the two QCPs is also displaced from its
T = 0 spot but not appreciably smoothed out in the ranges of
temperatures shown in Fig. 9.

To be more quantitative, we now compare the efficacy of
the above quantities in estimating the correct values for the
QCPs with finite T data alone. We adopt the same techniques
fully described in Refs. [22,24,25] in the following analysis.

Although for finite T the kinks are smoothed out, we
still have an abrupt change in the value of those quantities
about the QCPs. As such, for a fixed T , we compute the
derivatives of those curves with respect to 
 about the QCPs.
Then we pick the value of 
 giving the greatest magnitude
for the derivatives. This 
 is considered the best approxi-
mation to the value of the QCP at that fixed T . Repeating
this procedure for several temperatures, we can extrapo-
late to T = 0 and correctly arrive at the exact values for
the QCPs.

We work with six different temperatures, i.e., kT =
0, 0.1, 0.2, 0.3, 0.4, 0.5. For each of these temperatures, we
compute as a function of 
 and in increments of 0.01
the several quantities shown in Fig. 10. Then, about 
1,
we numerically evaluate the first-order derivatives of those
quantities, picking the value of 
 that gives the greatest mag-
nitude for the derivatives. About 
2, we numerically compute
the second-order derivatives of those quantities, picking

again the value of 
 giving the greatest magnitude for the
second-order derivatives. The values of those 
’s are plotted
in Fig. 10.

In numerically computing those derivatives, we used the
forward difference method, namely, df (x)/dx ≈ [ f (x + η) −
f (x)]/η, where η = 0.01. Also, since 
 was changed in steps
of 0.01, the spot of the maxima of the absolute value of the
first-order derivatives have a numerical error of ±0.01. For the
second-order derivatives, which are computed from the first-
order ones, we have that the errors related to the location of
their extrema are at least ±0.02 [24,25].

Looking at the upper panel of Fig. 10, we realize that the
internal teleportation-based QCP detector (Din) outperforms
all quantities in estimating the QCP 
1 when kT � 0.2.
For kT � 0.2, and taking into account the numerical error
(±0.01) for the values of the estimated QCP, we have that
the QD, Din, Sx

QC, and Lx
QC are all equivalent in estimating

the correct value of 
1. Moreover, all quantities tend to the
correct value of the QCP more or less linearly below a certain
value of kT .

Moving our attention to the lower panel of Fig. 10, we
note that the quantum discord (QD) stands out as the optimal
choice to estimate the correct value of 
2, the second QCP.
This is true for all temperature ranges shown in Fig. 10.
Taking into account that now the numerical error is at least
±0.02 for the estimated value of 
2, below kT ≈ 0.1 we have
that the QD is equivalent to Sx

QC and Lx
QC in estimating the

second QCP. We should also note that Lx
QC is almost useless

to estimate the second QCP for kT � 0.4, providing very poor
estimates.

Before we move on, we should note that this case, which
was not studied in Ref. [23], clearly illustrates that Lx

QC is
not the optimal QCP detector. For this model, the internal
teleportation-based QCP detector is the best choice to estimate

1 while the QD is the best choice for estimating 
2 when
only finite T data are available.

C. The XY model

Following the notation and boundary conditions already
explained for the previous models, the Hamiltonian for the
one-dimensional XY model subjected to a transverse mag-
netic field is [51–53]

H = −λ

4

L∑
j=1

[
(1 + γ )σ x

j σ
x
j+1 + (1 − γ )σ y

j σ
y
j+1

] − 1

2

L∑
j=1

σ z
j .

(61)

Here λ is related to the inverse of the external magnetic field
strength and γ is the anisotropy parameter. When γ = ±1, we
obtain the transverse Ising model and when γ = 0 we get the
isotropic XX model in a transverse field.

If we fix γ and change λ, i.e., if we change the ex-
ternal field, we have a QCP at λc = 1.0. This is the Ising
transition. For λ < 1, the ground state is an ordered ferro-
magnet, while for λ > 1 it becomes a quantum paramagnet
[54]. If we now fix λ such that λ > 1, we also have an-
other QPT if we change γ . It is the anisotropy transition,
whose QCP is located at γc = 0 [51–53,55]. In this case, one
of the phases is an ordered ferromagnet in the x direction
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while the other phase is an ordered ferromagnet in the y
direction. These two QPTs belong to different universality
classes [51–53,55].

For arbitrary values of λ and γ , the density matrix de-
scribing a pair of spins for this model is given by Eqs. (1)
and (44)–(48). In general, we have all two-point correlation
functions different (xx 
= yy 
= zz) and a non-null magnetiza-
tion (z 
= 0). Therefore, using Eqs. (44)–(48), we can write
Eqs. (17) and (18), the eigenvalues defining Sz

QC and Lz
QC, as

follows:

αz
1,2 = −(xx + yy)2/4, (62)

αz
3,4 = −(xx − yy)2/4. (63)

Note that the authors of Ref. [23] did not work with Sx,y
QC and

Lx,y
QC for this model.

Again, all eigenvalues are negative and for nonzero two-
point correlation functions, two of them become zero if |xx| =
|yy|. If we look at Eqs. (54) and (55), we realize that αz

1,2
and αz

3,4 have the same functional form of αx
1,2 and αx

3,4, the
eigenvalues related to the XXZ model with no field. Indeed,
changing yy by zz in the above expressions for the eigenvalues
leads to the ones given by Eqs. (54) and (55). Therefore, the
analysis we have made in Sec. III A about certain symmetries
of the Hamiltonian and the equality of a pair of two-point
correlation functions for any temperature applies here. As we
show next, the alleged robustness of Lz

QC in detecting the
γ transition is associated with a particular symmetry of the
Hamiltonian and to the ill-defined character of Lz

QC. In other
words, once more this example will illustrate that there is
nothing outstanding in Lz

QC that sets it apart from other QCP
detectors.

D. The γ transition

The anisotropy transition occurs at γc = 0. At this QCP, the
Hamiltonian (61) becomes

H = −λ

4

L∑
j=1

[
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1

] − 1

2

L∑
j=1

σ z
j . (64)

Looking at Eq. (64), it is obvious that the two-point correlation
functions xx and yy are equal. This happens because of the
invariance of the Hamiltonian for rotations around the z axis
when γ = 0.

Since xx = yy for any T , we immediately see from Eq. (63)
that αz

3,4 = 0 for any value of temperature. In other words,
Lz

QC will diverge at γ = 0 no matter how high the temperature
is. This is the reason for the robustness of Lz

QC to temperature
increases reported in Ref. [23]. As we understand now, this
robustness is misleading. It is simply a consequence of the
ill-defined character of LK

QC when any one of the eigenvalues
appearing in its definition becomes zero.

In Fig. 11, we show for several values of temperature Lz
QC

and the other relevant QCP detectors, namely, Sz
m, QD, and

F ext, as functions of γ . We fix λ = 1.5 in all those curves.
Looking at Fig. 11, we realize that all quantities are useful

in spotlighting the QCP up to kT = 2.0. The QD and the
external teleportation QCP detector (lower panels) spotlight
the QCP by discontinuities in their first-order derivatives with

FIG. 11. The several QCP detectors investigated in this paper as
a function of γ . We fixed λ = 1.5 in Hamiltonian (61). In the top-left
panel, temperature increases from bottom to top. In the remaining
panels, temperature increases from top to bottom. See text for details.

respect to γ at the exact location of the QCP (see the kinks
at γc = 0). Those kinks are not displaced as we increase T
but become smoother. On the other hand, Sz

QC does not have
those kinks. The QCP in this case is detected by noting that
the global minimum of Sz

QC occurs at γc = 0. Finally, Lz
QC

diverges at the location of the QCP for any T due to the
reasons given above.

E. The λ transition

The only case studied in Ref. [23] related to the λ transition
was the Ising transverse model (γ = ±1.0). For definiteness,
here we fix γ = 1.0 in the following analysis.

In Figs. 12 and 13, we plot the QD, Lz
QC, F ext and Sz

QC as
functions of λ for several values of T . At T = 0, the QCP is
given by inflection points of these quantities at λc = 1.0. As
we increase T , the inflection points move away from the QCP
and become less prominent as we increase T .

Figure 14 illustrates the behavior of Dint as a function of
λ for several values of T and with γ = 1.0. At T = 0, it is
now dDint/dλ that has an inflection point at the QCP [25].
Similarly to the above cases, the higher T the more distant
from the QCP the inflection point is and it also becomes less
prominent as we increase T .

To quantitatively compare the performance of these QCP
detectors when only finite T data are available, we repeat
here the same analysis carried out for the XXZ model in an
external field (see Sec. III B). We now work with 11 different
temperatures. We start at kT = 0 and go up to kT = 0.1
in increments of 0.01. For each value of kT , we compute
the first- and second-order derivatives with respect to λ for
all five QCP detectors shown in Figs. 12–14. In Fig. 15, we
only show the corresponding estimate for the QCP extracted
from the derivative (first or second order) leading to the best
performance for each of those quantities. As in Sec. III B, the
critical point is estimated by picking the value of λ giving
the greatest magnitude of the respective derivative around the
exact T = 0 location of the QCP.
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FIG. 12. Quantum discord, Eq. (2), and the logarithm of the
spectrum, Eq. (11), as a function of λ for several values of tempera-
ture. Here we fix γ = 1.0 (Ising transverse model). In all panels, the
temperature increases from top to bottom when λ < 1.0. The insets
zoom in at the QCP, where in the x axis we have 0.9 � λ � 1.1.

Contrary to what we did in Sec. III B, we numerically com-
puted those derivatives using the central difference method,
namely, df (x)/dx ≈ [ f (x + η) − f (x − η)]/(2η), where η =
0.01. Both methods are equally valid but we opted now to
work with the central difference method to contrast it with
the curve of Ref. [25], where the forward difference method
was used to compute Dint. Since λ was changed in steps of
0.01, both methods will differ by at least 0.01 in giving the
maximum for the magnitude of the derivatives. This is an

FIG. 13. Maximum mean fidelity, Eq. (51), and the coherence
entropy, Eq. (10), as a function of λ for several values of temperature.
Here we fix γ = 1.0. In both panels, the temperature increases from
top to bottom after λ > 1.0.

FIG. 14. Minimum mean trace distance, Eq. (52), as a function of
λ for several values of temperature when γ = 1.0. The temperature
increases from bottom to top when λ < 1.0. The inset zooms in at
the QCP, where in the x axis we have 0.9 � λ � 1.1.

illustrative example showing that the results reported here and
in Refs. [24,25] are accurate by at most the step η = 0.01
used to generate the curves (see Appendix for more details).
Furthermore, the same numerical errors related to the first-
and second-order derivatives reported in Sec. III B apply here.
The spot of the maxima of the absolute value of the first- and
second-order derivatives have a numerical error of ±0.01 and
±0.02, respectively [24,25].

Looking at Fig. 15, we note that within the numerical errors
(up to ±0.02 for the second derivatives), all quantities but Lz

QC

FIG. 15. Estimated QCPs using finite T data according to the
procedure given in the main text. For each value of kT , we plot the
values of λ yielding the maximum of df /dλ, where f = F ext,Sz

QC,
and the values of λ giving the maximum of d2 f /dλ2, where f =
QD,Dint,Lz

QC. The dashed line marks the exact location of the QCP.
See text for details.
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give the correct location of the QCP for kT � 0.4. Moreover,
within an error of ±0.01, the internal teleportation-based QCP
detector (Dint) gives the correct value of the QCP for all
temperatures shown in Fig. 15. Again, the bottom line is that
neither Sz

QC nor Lz
QC stands out as the most efficient QCP

detector when only finite T data are at stake.

IV. CONCLUSION

We analyzed qualitatively and quantitatively the efficacy of
different tools to detect QCPs for several classes of quantum
phase transitions. In particular, we focused on the efficacy of
those tools to properly identify a QCP when we only have
access to finite temperature data. We worked with the follow-
ing quantities, namely, the quantum discord [21,22,26,27], the
coherence entropy, and the logarithm of the spectrum [23],
which are based on the the quantum coherence [8,9,28], and
the external and internal teleportation-based QCP detectors
[24,25], built on top of the standard quantum teleportation
protocol [29–31].

We worked with several types of one-dimensional spin-
1/2 chains, whose ground states had at least two quantum
phases. The spin chains were studied in the thermodynamic
limit (infinite number of spins) and we assumed the spin
chains to be in equilibrium with a heat bath at temperature
T . The models we studied were the XXZ model with and
without an external longitudinal magnetic field, the Ising
transverse model, and the XY model in an external transverse
magnetic field.

From the theoretical point of view, the most important
ingredient needed to compute all the quantities above is the
density matrix describing a pair of nearest-neighbor spins
from the chain. It can be completely determined once we
know all the one- and two-point correlation functions for a
given spin chain. After obtaining this density matrix as a
function of the temperature and parameters of the system’s
Hamiltonian, we were able to compute the above quantities in
the vicinity of the QCPs for several different values of T . This
allowed us to investigate quantitatively the accuracy of those
QCP detectors in correctly spotlighting the location of a QCP
using finite T data.

The first major result we arrived at is related to the faulty
definition of the logarithm of the spectrum LK

QC [23]. We
showed that it cannot be defined for several classes of two-
qubit density matrices. Also, we showed that the alleged
robustness of LK

QC in spotlighting QCPs at finite T is related
to this ill-definedness and has nothing to do with an intrinsic
robustness to detect QCPs. Indeed, we showed that for all
models investigated in Ref. [23], with the exception of the
Ising model, the locations of the QCPs are exactly where LK

QC
is ill-defined (it diverges). This is the underlying cause for
its robustness in detecting a QCP. We also showed that LK

QC
may give us false alarms, being divergent (undefined) when
no quantum phase transition is taking place.

The second major result is related to the fact that no single
QCP detector outperforms all the others. The optimal QCP
detector depends on the model, on the QCP, and on the tem-
perature. However, almost always either the quantum discord

FIG. 16. Estimated QCPs using finite T data according to the
procedure given in the main text. The two curves are obtained from
two different finite difference methods to approximate the derivatives
of Dint. The dashed line marks the exact value of the QCP (λc = 1.0).

or the teleportation-based QCP detector is the optimal choice.
For the Ising transverse model, though, when we have low
temperatures the coherence entropy SK

QC is as efficient as the
quantum discord and the internal teleportation-based QCP
detector.

We end by noting that the comparative study among the
QCP detectors here presented does not consider the com-
putational complexity to calculate them, in particular, for
high-spin systems, as well as their operational meaning and
experimental feasibility. It is known that the quantum discord
is not easily computed for high-spin systems [32], being an
NP-complete problem [33]. This means that it becomes im-
practicable to compute the quantum discord as we increase
the size of the system under investigation. Furthermore, the
quantum discord does not have a direct operational meaning
and no general procedure to its direct measurement is known.
We also have that LK

QC and SK
QC [23] are not easily computed

for high spins and that no direct way of measuring them
is available [24]. On the other hand, the teleportation-based
QCP detectors have a direct experimental meaning and are
easily generalized to high-spin systems [24,25]. On top of
that, the necessary experimental steps to the implementa-
tion of the teleportation-based QCP detectors are already at
hand [56–67].
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APPENDIX: FORWARD AND CENTRAL
DIFFERENCE METHODS

The forward difference method to numerically compute the
derivative of a function at point x is given by the following
expression:

df (x)

dx
≈ f (x + η) − f (x)

η
, (A1)

where η is the numerical step used to generate point x j+1 from
point x j . The central difference method, on the other hand, is
given by

df (x)

dx
≈ f (x + η) − f (x − η)

2η
. (A2)

Applying twice either the forward method or the central
method, we computed for each value of kT in Fig. 16 the

second derivative of Dint with respect to λ, the driving term
for the Ising transverse model of Sec. III E. Then, we picked
the value of λ leading to the minimum of d2Dint/dλ2. The
points in Fig. 16 are the λ’s giving the minima of d2Dint/dλ2

at each kT .
Looking at Fig. 16, we see that for every value of kT

the location of the minimum of d2Dint/dλ2, obtained by
the central difference method, differs by 0.01 from the lo-
cation of the minimum determined via the other method.
En passant, we should mention that if we had computed
the derivatives using the backward difference method, where
df (x)/dx ≈ [ f (x) − f (x − η)]/η, we would have obtained
a curve that in Fig. 16 would appear displaced above
the one for the central difference method by η = 0.01.
This will always happen because the derivative computed
by the central difference method is the average of the
values obtained by the forward and backward difference
methods.
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