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Optical and Raman selection rules for odd-parity clean superconductors
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We derive selection rules in optical absorption and Raman scattering spectra that can determine the parity of
pairing order parameters under inversion symmetry in two classes of clean superconductors: (1) chiral supercon-
ductors with strong spin-orbit couplings and (ii) singlet superconductors with negligible spin-orbit couplings.
Experimentally, the inversion parity of pair wave functions can be determined by comparing the “optical gap”
�op in Raman and optical spectroscopy and the “thermodynamic gap” 2� in specific heat measurements, and
the selection rules apply when �op > 2�. We demonstrate the selection rules for superconductivity in models
of (1) doped Weyl semimetals and (2) doped graphene. Our derivation is based on the relation between pairing
symmetry and the fermion projective symmetry group of a superconductor. We further derive similar selection
rules for two-dimensional superconductors with twofold rotational symmetry and discuss how they apply to the
superconducting state in magic-angle twisted bilayer graphene.

DOI: 10.1103/PhysRevB.109.245119

I. INTRODUCTION

As the best-known quantum phenomenon on the macro-
scopic scale, superconductivity has many important tech-
nological applications, ranging from quantum sensing [1]
and quantum computing [2] to improving energy efficiency
[3]. Spontaneously breaking the U (1) charge conservation
symmetry in a material, superconductors (SCs) exhibit a
Landau-type off-diagonal long-range order, characterized by
a pairing order parameter �(k) in momentum space (la-
beled by crystal momentum k), also known as the pair wave
function [4–6]. Most metals and alloys are conventional su-
perconductors, in which superconductivity is induced by the
electron-phonon coupling and well described by the BCS
theory, with an isotropic s-wave spin-singlet pairing order pa-
rameter. On the other hand, other types of interactions can give
rise to non-s-wave unconventional superconductivity [5] with
many desirable properties, such as high-temperature d-wave
superconductivity in cuprates with strong Coulomb repulsions
[7–10] and topological superconductivity in materials with
strong spin-orbit interactions [11,12]. Unique applications can
arise from unconventional superconductivity, such as fault-
tolerant topological qubits based on Majorana zero modes
(MZMs) [13–16].

However, in the attempt to identify an unconventional
superconductor, the experimental determination of the pair-
ing symmetry has been a challenging task for almost every
candidate material [4–6,17] for the following reason. To
determine the symmetry of the complex pair wave func-
tion �(k), one needs information about both its magnitude
|�(k)| and the phase arg [�(k)]. Most common experimental
probes are believed to be sensitive to only the magnitude
of the order parameter, including penetration depth, spe-
cific heat, thermal transport, angle-resolved photoemission,
and NMR spectroscopy [6,17,18]. On the other hand, phase-
sensitive measurements able to probe the relative phase of
the order parameter as a function of the �k-space direction
require more complicated devices and measurements, such as

superconducting quantum interference device interferometry
and tricrystal or tetracrystal magnetometry [6,17], which are
not easily accessible for many candidate materials. Therefore,
new experimental probes that can sharply determine the sym-
metry representation of the pairing order parameter �(k) are
highly desirable.

As one of the simplest manifestations of pairing symme-
try, in the presence of inversion symmetry, the pairing order
parameter can be either an even or an odd function of �k,
corresponding to (conventional) even-parity and (unconven-
tional) odd-parity superconductivity, respectively. Odd-parity
superconductors are often associated with exotic physical
properties, such as MZMs in the vortex core of chiral p-
wave superconductors in two dimensions [19]. In this work,
we derive a set of selection rules for optical absorption and
Raman spectroscopy for the particle-hole continuum of Bo-
goliubov quasiparticle excitations in a superconductor that
allows us to sharply distinguish odd-parity and even-parity
superconductors. These selection rules are derived using the
correspondence between the pairing symmetry and fermion
projective symmetry group (PSG) in a SC, which was re-
cently established in Ref. [20]. We demonstrate how to use
the selection rules to detect the parity of pair wave functions
in two systems: (1) chiral superconductors in doped Weyl
semimetals, which are an example of chiral superconductors
with strong spin-orbit coupling (SOC), and (2) singlet su-
perconductors in doped graphene, which are an example of
singlet superconductors with SU (2) spin rotational symme-
tries. For superconductors in two-dimensional (2D) materials,
we establish similar selection rules for the parity of the pair
wave function under a twofold rotational symmetry C2,z and
discuss how they apply to superconductors in magic-angle
twisted bilayer graphenes (MATBGs) [21].

Symmetry actions on Bogoliubov quasiparticles. In the
optical absorption and Raman spectroscopies of a SC, the
dominating electronic contribution comes from a pair of Bo-
goliubov quasiparticles with opposite momenta, known as the
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“particle-hole continuum” of a SC. To obtain their selection
rules under a crystalline symmetry such as inversion, we need
to understand how the Bogoliubov quasiparticles transform
under crystalline symmetry operations. This is captured by the
following Bogoliubov–de Gennes (BdG) Hamiltonian for the
SC phase:

ĤBdG = Ĥ0 + (Ĥpair + H.c.), (1)

Ĥ0 = ∑
α β;k ĉ†

kαhαβ (k)ĉkβ, (2)

Ĥpair = ∑
α β;k ĉ†

kα�αβ (k)ĉ†
−kβ, (3)

where Ĥ0 describes the normal state band structure hα,β (k)
of electrons and Ĥpair describes the Cooper pairing of elec-
trons. We use α and β to generally denote the spin, orbital,
and sublattice indices of electrons. Under a crystalline sym-
metry operation ĝ, the electron transforms as ĝ ck α ĝ−1 =
[U g

0 (k)]†
αβ ĉgk β , where U g

0 (k) is a unitary matrix. Although
the normal state band structure preserves the ĝ symmetry
as [ĝ, Ĥ0] = 0, the pairing term Ĥpair in an unconven-
tional SC is generally not invariant under crystal symmetry
ĝ [20,22,23].

In this paper we restrict ourselves to SCs without sponta-
neous breaking of spin rotational symmetries; i.e., the normal
state and SC belong to the same global (spin rotation) sym-
metry group. In this case, due to the broken U (1) charge
symmetry, the pairing term Ĥpair can acquire a phase ei�g

under crystal symmetry ĝ [20,22,23]:

U g
0 (k)�(k)

[
U g

0 (−k)
]T = ei�g �(ĝk). (4)

The phase factors {ei�g|ĝ ∈ X } form a one-dimensional irre-
ducible representation (irrep) of the crystal symmetry group
X , satisfying ei(�g+�h ) = ei�gh for any g, h ∈ X .

For the order-2 inversion symmetry �̂ of interest to this
work, we have ei�� = ±1, and hence,

U �
0 (k)�(k)

[
U �

0 (−k)
]T = ±�(−k), (5)

where the + and − signs correspond to even and odd par-
ity under inversion symmetry, respectively. Note that due to
nontrivial transformations of the pair wave function �(k)
shown above, the BdG Hamiltonian is not invariant under the
normal state symmetry ĝ anymore. Instead, ĤBdG preserves a
combination ĝ′ of normal state crystal symmetry ĝ ∈ X and a
U (1) charge rotation e−i�gF̂/2, where F̂ is the total fermion
number:

ĝ′ĤBdG(ĝ′)−1 = ĤBdG, ĝ′ = e−i�gF̂/2ĝ,

ĝ′ ck,α (ĝ′)−1 = e−i�g/2
[
U g

0 (k)
]†

αβ
ĉĝk,β . (6)

In the case of order-2 inversion symmetry �, we have

(�′)2 = e−i�� F̂ = (±1)F̂ . (7)

In other words, inversion squares to ±1 when acting on a
fermion operator in a SC with an even or odd parity under
inversion symmetry. They correspond to two different fermion
PSGs [20] with distinct physical properties. In particular, we
consider Bogoliubov quasiparticles (BQPs) {γk,a} of the BdG

Hamiltonian (1):

ĤBdG =
∑
k,a

Ea(k)γ †
k,aγk,a, Ea(k) � 0, (8)

where a generally labels the spin or band indices of BQPs.
In optical absorption and Raman spectroscopy experi-

ments, the dominant electronic contribution comes from a pair
of BQPs with opposite momenta. Considering the inversion
symmetry �′ in (7) for the SC phase, we can always choose a
gauge so that

�′
(

γ
†
k,a

γ
†
−k,a

)
(�′)−1 =

(
γ

†
−k,a

±γ
†
k,a

)
. (9)

This relation and Fermi statistics together lead to a gauge-
invariant inversion eigenvalue for a pair of BQPs with
opposite momenta:

�′(γ †
k,aγ

†
−k,a)(�′)−1 = ∓(γ †

k,aγ
†
−k,a). (10)

In a chiral SC with strong SOC, there is no Kramers degener-
acy for BQPs at a generic momentum, and therefore, the BQP
pair with the lowest energy comes from the same Bogoliubov
band, a = 0. Therefore, the inversion quantum number (10)
directly applies to the low-frequency spectroscopy of a chiral
SC. On the other hand, in a singlet SC with SU (2) spin rota-
tional symmetries, each Bogoliubov band has a twofold spin
degeneracy α, β =↑,↓ at every momentum. In this case, the
spin-singlet BQP pair with the lowest energy has the following
gauge-invariant inversion eigenvalue:

�′(εαβγ
†
k,0,αγ

†
−k,0,β )(�′)−1 = ±(εαβγ

†
k,0,αγ

†
−k,0,β ). (11)

Here, band index 0 in the subscript means the lowest BdG
band with a non-negative energy. Below we show how the
gauge-invariant inversion eigenvalues in (10) and (11) lead to
selection rules in optical absorption and Raman spectroscopy
which can be used to detect the inversion parity of pairing
order parameters.

II. OPTICAL ABSORPTION SPECTROSCOPY

It was believed that optical spectroscopy via inelastic
light scattering is sensitive only to the magnitude of the
pairing order parameter [6,24]. Although Higgs modes have
been proposed to characterize and differentiate different pair-
ing symmetries in unconventional superconductors [25], they
have proven difficult to observe in superconductors due to the
nonlinear light-Higgs coupling [26]. On the other hand, the
particle-hole continuum above the 2� threshold, created by
breaking a Cooper pair and exciting two Bogoliubov quasi-
particles, is the most important electronic response to inelastic
optical probes in a superconductor [24]. Below we demon-
strate that the aforementioned symmetry transformations on
BQPs lead to distinct optical selection rules for the particle-
hole continuum in SCs.

The dominant component of light-matter interaction is the
coupling of the vector potential A of light with the particle
current operator ĵ of the system:

Ĥint = −eA(t ) · ĵ. (12)
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TABLE I. Selection rules for the parity of pair wave functions under inversion symmetry �̂ in chiral SCs with strong SOC for optical
absorption spectroscopy and Raman spectroscopy.

Parity of �(k) (�̂′)2 Parity of γ †
k,aγ

†
−k,a Imχ (2� < ω < � + �′) IRaman(2� < ω < � + �′)

Even +1 Odd Nonzero 0
Odd −1 Even 0 Nonzero

The optical absorption rate is given by the transition rate
in time-dependent perturbation theory, where the first-order
perturbation theory leads to∑

f

wi→ f = 2π

h̄

∑
f

|〈 f |Ĥint|i〉|2δ(E f − Ei − ω)

= πe2

ε0ω

∑
f

|〈i|e · ĵ| f 〉|2δ(ω + Ei − E f ) (13)

= h̄

ε0
ωImχ (ω) = h̄

ε0
Reσ (ω), (14)

where e is the polarization vector of light and χ (ω) = χ ′ +
iχ ′′ and σ (ω) are the electric susceptibility and optical con-
ductivity in linear response theory. At zero temperature, the
initial state |i〉 is the SC ground state |0〉, and the final state
| f 〉 is obtained by creating a zero-momentum BQP pair on the
ground state so that

h̄

ε0
ω Imχ (T = 0, ω) = πe2

2ε0ω

∑
k,a,b

|〈0|e · ĵ (γ †
k,aγ

†
−k,b)|0〉|2

× δ[ω − Ea(k) − Eb(−k)] + · · · ,

(15)

where · · · stands for other contributions from, e.g., Higgs
modes or four Bogoliubov quasiparticles. If we label the bot-
toms of the lowest and second-lowest BQP bands as � and
�′, respectively, with � < �′, for the frequency range

ω < � + �′, (16)

only a pair of BQPs from the lowest Bogoliubov band a =
b = 0 contributes, which corresponds to

| f 〉 = γ
†
k,0γ

†
−k,0|0〉 (17)

in a chiral SC with a strong SOC or

| f 〉 = εαβγ
†
k,0,αγ

†
−k,0,β |0〉 (18)

in a singlet SC with SU (2) symmetry. Since the current oper-
ator ĵ is odd under inversion symmetry

�′ ĵ(�′)−1 = −ĵ, (19)

Eqs. (10) and (11) immediately lead to the optical absorp-
tion selection rules summarized in Tables I and II for chiral

SCs with SOC and singlet SCs without SOC, respectively.
It is worth mentioning that the above absorption selection
rules recover one well-known conclusion in the single-band
(�′ → ∞) limit: there is no optical absorption for ω > 2� in
single-band clean s-wave SCs [27].

Below we demonstrate the absorption selection rules with
two examples. First, we study superconductivity in doped
magnetic Weyl semimetals [28,29] as an example of chi-
ral SCs with strong SOCs. Specifically, we consider two
different pairing symmetries (see Appendix A) of zero-
momentum Cooper pairs, one with even parity under inversion
and another with odd parity, in the two-band model of an
inversion-symmetric Weyl semimetal that breaks time rever-
sal symmetry [28]. As shown in Fig. 1, while the electronic
contribution to light absorption remains finite at all frequen-
cies ω > 2� = 0 for an even-parity SC, it vanishes at a low
frequency (ω < � + �′ in Fig. 1) for an odd-parity SC. Here,
for the even-parity SC, the energy gaps are � = 0.5t and �′ =
3.5t . Here, t is the hopping integral defined in Appendix A,
which is the characteristic energy scale of our models. The
odd-parity SC state is gapless (� = 0) due to the nontriv-
ial topological charge of the Weyl points [30]. The energy
gaps are � = 0 and �′ = 0.5t . Remarkably, in the odd-parity
SC, independent of the direction of light polarization e (see
Appendix A), there is no optical absorption even above the
thermodynamic gap 2�, and the associated “optical gap” is
lower bounded by �op � � + �′, consistent with selection
rules in Table I.

Next, we study spin-singlet superconductivity in doped
graphene as an example of singlet SCs with SU (2) spin
rotational symmetry. Specifically, we consider two different
pairing symmetries (see Appendix B) with zero center-of-
mass momentum in the honeycomb lattice model of graphene
with a finite chemical potential. Energy gaps for the even-
parity case are � = 0.22t and �′ = 0.75t , and those for the
odd-parity case are � = 1.1t and �′ = 4.2t . The absorption
rate as a function of light frequency ω is shown in Fig. 2. The
odd-parity SC is gapless, and its absorption rate is nonzero for
all frequencies. In contrast, the absorption rate of the even-
parity SC is identically zero above the bulk thermodynamic
gap 2� ≈ 0.4t , until the light frequency reaches an optical
gap of �op ≈ 1.2t > � + �′. This demonstrates the selection
rules for even-parity singlet SCs.

TABLE II. Selection rules for the parity of pair wave functions under inversion symmetry �̂ in singlet SCs with no SOC and hence SU (2)
symmetry for optical absorption spectroscopy and Raman spectroscopy.

Parity of �(k) (�̂′)2 Parity of εαβγ †
k,0,αγ

†
−k,0,β Imχ (2� < ω < � + �′) IRaman(2� < ω < � + �′)

Even +1 Even 0 Nonzero
Odd −1 Odd Nonzero 0
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10-3 Even parity
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Odd parity

FIG. 1. T = 0 absorption spectra of two chiral SCs with opposite
pairing parity under inversion symmetry in a two-band model of
doped Weyl semimetals [28,29] that breaks time reversal symmetry.
Left: � = 0.5t, �′ = 3.5t . Right: � = 0, �′ = 0.5t .

The selection rules for optical absorption (and conductiv-
ity) in Tables I and II were previously discussed in Ref. [23] in
the context of the Altland-Zirnbauer classes [31] of quadratic
BdG Hamiltonians. Compared to Ref. [23], which is based
on the particle-hole symmetry of the quadratic BdG Hamilto-
nian, the current work derives the selection rules using the
relation between fermion PSGs and SC pairing symmetry
[20,22], which generally applies to interacting fermions. In
an interacting fermion system, since the Altland-Zirnbauer
symmetry classes do not directly apply to a many-body in-
teracting Hamiltonian, the symmetry group characterized by
the fermion PSGs is required to properly describe the full
symmetry of the superconducting phase. For example, in the
case of global symmetries, class D corresponds to chiral su-
perconductors without spin rotational symmetries (e.g., due
to strong spin-orbit coupling), class C corresponds to chiral
singlet superconductors with SU (2) spin rotational symme-
tries, and class CI corresponds to singlet superconductors with
time reversal symmetry. As we showed above, the parity of
the pairing order parameters of these three symmetry types
can be detected by selection rules in the presence of inversion
symmetry. Therefore, our formulation enables a generaliza-
tion of the single-particle results of Ref. [23] to correlated
systems with well-defined Bogoliubov quasiparticles γk,a, in
a way similar to how a Fermi liquid generalizes a noninter-
acting Fermi gas. Moreover, compared to those in Ref. [23],
our results point to a clear protocol to detect the SC pairing
symmetry through a comparison of the optical gap and the

0 1 2 3 4 5
0

0.1

0.2
Even parity

0 5 10
0

0.2

0.4
Odd parity

FIG. 2. T = 0 absorption spectra of two singlet SCs with oppo-
site pairing parity under inversion symmetry in the honeycomb lattice
model of doped graphene. Left: � = 0.22t, �′ = 0.75t . Right: � =
1.1t, �′ = 4.2t .
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10-7 Even parity

0 1 2 3 4 5
0

0.05

0.1
Odd parity

FIG. 3. T = 0 Raman spectra of two chiral SCs with opposite
pairing parity under inversion symmetry in a two-band model of
doped Weyl semimetals. Left: � = 0.5t, �′ = 3.5t . Right: � =
0, �′ = 0.5t .

thermodynamic gap 2�, which can be obtained by, e.g., mea-
suring the specific heat. Based on the above relation between
fermion PSGs and the SC pairing symmetry, below we further
derive different selection rules in Raman spectroscopy.

III. RAMAN SPECTROSCOPY

The Raman differential scattering cross section is given by
Fermi’s golden rule [24,32,33]:

∂2σ

∂�∂ωs
= e4

h̄

ωs

ωi

∑
f

|〈 f |eα
i eβ

s Mαβ |i〉|2δ(ω + Ei − E f ),

(20)

where ei and es are the polarization vectors of incident and
scattered light. ωi and ωs are the frequencies of the incident
light and of the scattered light, respectively, and ω = ωi − ωs.
M̂ is the Raman scattering operator, given by

〈 f |ea
i eb

f Mαβ |i〉 = ea
i eb

f 〈 f |
∑
k,α,β

c†
k,α

∂2hα,β (k)

∂ka∂kb
ck,β |i〉

+
∑

v

[
〈 f |(�j · ê f )|v〉〈v|(�j · êi )|i〉

Ev − Ei − ωi

+ 〈 f |(�j · êi )|v〉〈v|(�j · ê f )|i〉
Ev − Ei + ωs

]
, (21)

where Ev labels the energy of eigenstate |v〉. Clearly, the M
operator is even under inversion symmetry.

As a result, following the same logic as in the discussion
of absorption spectroscopy, we can obtain the selection rules
for Raman intensity IRaman(ω), shown in the last columns of
Tables I and II. Note that the inversion symmetry selection
rules for Raman spectra are opposite those for absorption
spectra. In particular, for chiral SCs with strong SOC, the
Raman intensity vanishes even above the thermodynamic gap
2� for an even-parity pair wave function.

We also calculate Raman spectra for both our models. For
the model with Weyl semimetals without SU (2), we show
results in Fig. 3. For the even-parity case, the selection rule
requires the scattering to be zero below � + �′. For the odd-
parity case, there is no selection rule, and the spectrum is not
zero at any frequency because the band is gapless (� = 0).
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10-4 Even parity
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10-9 Odd parity

FIG. 4. T = 0 Raman spectra of two singlet SCs with opposite
pairing parity under inversion symmetry in the honeycomb lattice
model of doped graphene. Left: � = 0.22t, �′ = 0.75t . Right: � =
1.1t, �′ = 4.2t .

The Raman spectra for SCs on a honeycomb lattice
with SU (2) symmetry are shown in Fig. 4. For the even-
parity case, the spectrum is not zero above energy gap
2� = 0.44t because there is no selection rule. For the
odd-parity case, the spectrum is zero between energy gap
2� = 2.2t and � + �′ = 5.3t , as required by the selection
rule.

IV. C2,z SYMMETRY IN 2D SUPERCONDUCTORS

For a quasi-two-dimensional SC, the previous derivation
of the selection rules for inversion symmetry � naturally
generalizes to twofold rotation C2,z, whose rotation axis is
perpendicular to the 2D plane. There is one subtlety, how-
ever, from nontrivial C2,z symmetry actions on electrons in
the normal state: Ĉ2

2,z = 1 for SU (2)-symmetric 2D systems

with weak SOC, or Ĉ2
2,z = (−1)F̂ for 2D systems with strong

SOC. In a 2D singlet SC with SU (2) spin rotational symmetry,
the twofold rotation C2,z simply reverses both the x and y
coordinates in the 2D space in the same way as the inversion
symmetry. This leads to the same set of selection rules in
Table II for 2D singlet SCs with C2,z symmetry. On the other
hand, for 2D chiral SCs with strong SOC, due to the nontrivial
Ĉ2

2,z = (−1)F̂ action in the normal state, the C2,z selection
rules are opposite those of inversion symmetry, as summarized
in Table III.

Below we briefly discuss one example in which such se-
lection rules apply. By analyzing a collection of existing
experimental data, Ref. [34] recently argued that the structure
of SC pairing order parameters in MATBG is almost uniquely
determined except for its orbital parity under C2,z symmetry,
which is either even (d wave) or odd (p wave). In the normal
state of MATBG, C2

2,z = (−1)F̂ arises from spontaneously
generated SOC due to spin-valley locking [34], and therefore,
the selection rules in Table III directly point to experimental

signatures to determine the pairing symmetry of the chiral SC
in MATBG [20].

V. DISCUSSION AND OUTLOOK

Using the correspondence between pairing symmetry and
the fermion PSG in SCs obtained recently [20,22], we derived
selection rules in optical absorption and Raman scattering
spectroscopy for two classes of clean SCs: (1) chiral SCs with
strong SOC and (2) singlet SCs with weak SOC. In particular,
the selection rules in case 1 can be applied to distinguish the
inversion parity of pair wave functions in many candidate ma-
terials of chiral superconductors [35], such as SrRuO4 [36,37],
UPt3 [38] and UTe2 [39]. We derive a similar set of selection
rules for twofold rotational symmetry C2,z in 2D SCs and
discuss how they can be applied to distinguish the proposed
d-wave from p-wave SCs in MATBG [34].

While this work has focused on clean SCs, it is well known
that optical absorption exists above the thermodynamic gap
2� in dirty SCs [40–42]. Since impurities break the crystalline
inversion or rotation symmetry, the selection rules derived
here for clean SCs do not apply in the dirty limit, giving rise
to nonzero optical and Raman responses above 2�. In the
presence of impurities, one natural question is, How do the
optical responses in absorption and Raman scattering depend
on the frequency ω above the thermodynamic gap 2�? For
example, even- and odd-parity SCs may have different power-
law dependence on ω − 2� for optical absorption and Raman
intensity. Another future direction is to generalize the current
work to selection rules of optical and Raman responses in
topological orders, e.g., Z2 spin liquids, which are related to
a SC by gauging the fermion parity symmetry ZF

2 . We leave
these questions for future studies.
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APPENDIX A: CHIRAL SUPERCONDUCTIVITY IN A
TWO-BAND MODEL OF A DOPED WEYL SEMIMETAL

In this example, we demonstrate the phenomenon of se-
lection rules by studying superconductivity in a doped Weyl
semimetal. In this example of a doped Weyl semimetal,
time reversal symmetry is broken, while inversion and C4

TABLE III. Selection rules for the parity of pair wave functions under rotational symmetry Ĉ2,z in 2D chiral SCs with strong SOC for
optical absorption spectroscopy and Raman spectroscopy.

Parity of �(k) (Ĉ′
2,z )2 Parity of γ †

k,aγ
†
−k,a Imχ (2� < ω < � + �′) IRaman(2� < ω < � + �′)

Even −1 Even 0 Nonzero
Odd +1 Odd Nonzero 0
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TABLE IV. For each pairing term, its quantum numbers under
operators I and C4 are listed. The true symmetries I ′ and C′

4 have
different symmetry fractionalization classes, and the corresponding
quantum numbers I ′2, C′4

4 and I ′C′
4I ′−1C′−1

4 are listed.

�(k) I C4 I ′2 C′4
4 I ′C′

4I ′−1C′−1
4

cos kziσ y −1 1 −1 −1 1
sin kzσ

x 1 1 1 −1 1
sin kz(σ 0 + σ z ) −1 −i −1 1 1
sin kz(σ 0 − σ z ) −1 i −1 1 1
(cos kx + cos ky )iσ y −1 1 −1 −1 1
(cos kx − cos ky )iσ y −1 −1 −1 −1 1
(sin kx + i sin ky )σ x 1 −i 1 1 1
(sin kx − i sin ky )σ x 1 i 1 1 1
(sin kx + i sin ky )(σ 0 + σ z ) −1 −1 −1 −1 1
(sin kx − i sin ky )(σ 0 + σ z ) −1 1 −1 −1 1
(sin kx + i sin ky )(σ 0 − σ z ) −1 1 −1 −1 1
(sin kx − i sin ky )(σ 0 − σ z ) −1 −1 −1 −1 1

rotational symmetries along the z axis are preserved. To be
more specific, we consider nearest-neighbor terms in a three-
dimensional cubic lattice model with two orbitals on each site,
and the Hamiltonian [28,29] in the momentum space is

h0(k) = t sin(kx )σ x + t sin(ky)σ y + m[2 − cos(kx )

− cos(ky)]σ z + tz[cos(kz ) − cos(Q)]σ z + μσ 0.

(A1)

Here, t (k) indicates the hopping part of the Hamiltonian, and
t, m, tz, and μ are real numbers. Two dimensions of matrix σ

represent two orbitals. This Hamiltonian generally has Weyl
nodes at k = (0, 0,±Q).

The inversion and C4 rotational symmetries act on fermions
in the following way:

I : cs,k → σ z
s,s′cs′,−k,

C4 : cs,(kx,ky,kz ) → Ss,s′cs′,(ky,−kx,kz), (A2)

where σ z and S = 1√
2
(σ 0 + iσ z ) are the action of C4 on or-

bitals. The inversion and C4 rotation symmetries act on both
space (momentum is changed) and spin (matrix σ ) degrees of
freedom. In the form of a matrix, we can write

I : h0(−k) → σ zh0(k)σ z,

C4 : h0(−ky, kx, kz ) → S†h0(kx, ky, kz )S. (A3)

To have superconductivity, we add the pairing term
�†

s1,s2
(k) cs1,−kcs2,k + H.c. Inversion and rotational symme-

tries act on the pairing terms in the following way:

I : �(−k) → σ z�(k)σ z,

C4 : �(−ky, kx, kz ) → S†�(kx, ky, kz )S∗. (A4)

Under this transformation, different pairing terms have differ-
ent quantum numbers, and they are listed in Table IV.

In Table IV I and C4 are the operators defined before.
We show the quantum number of each term. However, as
discussed in the main text, the symmetries of the BdG Hamil-
tonian are not I and C4 and differ by a phase operator
exp (i�F̂ ). Here, F̂ is the fermion particle number operator.

This phase operator transforms � as

�(k) → �(k) exp (i2�). (A5)

Note that this phase operator does not influence hopping
terms. When pairing terms are not invariant under I and C4,
we redefine I ′ = I exp (i�F̂ ) and C′

4 = C4 exp (i�′F̂ ) so that
I ′ and C′

4 are explicit symmetries of pairing terms. Then
inversion symmetry I ′ and rotational symmetry C′

4 are still
preserved for the system. Different choices of terms lead to
different symmetries fractionalizations characterized by I ′2,
C′4

4 , and I ′C′
4I ′−1C′−1

4 . We calculate these numbers for each
pairing term and list them in Table IV.

The BdG Hamiltonian in the Nambu basis ψk =
(ck,↑, ck,↓, c†

−k,↑, c†
−k,↓)T is written as

ĤBdG = 1

2

∑
k

ψ
†
kHkψk, (A6)

where

Hk =
[

h0(k) �(k)

�†(k) −hT
0 (−k)

]
. (A7)

We have suppressed the orbital index a in the fermion oper-
ator ck,a,↑/↓. In other words, we use ck,↑ to denote a spinor
ck,↑ = (ck,1,↑ . . . , ck,N,↑), where N is the number of bands in
the system.

Due to the particle-hole symmetry, the eigenvectors uk,a

above the BdG Hamiltonian matrix Hk at momenta ±k are
related by

u−k,a = τxu∗
k,a, (A8)

Hkuk,a = Ea(k)uk,a, H−ku−k,a = −Ea(k)u−k,a, (A9)

where (τx, τy, τz ) are Pauli matrices for the Nambu index.
Therefore, the eigenvectors of the BdG Hamiltonian Hk in-
clude both “quasiparticles” uk,a with eigenvalue Ea(k) �
0 and “quasiholes” τxu∗

−k,b with eigenvalue −Eb(−k) � 0.
Their associated eigenmode operators are

γ
†
k,a =

∑
α

uk,a,αψ
†
k,α, γ−k,b =

∑
α

u∗
−k,b,αψ−k,α, (A10)

and the BdG Hamiltonian is diagonalized in the following
form:

ĤBdG = 1

2

∑
k,a

[Ea(k)γ †
k,aγk,a − Ea(−k)γ−k,aγ

†
−k,a].

(A11)

Next, to study the optical spectrum of this model, we need
to first obtain the electric current operator. The particle current
operator can be calculated as a derivative of the hopping part
of the Hamiltonian,

ĵ =
∑

k

(c†
k,↑, c†

k,↓) j(k)(ck,↑, ck,↓)T , (A12)

with

j(k) = ∂h0(k)

∂k
. (A13)
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FIG. 5. Energy band of electrons. Special points in the Brillouin
zone are � : (0, 0, 0), Z : (0, 0, π ), R : (0, π, π ), and A : (π, π, π ).
The gapless point between � and Z is part of a sphere of gapless
points. For the odd-parity case, the energy gap of the first band is
� = 0.5t , and the energy gap of the second band is �′ = 3.5t . For
the even-parity case, the energy gap of the first band is zero, and the
energy gap of the second band is �′ = 0.5t .

Writing the current operator in the BdG basis ψk =
(ck,↑, ck,↓, c†

−k,↑, c†
−k,↓)T , we have

J(k) =
[

∂h0
∂k (k) 0

0 − ∂hT
0

∂k (−k)

]
, (A14)

and the current operator is

ĵ = 1

2

∑
k

ψ
†
kJ(k)ψk. (A15)

The electric current is odd under inversion. Current in the
z direction ĵz is invariant under C′

4, and ĵx + i ĵy and ĵx − i ĵy
are two irreducible representations that carry phase −i and i
under C′

4 rotation. Specifically,

I ′( ĵx + i ĵy)I ′−1 = −( ĵx + i ĵy),

I ′( ĵx − i ĵy)I ′−1 = −( ĵx − i ĵy),

I ′ ĵzI
′−1 = − ĵz,

C′
4( ĵx + i ĵy)C′−1

4 = −i( ĵx + i ĵy),

C′
4( ĵx − i ĵy)C′−1

4 = i( ĵx − i ĵy),

C′
4 ĵzC

′−1
4 = − ĵz. (A16)

We calculate the current operator from (A12) as follows:

jx(k) = t cos kxσ
x + m sin kxσ

z,

jy(k) = t cos kyσ
y + m sin kyσ

z,

jz(k) = −tz sin kzσ
z. (A17)

We show two examples.
Case 1. I ′2 = 1, and C′4

4 = −1. In this case I ′ = I and C′
4 =

C4 are not changed. There is only one pairing term invariant

0 2 4
0

0.5

Even parity

0 2 4
0

0.5

Odd parity

FIG. 6. Specific heat versus temperature T . The even-parity case
is gapped with � = 0.5t , and the specific heat is the exponential
function of 1/T at low temperature. The odd-parity case has gapless
momentum points, and the specific heat is proportional to T 3 at low
temperature.

according to Table IV:

�(k) = �1 sin kzσ
x. (A18)

Here, �1 is a complex number. Parameters are set as Q =
π/2, μ = 3.5t, m = 0.5t, tz = t, and �1 = t .

Case 2. I ′2 = −1, C′4
4 = −1, I ′ = I exp (iπ F̂/2), and C′

4 =
C4. In this case, all pairing terms with phases −1 and 1 under
the transformation of I and C4 are invariant under I ′ and C′

4.
According to Table IV, pairing terms in the Hamiltonian are

�(k) = �′
1 cos kziσ

y + �′
2(cos kx + cos ky)iσ y

+ �′
3(sin kx + i sin ky)(σ 0 − σ z )

+ �′
4(sin kx − i sin ky)(σ 0 + σ z ). (A19)

Parameters are set as Q = π/2, μ = 0.3t, m = t, tz = t , and
�′

i = 0.2t .
We show gapless electron bands in Fig. 5 and the specific

heat in Fig. 6. The specific heat is calculated by

C = 1

V

∑
i

ε2
i exp (εi/T )

T 2[1 + exp (εi/T )]2
, (A20)

where εi sums over all positive eigenvalues of the BdG Hamil-
tonian and index i includes the momentum index k and band
index a. V is the number of unit cells. The even-parity case
is gapped, and the heat capacity is close to the exponential
function exp (−�/T ) at low temperature. The odd-parity case
has gapless points, and heat capacity scales as T 3 at low
temperature.

We can calculate the absorption spectrum exactly using
Eq. (13). For the mean-field Hamiltonian, | f 〉 can be only
two-particle states. At zero temperature, the optical absorption
rate is calculated by the following equations:

ω Imχ (T = 0, ω) = πe2

2h̄ω

∑
f

|〈0|e · ĵ| f 〉|2δ(ω − E f + E0)

= πe2

2h̄ω

∑
k,a,b

|〈0|e · ĵγ †
k,aγ

†
−k,b|0〉|2δ[ω − Ea(k) − Eb(−k)]

245119-7
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= πe2

2h̄ω

∑
k,a,b,α,β

|e · Jα,β (k)〈0|ψ†
k,α ψk,βγ

†
k,aγ

†
−k,b|0〉|2δ[ω − Ea(k) − Eb(−k)]

= πe2

2h̄ω

∑
k,a,b,α,β

|e · Jα,β (k)〈0|ψ†
k,αγ

†
−k,b|0〉〈0|ψk,βγ

†
k,a|0〉|2δ[ω − Ea(k) − Eb(−k)]. (A21)

Here, we apply the general formula in the first line to the BdG
system. Since our current operators are only up to quadratic
order of fermion operators, we excite only two quasiparticles
at the same time. So the final state is specified as γ

†
k,aγ

†
−k,b|0〉

in the second line. a and b are the labels for bands of positive
energy, and α and β are the labels for the basis of the BdG
Hamiltonian. In the last line, we use Wick’s theorem, and
this is the only contraction consistent with quantum number
momentum. Since we have obtained the eigenstates of the
Hamiltonian by diagonalization as

γ
†
k,a =

∑
α

uk,a,αψ
†
k,α, (A22)

where uk,a,α is the ath eigenvector of the BdG Hamiltonian
(A7) at momentum k, we can express the absorption rate more
explicitly,

ω χ ′′(T = 0, ω) = πe2

2h̄ω

∑
a,b,α,β

|uk,b,αe · Jα,β (k)u∗
k,a,β |2

× δ[ω − Ea(k) − Eb(−k)]. (A23)

Here, index a is summed over bands of positive energy Ea(k),
and index b is summed over bands of negative energy Eb(k).

In Fig. 7, we show the absorption spectrum of our model
under a polarized beam of light. The left and right columns
represent two models, and they reveal stark contrasts in the
spectrum. The spectrum on the left (I ′2 = 1) is normal, with

0 1 2 3 4 5
0

0.5

1
10-3 Even parity

0 1 2 3 4 5
0

0.01

0.02

0.03
Odd parity

0 1 2 3 4 5
0

1

2
10-3 Even parity

0 1 2 3 4 5
0

0.05

0.1

Odd parity

FIG. 7. Absorption spectra are intensity I versus photon energy
h̄ω. The spectrum corresponds to models with I2 = 1 and polar-
ization in the z direction (top left) and x direction (bottom left). In
comparison, we show the spectrum of the model with I2 = −1 and
polarization in the z direction (top right) and x direction (bottom
right).

nonzero amplitude above energy gap 2� ≈ t . In contrast,
the spectrum on the right (I ′2 = −1) is a flat line of zero
at low energy above energy gap 2� = 0 that becomes finite
only above the energy threshold � + �′ ≈ 0.5t , indicating
the selection rule of I ′2 = −1. One detail is that the spectrum
is not zero even when ω is a little bit higher than 0.5t . That
is because the band bottoms of the first and second bands do
not occur at the same momentum. This difference underscores
the importance of inversion symmetry fractionalization on the
absorption spectrum of superconductors.

We show Raman spectra of both models in Fig. 8. We
calculate the Raman differential scattering cross section per
volume from Eq. (20):

1

V

∂2σ

∂�∂ωs
= e4

h̄V

ωs

ωi

∑
f

|〈 f |eα
i eβ

s Mαβ |i〉|2δ(ω + Ei − E f ),

where V is the number of unit cells. This calculation is more
complex but can still be done accurately for mean-field the-
ory. We make use of Eq. (21) and calculate the expectation
value for excitation of two-particle states. This calculation
is done using Wick’s theorem in a manner similar to the
calculation of the absorption spectrum. It is worth mentioning
that four-particle states | f 〉 have zero scattering amplitude M
and do not contribute to Raman scattering in the mean-field
calculation. For further details about this calculation, refer to
Refs. [24,32,33].

The Raman spectrum has the selection rule for the even-
parity case, which is opposite the selection rule of the
absorption spectrum. In the even-parity case, Raman scatter-
ing is zero below � + �′ ≈ 4t because of the selection rule.
In the odd-parity case, Raman scattering is not zero at any
frequency because the band is gapless.

APPENDIX B: SINGLET SUPERCONDUCTIVITY
IN DOPED GRAPHENE

Our second example is a 2D system on a honeycomb
lattice without spin-orbital coupling, where SU (2) spin

0 5 10
0

1

2

3
10-7 Even parity

0 1 2 3 4 5
0

0.05

0.1
Odd parity

FIG. 8. Differential scattering cross sections of both incident and
scattered light polarized in the x direction, corresponding to I2 = 1
(left) and I2 = −1 (right).
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rotational symmetry, space inversion symmetry, and C3 ro-
tational symmetry are all preserved. With a beam of light,
only a spin-singlet pair of excitations at k and −k is excited.
Inversion symmetry can also have selection rules in this case.
Whether the spectrum is zero or not depends on whether
inversion is I ′2 = 1 or −1.

To be specific, if I ′2 = 1, we can choose a gauge such that
under inversion I ′,

I ′γk,↑I ′−1 = γ−k,↑,

I ′γk,↑I ′−1 = γ−k,↑. (B1)

This leads to the action of inversion on the excitation of the
singlet pair,

I ′(γk,↑γ−k,↓ − γk,↓γ−k,↑)I ′−1

= γ−k,↑γk,↓ − γ−k,↓γk,↑ = γk,↑γ−k,↓ − γk,↓γ−k,↑. (B2)

Therefore, this excitation is even under inversion, and there
will be no absorption spectrum because current is odd,
I ′ ĵI ′−1 = − ĵ.

On the other hand, if I ′2 = −1, under a certain gauge, the
action of inversion on fermions is

I ′γk,↑I ′−1 = γ−k,↑,

I ′γk,↑I ′−1 = −γ−k,↑, (B3)

and we have one extra minus sign, and excitation is odd under
inversion. In this case, optical absorption is allowed.

With this general rule in mind, we write down a
tight-binding model on the honeycomb lattice explic-
itly. The total Hamiltonian will still be in the form of
Eqs. (A7) and (A6). The only difference is operator �k =
(c1,k,↑, c2,k,↑, c†

1,−k,↓, c†
2,−k,↓)T . Here, labels 1 and 2 indicate

the sublattice number.
We consider only on-site and nearest-neighbor terms. Due

to the SU (2) spin rotational symmetry, hopping terms be-
tween two sites can be only t ĉ†

i,↑ĉ j,↑ + t ĉ†
i,↓ĉ j,↓ + H.c. It is

even under link center inversion when t is real and odd when
t is imaginary. The pairing term can be only �ĉi,↑ĉ j,↓ −
�ĉi,↓ĉ j,↑ + H.c. and is even under permutations of i and j.

The hopping term of the Hamiltonian is invariant under
inversion and C3 rotational symmetry:

I : h0(−k) = σ xh0(k)σ x,

C3 : h0(−k2, k1 − k2) = S†h0(k1, k2)S, (B4)

where (k1, k2) are the coordinates of the two reciprocal lattice
vectors, meaning k = k1k̂1 + k2k̂2, and S is the matrix

S =
[

1
e−ik2

]
. (B5)

Symmetry-allowed hopping terms are the chemical potential
and C3-invariant real hopping between nearest neighbors. The
general form of the hopping term of the Hamiltonian in mo-
mentum space is

h0(k) =
[

μ t (1 + eik1 + eik2 )
t (1 + e−ik1 + e−ik2 ) μ

]
. (B6)

Here, t and μ are real numbers.

FIG. 9. Electron bands for two cases. The even-parity case has
a small gap. The energy gap of the first band is � = 0.22t , and the
second band gap is �′ = 0.75t . The odd-parity case is gapless, with
the first band gap � = 1.1t and the second band gap �′ = 4.2t .

Next, the current operator jz is zero, and jx,y have the
following form:

jx(k) =
[

i t
2 (eik1 − eik2 )

−i t
2 (e−ik1 − e−ik2 )

]
,

jy(k) =
[

i
√

3t
6 (−2+ eik1 + eik2 )

−i
√

3t
6 (−2+e−ik1 +e−ik2 )

]
.

(B7)

To write down the pairing term of the Hamiltonian ex-
plicitly, we need to fix inversion symmetry fractionalization.
Below we consider two different kinds of pairing with I2 =
±1.

Case 1. Inversion symmetry is I ′ = I , i.e., I ′2 = 1. Paring
terms are invariant under symmetry I ′, and C3 are on-site and
nearest-neighbor pairings of the same strength. The pairing
terms in the Hamiltonian are

�(k) =
[

� �1(1 + eik1 + eik2 )
�∗

1(1 + e−ik1 + e−ik2 ) �

]
.

(B8)

The parameters are μ = 0.5t and � = �1 = 0.5t .
Case 2. Inversion symmetry is I ′ = I exp (iπ F̂/2), i.e.,

I ′2 = −1. The pairing term in the Hamiltonian is

�(k) = �2σ
z. (B9)

The parameters are μ = t and �2 = 4t .
Now we calculate the observable quantities for this mode.

The calculation is the same as that for the case without SU (2)
symmetry.

We show electron bands for two cases in Fig. 9 and the
specific heat in Fig. 10. Both cases are gapped, and specific
heat is C ≈ exp (�/T ) at low temperature.

The absorption spectrum can be calculated based on
Eq. (A21). We use light polarized in the x direction. The
absorption spectrum of these two cases is shown in Fig. 11.
On the left is the model with I ′2 = 1, and on the right is the
model with I ′2 = −1. It is clear that the spectrum satisfies
the selection rule for the even-parity case. For the even-parity
case, the spectrum is zero from energy gap 2� = 0.44t to
� + �′ = 0.97t . For the odd-parity case, the spectrum is not
zero above energy gap 2� = 2.2t .

The Raman spectrum is shown in Fig. 12. The odd-parity
case shows the selection rule. For the even-parity case, scat-
tering is not zero above energy gap 2�. But for the odd-parity
case, scattering is zero between energy gaps 2� and � + �′.

245119-9



SHUANGYUAN LU, XU YANG, AND YUAN-MING LU PHYSICAL REVIEW B 109, 245119 (2024)

0 2 4
0

0.5

1

1.5
Even parity

0 2 4
0

0.5

1

1.5
Odd parity

FIG. 10. Specific heat versus temperature T . Both the even-
parity and odd-parity cases are gapped, and specific heat is an
exponential function of 1/T at low temperature. The energy gap is
� = 0.22t for the even-parity case and � = 0.56t for the odd-parity
case.

APPENDIX C: DISCUSSION OF SELECTION RULES
FOR GENERAL POINT GROUP SYMMETRIES

In this Appendix we systematically study possible selec-
tion rules in the case of a general point group. Our discussion
includes the case of a unitary point group Gtotal = G and the
case of a magnetic point group that can be written as Gtotal =
G + AG, where G is the unitary subgroup and AG is the coset
corresponding to an antiunitary symmetry A (including but
not restricted to time reversal symmetry).

In the same spirit as the case of inversion symmetry, we
want to ask whether the strength of the spectrum contributed
by pair excitation from the lowest bands is constrained to van-
ish by symmetry. Specifically, we want to study, for general
momentum k, whether the matrix element

〈0|Ô γ
†
k,0γ

†
−k,0|0〉 (C1)

is zero. Here, Ô represents the current operator ĵ for the
absorption spectrum and the Raman operator R for the Raman
spectrum. To study the effect of symmetry on this, we study
the representation of pair excitation states

| fk〉 = γ
†
k,0γ

†
−k,0|0〉. (C2)

We decompose the representation {| fg(k)〉, g ∈ Gtotal} into ir-
reducible representations and check whether it can form a
trivial representation after combining with operator Ô. If it
cannot, the matrix element transforms nontrivially under the
symmetry group and is constrained to be zero; hence, we have
the selection rule. Otherwise, the spectrum does not vanish.
In the special case of {| fk〉} having all the representations of
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0
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FIG. 11. Absorption spectrum of models with I ′2 = 1 and polar-
ization in the x direction (left). In comparison, we show the spectrum
of the model with I ′2 = −1 and polarization in the x direction (right).
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FIG. 12. Differential scattering cross section of both incident and
scattered light polarized in the x direction, corresponding to I2 = 1
(left) and I2 = −1 (right).

group Gtotal, there is no selection rule since the result does not
depend on representations of operator Ô.

Let us consider a general momentum k. The only symme-
tries that do not change the k,−k pair are inversion symmetry
I , time reversal symmetry T , and their product T I . In the fol-
lowing, we divide the problem into several cases and discuss
them in detail.

Case 1. For unitary point group G with inversion I /∈ G,
{| fk〉} forms unitary representations of group G. Since in-
version is not in G, all g(k) are different, and {| fk〉} forms
the |G|-dimensional fundamental representation of G. Since
fundamental representation contains all irreducible represen-
tations, there is no selection rule in this case.

Case 2. For unitary point group G with inversion I ∈ G,
every group element other than I will change momentum. So
{| fk〉} forms fundamental representation of G/ZI

2 (ZI
2 is the

Z2 group of inversion). As the representation of G, depending
on I = +1 or I = −1, {| fk〉} contains half of the irreducible
representations and is missing the other half. This gives us
the selection rule of inversion symmetry, as discussed before.
There are no other selection rules.

Below we discuss the case of magnetic point groups with
antiunitary symmetries, where {| fk〉} forms the corepresenta-
tion of the symmetry group [43]. One property we will use is
that the corepresentations of G + AG have a one-to-one corre-
spondence with the representations of the unitary subgroup G.
To see which corepresentation is present, we can simply forget
about the antiunitary part and determine which representation
of G is present.

Case 3. For magnetic point group Gtotal = G + AG with
inversion I /∈ G, {| fk〉} forms the fundamental representation
of G as in case 1. Therefore, it contains every corepresentation
of Gtotal, and there is no selection rule.

Case 4. For magnetic point group Gtotal = G + AG with
inversion I ∈ G and time reversal T /∈ AG, following the same
logic, this case is the same as case 2. {| fk〉} contains half of the
irreducible corepresentations of Gtotal depending on I = +1 or
I = −1. This gives us the selection rule of inversion symme-
try.

Case 5. Magnetic point group Gtotal = G + AG with inver-
sion I ∈ G and time reversal T ∈ AG is a special case because
IT guarantees a twofold band degeneracy. We have states

| fk,α,β〉 = γ
†
k,0,αγ

†
−k,0,β |0〉, (C3)

where α, β = 1, 2 are the labels of the degenerate bands.
We pick up states with α = 1 and β = 2 and realize
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| fk,1,2〉 and | f−k,1,2〉 are two different states. So {| fk,1,2〉}
forms a fundamental representation of G. Since {| fk,1,2〉}
already has all irreducible representations, the matrix ele-
ment (C1) is nonzero, and there is no selection rule in this
case.

In conclusion, selection rules arise only for inversion sym-
metry (and C2,z symmetry in two dimensions, which acts like
inversion symmetry). No other crystal symmetries or mag-
netic crystal symmetries lead to nontrivial selection rules in
optical and Raman spectroscopy.
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