
PHYSICAL REVIEW B 109, 245118 (2024)
Editors’ Suggestion

High conductivity from cross-band electron pairing in flat-band systems
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Electrons in condensed matter may transition into a variety of broken-symmetry phase states due to electron-
electron interactions. Applying diverse mean-field approximations to the interaction term is arguably the simplest
way to identify the phase states theoretically possible in a given setting. Here, we explore electron-electron
attraction in a two-band system comprising symmetric conduction and valence bands touching each other at a
single point. We assume a mean-field pairing between the electrons having opposite spins, momenta, and in
contrast to the conventional superconducting pairing, residing in opposite bands, i.e., having opposite energies.
We show that electrons transition into a correlated ground state if and only if the bands are flat enough, i.e., the
transition is impossible in the case of conventional parabolic bands. Although this state is not superconducting in
the usual sense and does not exhibit a gap in its excitation spectrum, it is nevertheless immune to elastic scattering
caused by any kind of disorder and is therefore expected to exhibit high electric conductivity at low temperature,
mimicking the behavior of a real superconductor. Having in mind the recent experimental realizations of flat-band
electronic systems in twisted multilayers, we foresee an exciting opportunity for observing a class of highly
conductive materials.
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I. INTRODUCTION

Free electrons are characterized by a finite rest mass,
implying a quadratic relation between their energy and
momentum. When low-energy electrons trudge through a
periodic structure, they still behave like free electrons with
an effective mass altered by the lattice potential. In some
exceptional limiting cases, the effective mass may vanish
completely (graphene [1,2], topological insulator surfaces [3],
metallic nanotubes [4]) or acquire a nearly infinite value
(heavy fermion [5] and kagome-type [6] materials, twisted
graphene bilayers and multilayers [7,8]). The latter examples
are known as flat-band electronic systems with prominent
electron-electron correlation and topological effects due to the
band touching, see Ref. [9] for a recent review. The absolute
majority of recent publications devoted to the touching flat
electronic bands [10–13] is inspired by the ongoing hunt for
a high-temperature superconducting state [14–16]. However,
the electron-electron pairing in flat bands does not necessar-
ily lead to superconductivity [17,18]. To give an example,
rhombohedral-stacked multilayer graphene hosts a pair of flat
bands touching at zero energy, giving rise to nonsupercon-
ducting electronic states such as correlated insulators [19].
Here, we demonstrate a theoretical possibility for a non-
superconductive (but nevertheless highly conductive) state of

*Contact author: mxt@nus.edu.sg

two-dimensional (2D) paired electrons driven by divergent
density of states (DOS) at the flat-band touching point.

In the case of a conventional electron pairing [20], the
paired electrons have opposite spins and momenta while sit-
ting at the same energy level. The electrons interact with
each other by exchanging momentum, Fig. 1(a). The pairing
mechanism may be due to electron-phonon interaction, [21]
electron-electron screening, [22] plasmon exchange, [23,24]
spin fluctuations, [25] and other phenomena [26]. Once the
temperature is set below a certain critical value, the con-
ventional electron pairs condense into a strongly correlated
superconducting Bardeen-Cooper-Schrieffer (BCS) state [20].
In this paper, we explore a pairing option shown in Fig. 1(b),
where the two electrons having opposite momenta and spins
are sitting at opposite energy levels, as counted from the band-
touching point. The model allows for the flatness tunability
by means of the parameter p � 2, in accordance with the
dispersion relation given by [27]

εk = ε0

(
k

k0

)p

, (1)

where k = |k| is the absolute value of the wave vector, and
ε0 can be interpreted as the bandwidth of the flat region in
the momentum subspace of size k0. In contrast with other
flat-band systems, here, k0 does not extend over the entire
Brillouin zone. The electronic DOS is constant at p = 2, and it
diverges at p → ∞ as 1/εk , when the bands are perfectly flat
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FIG. 1. (a) Conventional and (b) cross-band electron pairing.
The band dispersion is given by Eq. (1). Thin red arrows indi-
cate the interaction processes involved in the reduced Hamiltonians.
In the case of cross-band pairing, the terms H↑↓ and H↓↑ are given by
Eqs. (2) and (3), respectively. Conventional pairing is time-reversal
invariant, whereas our pairing is not. Nevertheless, our model as
a whole is time-reversal invariant because H↑↓ and H↓↑ are time-
reversal partners of each other. The model is two dimensional (2D),
but only a given direction is depicted. Subscripts + and − designate
the bands, while the negative of wave vector k is denoted by k̄.

at k � k0. The band flatness plays a crucial role in our model
because the nonsuperconducting correlated ground state we
have found exists only if p > 2 in 2D. This contrasts with
the conventional pairing that leads to the superconducting
correlated ground state even at p = 2. Our cross-band pairing
should not be confused with the conventional interband pair-
ing often associated with iron-based superconductors [28–30].
The interband pairing still occurs between electrons having
the same energy (Fermi energy) even though they may belong
to different Fermi pockets. When we are talking about cross-
band pairing, we assume that the pairing occurs across the
band-touching point. This is the main difference between our
cross-band pairing and what is usually considered interband
pairing.

In what follows, we develop a many-body model using the
cross-band pairing assumption within a mean-field approxi-
mation. The conventional pairing is assumed to be blocked
for one reason or another [11,12]. We show that the cross-
band electron pairing results in a correlated state, which we
dubbed frozen electrons. The paramount property of frozen
electrons is that they turn out to be immune to elastic scat-
tering. As a consequence, we expect a resistivity drop upon
transition into the correlated state that occurs at low tempera-
tures. We discuss possible realizations of the correlated state
in twisted multilayer graphene samples, which are known to

form extremely flat bands and exhibit the nonsuperconducting
low-temperature resistivity drop expected in our model.

II. THE MODEL HAMILTONIAN

The model Hamiltonian describing the pairing processes
depicted in Fig. 1(b) can be written as H = H↑↓ + H↓↑, where

H↑↓ =
∑

k

(εkc†
+k↑c+k↑ − εkc†

−k̄↓c−k̄↓)

+
∑
kk′

Vkk′c†
+k↑c†

−k̄↓c−k̄′↓c+k′↑, (2)

H↓↑ =
∑

k

(εkc†
+k̄↓c+k̄↓ − εkc†

−k↑c−k↑)

+
∑
kk′

Vk̄k̄′c†
+k̄↓c†

−k↑c−k′↑c+k̄′↓. (3)

Here, ↑ (↓) is the spin-up (down) index, + (−) is the con-
duction (valence) band index, k̄ = −k, and Vkk′ is the Fourier
transform of the pairing potential. The two terms of the model
Hamiltonian H↑↓ and H↓↑ are the time-reversal of each other
that ensures the time-reversal invariance of the total H . Each
pair involves electrons having opposite momenta, spins, and
band indices but the same group velocity. This is in stark
contrast with the conventional pairing c†

±k↑c†
±k̄↓c±k̄′↓c±k′↑,

where the paired electrons are always at the same energy level
despite having opposite spins and momenta, Fig. 1(a). The
conventional pairing is not included, and the pairing potential
is not specified in our model Hamiltonian.

We now make a mean-field approximation [31] given by

c†
+k↑c†

−k̄↓ = 〈c†
+k↑c†

−k̄↓〉 + (c†
+k↑c†

−k̄↓ − 〈c†
+k↑c†

−k̄↓〉),

c−k̄′↓c+k′↑ = 〈c−k̄′↓c+k′↑〉 + (c−k̄′↓c+k′↑ − 〈c−k̄′↓c+k′↑〉),

(4)

c†
+k̄↓c†

−k↑ = 〈c†
+k̄↓c†

−k↑〉 + (c†
+k̄↓c†

−k↑ − 〈c†
+k̄↓c†

−k↑〉),

c−k′↑c+k̄′↓ = c−k′↑c+k̄′↓ + (c−k′↑c+k̄′↓ − 〈c−k′↑c+k̄′↓〉),

(5)

where 〈. . . 〉 represents an average value, and the terms in the
brackets are assumed to be small. The result reads

HMF
↑↓ =

∑
k

(c†
+k↑, c−k̄↓)

(
εk −�k

−�
†
k εk

)(
c+k↑
c†
−k̄↓

)

+
∑

k

(�†
k〈c−k̄↓c+k↑〉 − εk ), (6)

HMF
↓↑ =

∑
k

(c†
+k̄↓, c−k↑)

(
εk −�k

−�
†
k εk

)(
cc+k̄↓
c†
−k↑

)

+
∑

k

(�k〈c†
+k̄↓c†

−k↑〉 − εk ), (7)

where

�k = −
∑

k′
Vkk′ 〈c−k̄′↓c+k′↑〉 = −

∑
k′

Vk̄k̄′ 〈c−k′↑c+k̄′↓〉,

�
†
k = −

∑
k′

Vkk′ 〈c†
+k′↑c†

−k̄′↓〉 = −
∑

k′
Vk̄k̄′ 〈c†

+k̄′↓c†
−k′↑〉 (8)
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is the order parameter. Note the equal diagonal elements in
HMF

↑↓ and HMF
↓↑ . Such a symmetry results in a Bogoljubov

transformation with equal coherences and leads, as we show
below, to the suppression of elastic electron scattering.

It is convenient to assume isotropic pairing and write
the order parameter as �k = �k exp(iδk ). Diagonalizing and
transforming Eqs. (6) and (7) into the canonical form, we
obtain

HMF
↑↓ =

∑
k

�k[1 + exp(−iδk )〈c−k̄↓c+k↑〉]

+
∑

k

[(εk − �k )γ †
0kγ0k + (−εk − �k )γ †

1kγ1k], (9)

HMF
↓↑ =

∑
k

�k[1 + exp(iδk )〈c†
+k̄↓c†

−k↑〉]

+
∑

k

[(εk − �k )β†
0kβ0k + (−εk − �k )β†

1kβ1k],

(10)

where

〈c−k̄↓c+k↑〉 = 1
2 exp(iδk )(〈γ †

0kγ0k〉 + 〈γ †
1kγ1k〉 − 1),

〈c†
+k̄↓c†

−k↑〉 = 1
2 exp(−iδk )(〈β†

0kβ0k〉 + 〈β†
1kβ1k〉 − 1) (11)

are the ground-state averages. The quasiparticle creation and
annihilation operators γ

†
0,1k (β†

0,1k) and γ0,1k (β0,1k) are related
to the original electron operators via the same Bogoljubov
transformation given by(

c+k↑
c†
−k̄↓

)
= P

(
γ0k

γ
†
1k

)
,

(
c+k̄↓
c†
−k↑

)
= P

(
β0k

β
†
1k

)
,

where

P = 1√
2

[
1 1

exp(−iδk ) − exp(−iδk )

]
. (12)

The order parameter phase δk does not play a role if no inter-
face between the normal and correlated states is considered.
We nevertheless retain δk for the sake of generality and future
studies.

III. RESULTS

As we shall see below, the order parameter equation has
a solution if and only if the paring potential is attractive.
Hence, we assume a pointlike attractive interaction described
by Vkk′ = −V0. The order parameter can also be assumed to
be k independent, �k = � exp(iδ), and the order parameter
equation reads

� = V0

2

∑
k

(〈γ †
0kγ0k〉 + 〈γ †

1kγ1k〉 − 1), (13)

� = V0

2

∑
k

(〈β†
0kβ0k〉 + 〈β†

1kβ1k〉 − 1). (14)

Note that the phase exp(iδ) is canceled out. Equations (13)
and (14) are equivalent, and the order parameter equation can
be written in the final form as

� = V0

2

∑
k

[nF (εk − �) − nF (εk + �)], (15)

where nF (εk ) = 1/[1 + exp(−εk/T )] is the Fermi-Dirac dis-
tribution, with T being electron temperature. The Fermi
energy level intersects the band-touching point and does not
enter explicitly. Like the conventional BCS gap equation [20],
Eq. (15) is invariant under the substitution � → −� but has
no solution if interactions are repulsive. This is where the
similarities end, and we show below that the properties of our
correlated state have little to do with the BCS model.

Using the dispersion relation, Eq. (15) can be written in 2D
explicitly as

� = V0k2
0

4π p

∫ ∞

0

dε

ε0

(
ε

ε0

)(2−p)/p

[nF (ε − �) − nF (ε + �)].

(16)

The integral can be written as the difference between two
polylogarithms, but it is instructive to consider the limit T =
0. The order parameter then reads � = ε0ν

p/(p−2), where

ν = V0k2
0

8πε0
(17)

is the dimensionless interaction parameter. The order param-
eter increases with the band flatness, and in the limit p →
∞, we have �/ε0 → ν. The finite-temperature solutions are
shown in Fig. 2. In addition to the function �(T ), one can also
figure out the critical temperature at which the order parameter
vanishes for a given set of parameters.

The Bogoljubov transformation in Eq. (12) is like the one
diagonalizing the BCS Hamiltonian [31], but the coherence
factors uk and vk have equal magnitude. The many-body
ground state of Hamiltonian HMF = HMF

↑↓ + HMF
↓↑ must there-

fore have a similar structure. Introducing k� (which satisfies
εk�

= �), we find that the ground state can be written as
|G〉 = |G〉↑↓ ⊗ |G〉↓↑, where

|G〉↑↓ =
∏

k�k�

1√
2

[1 + exp(iδ)c†
+k↑c†

−k̄↓]
∏

k>k�

c†
−k̄↓|0〉,

|G〉↓↑ =
∏

k�k�

1√
2

[1 + exp(iδ)c†
+k̄↓c†

−k↑]
∏

k>k�

c†
−k↑|0〉. (18)

Indeed, taking the limit T → 0 in Eqs. (6) and (7), the eigen-
values read

〈G|HMF
↑↓ |G〉↑↓ = 〈G|HMF

↓↑ |G〉↓↑ = −
∑
k�k�

�k

2
−

∑
k>k�

εk.

(19)

The same can be deduced from the canonical Eqs. (9) and
(10), and the total ground-state energy can be written as

EG = −
∑
k�k�

�k − 2
∑
k>k�

εk . (20)

The ground-state function |G〉 must be contrasted with the
one of a normal state. It is simply given by

|N〉 =
∏

k

c†
−k̄↓c†

−k↑|0〉, (21)

and the energy reads

EN = −2
∑

k

εk . (22)
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FIG. 2. Solutions of the order parameter equation, Eq. (16).
(a) Solutions for different interaction strengths in the limit of ex-
tremely flat bands with p = 100. (b) Solutions for different band
flatness parameter values at ν = 0.5. Both the flatness and interaction
strength make the critical temperature higher.

Obviously, EG and EN both diverge to negative infinity. How-
ever, the difference EG − EN is well defined and can be written
in 2D explicitly as

EG − EN = −
∑
k�k�

(�k − 2εk )

= − k2
0

2π p

∫ �

0

dε

ε0

(
ε

ε0

)(2−p)/p

(� − 2ε)

= −�k2
0

2π

(
�

ε0

)2/p(1

2
− 2

2 + p

)

= −ε0k2
0

4π

p − 2

p + 2
ν (p+2)/(p−2). (23)

Thus, EG < EN if p > 2, i.e., |G〉 is indeed the ground state
of H . The ground-state energy level dives deeper below the
normal-state energy with increasing band flatness. However,
EG � EN at p � 2, i.e., the ground state is normal (not cor-
related) if the band flatness is not strong enough. This is the
main result of this paper, indicating a possibility of a ground
state for electrons near the flat-band touching point.

The model can also be adapted to one-dimensional (1D)
or three-dimensional (3D) electrons. One can easily derive an
equation like Eq. (23) and see that the correlated ground state
is possible at p > 3 in the 3D case, and at p > 1 is a 1D limit.
Since the absolute majority of the flat-band electronic systems
are 2D, we focus on a 2D case here and in what follows.

IV. DISCUSSION

The difference between the normal and correlated electron
states is demonstrated in Figs. 3(a) and 3(b). Upon transition
from the normal to the correlated state, the electrons near
the flat-band touching point are instantly redistributed within
the energy interval [−�,+�] so that the electronic states
acquire fractional occupation in momentum space. The states
outside the interval remain normal, i.e., fully occupied below
the level −� and completely empty above +�. We think
about the correlated electrons as frozen ones because of the
similarity between a frozen surface layer of real water and the
layer of paired electrons near the Fermi surface in momentum
space. The similarity can go even further with respect to
perturbations. Obviously, it is hard to disturb the surface of
frozen water, as one must penetrate through the ice layer. We
predict that it is also hard to disturb the electrons covered by
the frozen layer.

To test this prediction, we consider electron transport. The
disorder scattering Hamiltonian can be written as

Hdis =
∑
kk′

Ukk′ (c†
+k′↑c+k↑ + c†

−k̄′↓c−k̄↓ + c†
+k̄′↓c+k̄↓

+ c†
−k′↑c−k↑ + c†

+k′↑c−k↑ + c†
−k′↑c+k↑

+ c†
−k̄′↓c+k̄↓ + c†

+k̄′↓c−k̄↓). (24)

Here, Ukk′ = Uk′k is the matrix element of a smooth po-
tential unable to induce spin-flip and intervalley scattering.
Equation (24) can be rewritten in terms of the quasiparti-
cle operators according to the Bogoljubov transformation in
Eq. (12) as

Hdis =
∑
kk′

Ukk′[γ †
0k′γ

†
1k + γ1k′γ0k + β

†
0k′β

†
1k + β1k′β0k

+ exp(iδ)β1k′γ
†
0k + exp(iδ)γ1k′β

†
0k

+ exp(−iδ)β0k′γ
†
1k + exp(−iδ)γ0k′β

†
1k], (25)

see Appendix.
Figure 3(c) demonstrates that the low-energy excitations

are created by quasiparticle operators of 0 type. In contrast,
the excitations of type 1 are gapped. However, all terms in
Eq. (25) contain one quasiparticle operator of type 1. Hence,
calculating the low-energy scattering matrix elements, we
obtain an expectation value of a quartic product in which
three quasiparticle operators are always of 0 type and one
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FIG. 3. (a) The normal electron state with the Fermi energy intercepting the flat-band touching point (EF = 0). (b) The correlated state
splits into two sectors with k � k� and k > k�, see Eq. (18). The former consists of strongly correlated electrons, whereas the latter represents
normal electrons, and the two sectors together can be seen as a layer of frozen electrons floating on a Fermi liquid. The thickness of the frozen
layer is 2�, with � being the self-consistent order parameter. (c) The correlated state and excitations in terms of the quasiparticle operators
γ0k and γ1k. The γ1k excitations are gapped by � even though the overall spectrum is gapless. The same is true for β0k and β1k.

operator of type 1. The expectation value must necessarily
vanish since the numbers of 0- and 1-type operators are not
balanced. The scattering becomes only possible when it is ac-
companied by substantial electron energy change larger than
�. Alternatively, we would allow for the interband electronic
transitions with spin flip. However, spin flip requires magnetic
impurities which are usually in much lower concentrations
than nonmagnetic ones.

The frozen-electron effect could possibly be detected in
low-temperature electrical resistivity measurements. If the
temperature drops below the critical one (see Fig. 2), then
the electrons transition into the correlated ground state. While
the electrons are in a frozen state, they are immune to elastic
scattering; hence, they do not feel charged impurities and
other defects. One is only left with magnetic impurities, if
any, and inelastic scatterers, like phonons, which are much
weaker at low temperatures. As a consequence, we expect a
sudden drop in electrical resistivity below a certain critical
temperature.

To substantiate this claim, we calculate electrical conduc-
tivity in our correlated state. To do that, we follow Ref. [32]
and solve the Boltzmann equation for each quasiparticle type
κ = {γ0,1, β0,1} given by

∂ fκk

∂t
+ v

∂ fκk

∂r
+ e

h̄
E

∂ fκk

∂k
=

(
∂ fκk

∂t

)
coll

. (26)

We assume a steady state ( fκk does not depend on t) without
spatial inhomogeneities ( fκk does not depend on r), a linear
response regime (small homogeneous electric field |E | = Ex

along the x axis), and short-range elastic scattering on impuri-
ties described within the relaxation-time approximation. The
solution of Eq. (26) can then be written as fκk = f (0)

κk + f (1)
κk ,

where f (0)
κk is fκk at Ex = 0, and

f (1)
κk = eExvxτκk

[
−∂ f (0)

κk

∂εk

]
, (27)

where h̄vx = ∂εk/∂kx, and electrical conductivity reads

σxx = e

E x

∑
κ

∫
d2k

(2π )2
vx f (1)

κk . (28)

The conductivity is mostly determined by the momentum
relaxation time τκk considered in Appendix. We consider all
the scattering channels specified by the disorder Hamiltonian
in Eq. (25) and find that they do not contribute to τκk due to
the energy conservation. The situation is like the interband
scattering channels forbidden in the normal state if electron-
disorder scattering is elastic. In the normal state, however,
there are always intraband scattering channels which make τκk

finite, see Appendix.
In fact, the low-energy quasiparticle states are protected

from scattering by the symmetry of the Bogoljubov trans-
formation having equal coherences. The protection effect is
geometric or topological in some sense. Hence, the band
symmetry with respect to the touching point plays a crucial
role. The symmetry is broken once the conduction and va-
lence band dispersions are not the same or the Fermi level
does not intercept the band touching point. In either case, the
Bogoljubov transformation is not symmetric, and the electron
scattering terms do not cancel out in Hdis.

Indeed, if the conduction band dispersion εv
k does not equal

the valence one εc
k , then HMF

↑↓ takes the form:

HMF
↑↓ =

∑
k

(c†
+k↑, c−k̄↓)

(
ξk − �k

−�
†
k −ξk

)(
c+k↑
c†
−k̄↓

)

+
∑

k

εc
k + εv

k

2
(c†

+k↑c+k↑ − c†
−k̄↓c−k̄↓)

+
∑

k

(
�

†
k〈c−k̄↓c+k↑〉 + ξk

)
, (29)

where ξk = (εc
k − εv

k )/2. The canonical form of the
Hamiltonian then reads

HMF
↑↓ =

∑
k

[
�k exp(−iδk )〈c−k̄↓c+k↑〉 + ξk +

√
ξ 2

k + �2
k

]

+
∑

k

[(
εc

k + εv
k

2
−

√
�2

k + ξ 2
k

)
γ

†
0kγ0k

+
(

− εc
k + εv

k

2
−

√
�2

k + ξ 2
k

)
γ

†
1kγ1k

]
, (30)
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where the order parameter �k = � exp(iδ) can be computed
from the equation given by

� = V0

2

∑
k

�√
�2 + ξ 2

k

(〈γ †
0kγ0k〉 + 〈γ †

1kγ1k〉 − 1). (31)

In contrast with Eq. (12), the Bogoljubov transformation is
given by the matrix:

P =
[

sin θk
2 − cos θk

2

cos θk
2 exp(−iδ) sin θk

2 exp(−iδ)

]
, (32)

where tan θk = �/ξk . Obviously, the scattering terms of the
form γ

†
0k′γ0k do not cancel out in the disorder Hamiltonian

Hdis, and electronic resistivity is not reduced. However, an
asymmetry in the Bogoljubov transformation in Eq. (32) can
be somewhat suppressed by stronger interactions so that � �
ξk and θk → π/2.

The symmetry of the Bogoljubov transformation in
Eq. (12) can also be broken by a finite Fermi energy level
(EF �= 0). Note that the chemical potential is equivalent to the
Fermi energy in the zero-temperature limit. Hence, consider-
ing finite Fermi energy makes it possible to draw conclusions
regarding the finite doping effects on our frozen electron state.
The mean-field Hamiltonian then takes the form given by

HMF
↑↓ =

∑
k

(c†
+k↑, c−k̄↓)

(
εk − EF −�k

−�
†
k εk + EF

)(
c+k↑
c†
−k̄↓

)

+
∑

k

(�†
k〈c−k̄↓c+k↑〉 − εk − EF ). (33)

The canonical form of the Hamiltonian reads

HMF
↑↓ =

∑
k

[�k exp(−iδk )〈c−k̄↓c+k↑〉 + �F − EF ]

+
∑

k

[(εk − �F )γ †
0kγ0k + (−εk − �F )γ †

1kγ1k],

(34)

where �F =
√

�2
k + E2

F is a new EF -dependent order param-
eter. Assuming that �k = � exp(iδ) is independent of k, the
order parameter equation can be written as

�F = V0

2

∑
k

(〈γ †
0kγ0k〉 + 〈γ †

1kγ1k〉 − 1). (35)

The final order parameter equation can also be obtained
from Eq. (15) by the substitution � → �F . However, the
Bogoljubov transformation is asymmetric and given by

P =
[

cos ζ

2 sin ζ

2

sin ζ

2 exp(−iδ) − cos ζ

2 exp(−iδ)

]
, (36)

where tan ζ = �/EF . The asymmetry does not allow for the
cancellation of scattering terms in Hdis but again can be sup-
pressed by stronger interactions, making � � EF .

A finite band gap does not break the symmetry of the
Bogoljubov transformation in Eq. (12), but it changes the
order parameter equation as well as the ground-state energy.
Indeed, introducing a gapped dispersion ε

g
k = εk + Eg/2, we

FIG. 4. Solutions of the order parameter Eq. (39) for different
band flatness parameter values in the presence of a band gap Eg. The
color code is the same as in Fig. 2(b). Note that the order parameter
depends weakly on the band gap if p � 1. The region below the
diagonal is excluded, as the correlated state is not a ground state at
� < Eg (EG − EN > 0), see Eq. (40).

can easily write the canonical mean-field Hamiltonian as

HMF
↑↓ =

∑
k

�k[1 + exp(−iδk )〈c−k̄↓c+k↑〉]

+
∑

k

[(
ε

g
k − �k

)
γ

†
0kγ0k + (−ε

g
k − �k

)
γ

†
1kγ1k

]
.

(37)

The order parameter equation at �k = � exp(iδ) then reads

� = V0k2
0

4π p

∫ ∞

0

dε

ε0

(
ε

ε0

)(2−p)/p[
nF

(
ε + Eg

2
− �

)

− nF

(
ε + Eg

2
+ �

)]
, (38)

which at T = 0 takes the form:

�

ε0
= ν

(
�

ε0
− Eg

2ε0

)2/p

, (39)

where ν is given by Eq. (17). The energy difference between
the correlated and normal states then reads

EG − EN = − k2
0

2π p

∫ �−Eg/2

0

dε

ε0

(
ε

ε0

)(2−p)/p(
� − Eg − 2ε

)

= − k2
0

4π

�(� − Eg)

νε0

p − 2

p + 2
. (40)

Thus, the correlated state is a ground state if and only if p > 2
and interactions are so strong that � > Eg. Solutions of the
order parameter equation are shown in Fig. 4 at Eg > 0 and
T = 0. The region � < Eg is excluded even though the formal
solutions still exist. The finite band gap reduces � and may
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even switch the state back to the normal one, especially if the
flatness is not strong enough. Hence, the effects of a finite
band gap are not desirable but can be suppressed by strong
interactions and band flatness.

Finally, we consider the conventional pairing mentioned
below Eq. (3) and figure out the critical interaction strength
at which the BCS ground-state energy is lower than EG

given by Eq. (23). The BCS mean-field Hamiltonian can be
written as

HMF
BCS =

∑
k

[�′
k(〈c+k̄↓c+k↑〉 + 〈c−k̄↓c−k↑〉) − 2Ek]

+
∑

k

Ek (γ †
0kγ0k + γ

†
1kγ1k + β

†
0kβ0k + β

†
1kβ1k ),

(41)

where the quasiparticle operators γ0,1k and β0,1k are related to
electronic ones through the well-known Bogoljubov transfor-
mation [31], Ek =

√
�′2

k + ε2
k is the quasiparticle excitation

spectrum, and the order parameter reads

�′
k = −

∑
k′

V ′
kk′ 〈c±k̄′↓c±k′↑〉, (42)

�
′†
k = −

∑
k′

V ′
kk′ 〈c†

±k′↑c†
±k̄′↓〉, (43)

with V ′
kk′ being the BCS (intraband) pairing potential. To

proceed, we set V ′
kk′ = V ′

0 and define the dimensionless inter-
action parameter as

ν ′ = V ′
0k2

0

8πε0
, (44)

cf. Eq. (17). In the limit T = 0, the order parameter explicitly
reads

�′ = ε0

[
ν ′

p
√

π
�

(
1

2
− 1

p

)
�

(
1

p

)]p/(p−2)

, (45)

where �(x) is the Gamma function. The ground-state energy
counted from the normal-state energy level can be written as

E ′
G − EN = −

∑
k

(
2εk − 2Ek + �′2

Ek

)

= k2
0

2π p

∫ ∞

0

dε

ε0

(
ε

ε0

)(2−p)/p

×
(

2ε − 2
√

ε2 + �′2 + �′2
√

ε2 + �′2

)

= ε0k2
0

4pπ
3
2

(
�′

ε0

)(2+p)/p

�

(
1

p

)

×
[
�

(
−1

2
− 1

p

)
+ �

(
1

2
− 1

p

)]
, (46)

cf. Eq. (23). The difference E ′
G − EN is always negative, but

E ′
G − EG may be positive or negative depending on the in-

teraction parameters ν, ν ′ and band flatness p. The condition

FIG. 5. Phase diagram demonstrating the conventional BCS and
our frozen electron states depending on the interaction parameters
ν (cross-band) and ν ′ (BCS-like) given by Eqs. (17) and (44), re-
spectively. The region with ν ′ > ν always represents a BCS state. At
ν ′ < ν, however, the border separating the two states is determined
by the band flatness parameter p. The color code of the lines is the
same as in Fig. 2(b). The shaded area corresponds to the region of
frozen electrons with p = 32.

E ′
G − EG = 0 can be explicitly written as

1

p
√

π

[
ν ′

p
√

π
�

(
1

2
− 1

p

)
�

(
1

p

)](p+2)/(p−2)

�

(
1

p

)

×
[
�

(
−1

2
− 1

p

)
+ �

(
1

2
− 1

p

)]

+ p − 2

p + 2
ν (p+2)/(p−2) = 0. (47)

The solution of Eq. (47) is shown in Fig. 5 for different
values of p. The regions below each color line correspond
to EG − E ′

G < 0 for a given p, i.e., the frozen electron state
represents the true ground state there. At p = 2, the BCS state
occupies the whole diagram, whereas at p → ∞, the border
separating the two states coincides with the ν = ν ′ line.

V. CONCLUDING REMARKS

Our results suggest that the key ingredient of our model is
band flatness, which drastically amplifies interaction effects
and makes a transition into our special correlated state possi-
ble. Moreover, we have shown that any negative effects of a
small band gap or band asymmetry can always be eliminated
through stronger band flatness.

Recent studies of twisted graphene bilayers [33–38] and
multilayers [39] reveal a versatile playground, which can po-
tentially reproduce the flat bands we are after [40]. A possible
experimental manifestation of our model would be an abrupt
drop in resistivity upon decreasing electron temperature be-
low a certain critical value, which resembles an enigmatic
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transition into a highly conductive (but not superconduct-
ing) state observed in twisted graphene multilayers at low
temperatures [41,42]. Hence, our model could be seen as a
phenomenological one able to describe the phenomenon qual-
itatively. The dimensionless pairing potential ν should be then
considered a phenomenological parameter. If the band flatness
is substantial, then ν ∼ �/ε0. The band parameter ε0 can be
seen as a bandwidth, which is up to several meV in magic-
angle twisted multilayer graphene. The critical temperature
(the temperature at which resistivity drops down abruptly
[41]) is ∼10 K, which is equivalent to ∼1 meV. The order
parameter � at T = 0 should be of the same order of magni-
tude as the critical temperature. Hence, the phenomenological
parameter ν is slightly <1.

A somewhat closer realization of our model would be
chirally stacked (rhombohedral) multilayer graphene with a
number of layers >2 [43–46]. However, recent measure-
ments performed in intrinsic rhombohedral-stacked penta-
layer graphene indicate a correlated insulator rather than a
correlated conductor [19].

We conclude with two caveats about our model. First, the
concept of frozen electrons is inspired by a mean-field theory.
As with any other mean-field theory, these results indicate just
the possibility of the existence of frozen electrons but not a

necessity. Second, to transition into the frozen state, the flat-
band electrons must be subject to mutual attraction, at least
a weak one in the short range. The origin of attraction is not
important; it could rely on one of the pairing mechanisms in-
troduced in various superconductivity theories [47]. However,
the intraband pairing must be weaker than the cross-band one;
otherwise, the electrons would just transition into the usual
BCS state, see Fig. 5. It remains an open question for future
work whether the special constraints required for our model
can be realized by employing a specific pairing mechanism.
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APPENDIX: QUASIPARTICLE SCATTERING

The quasiparticle excitations of γ0,1p type at |p| � k� are given by

γ
†
0p|G〉 = 0, (A1)

γ0p|G〉 = exp(iδ)c†
−p̄↓

∏
k�k�,k �=p

1√
2

[1 + exp(iδ)c†
+k↑c†

−k̄↓]
∏

k>k�

c†
−k̄↓|0〉 ⊗ |G〉↓↑, (A2)

γ
†
1p|G〉 = 0, (A3)

γ1p|G〉 = c†
+p↑

∏
k�k�,k �=p

1√
2

[1 + exp(iδ)c†
+k↑c†

−k̄↓]
∏

k>k�

c†
−k̄↓|0〉 ⊗ |G〉↓↑. (A4)

Here, like the conventional BCS model, each quasiparticle excitation breaks a pair apart creating a free electron. In contrast, the
quasiparticle excitations outside of the frozen layer (|p| > k�) read

γ
†
0p|G〉 = exp(−iδ)√

2
[1 + exp(iδ)c†

+p↑c†
−p̄↓]

∏
k>k�,k �=p

c†
−k̄↓

∏
k�k�

1√
2

[1 + exp(iδ)c†
+k↑c†

−k̄↓]|0〉 ⊗ |G〉↓↑, (A5)

γ0p|G〉 = 0, (A6)

γ
†
1p|G〉 = 0, (A7)

γ1p|G〉 = −exp(−iδ)√
2

[1 − exp(iδ)c†
+p↑c†

−p̄↓]
∏

k>k�,k �=p

c†
−k̄↓

∏
k�k�

1√
2

[1 + exp(iδ)c†
+k↑c†

−k̄↓]|0〉 ⊗ |G〉↓↑. (A8)

Here, each excitation creates an electron pair outside of the frozen layer. Figure 3(c) illustrates the quasiparticle excitation
processes. The quasiparticle excitations of β0,1p type can be obtained from the above relations by swapping the spin and
momentum indices.

Each term in the disorder Hamiltonian given by Eq. (24) can be explicitly written in terms of the quasiparticle operators as

∑
kk′

Ukk′c†
+k′↑c+k↑ = 1

2

∑
kk′

Ukk′ (γ †
0k′γ0k + γ

†
0k′γ

†
1k + γ1k′γ0k + γ1k′γ

†
1k ), (A9)
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∑
kk′

Ukk′c†
−k̄′↓c−k̄↓ = 1

2

∑
kk′

Ukk′ (−γ
†
0k′γ0k + γ1k′γ0k + γ

†
0k′γ

†
1k − γ1k′γ

†
1k ), (A10)

∑
kk′

Ukk′c†
+k̄′↓c+k̄↓ = 1

2

∑
kk′

Ukk′ (β†
0k′β0k + β

†
0k′β

†
1k + β1k′β0k + β1k′β

†
1k ), (A11)

∑
kk′

Ukk′c†
−k′↑c−k↑ = 1

2

∑
kk′

Ukk′ (−β
†
0k′β0k + β1k′β0k + β

†
0k′β

†
1k − β1k′β

†
1k ), (A12)

∑
kk′

Ukk′c†
+k′↑c−k↑ = eiδ

2

∑
kk′

Ukk′ (γ †
0k′β

†
0k − γ

†
0k′β1k + γ1k′β

†
0k − γ1k′β1k ), (A13)

∑
kk′

Ukk′c†
+k̄′↓c−k̄↓ = eiδ

2

∑
kk′

Ukk′ (−γ
†
0k′β

†
0k + γ1k′β

†
0k − γ

†
0k′β1k + γ1k′β1k ), (A14)

∑
kk′

Ukk′c†
−k′↑c+k↑ = e−iδ

2

∑
kk′

Ukk′ (β0k′γ0k + β0k′γ
†
1k − β

†
1k′γ0k − β

†
1k′γ

†
1k ), (A15)

∑
kk′

Ukk′c†
−k̄′↓c+k̄↓ = e−iδ

2

∑
kk′

Ukk′ (−β0k′γ0k − β
†
1k′γ0k + β0k′γ

†
1k + β

†
1k′γ

†
1k ). (A16)

Here, we have assumed Uk′k = Ukk′ . Each term in Eqs. (A9)–(A16) describes a certain scattering channel contributing to the
total momentum relaxation. Summing up Eqs. (A9)–(A16), we obtain Eq. (25).

The only nonzero scattering matrix elements are

〈G|γ †
1p′Hdisγ

†
0p|G〉 =

∑
kk′

Ukk′ 〈G | γ
†
1p′γ1k′γ0kγ

†
0p | G〉

=
∑
kk′

{
Ukk′δp′k′δpk, |p| > k�,

0, otherwise.
=

{
Upp′ , |p| > k�,

0, otherwise.
(A17)

〈G|γ0p′Hdisγ1p|G〉 =
∑
kk′

Ukk′ 〈G | γ0p′γ
†
0k′γ

†
1kγ1p | G〉

=
∑
kk′

{
Ukk′δp′k′δpk, |k′| > k�,

0, otherwise.
=

{
Upp′ , |p′| > k�,

0, otherwise.
(A18)

〈G|β†
1p′Hdisβ

†
0p|G〉 =

∑
kk′

Ukk′ 〈G | β
†
1p′β1k′β0kβ

†
0p | G〉

=
∑
kk′

{
Ukk′δp′k′δpk, |p| > k�,

0, otherwise.
=

{
Upp′ , |p| > k�,

0, otherwise.
(A19)

〈G|β0p′Hdisβ1p|G〉 =
∑
kk′

Ukk′ 〈G | β0p′β
†
0k′β

†
1kβ1p | G〉

=
∑
kk′

{
Ukk′δp′k′δpk, |k′| > k�,

0, otherwise.
=

{
Upp′ , |p′| > k�,

0, otherwise.
(A20)

〈G|γ †
1p′Hdisβ0p|G〉 =

∑
kk′

Ukk′eiδ〈G | γ
†
1p′γ1k′β

†
0kβ0p | G〉

=
∑
kk′

{
Ukk′eiδδp′k′δpk, |p| < k�,

0, otherwise.
=

{
Upp′eiδ, |p| < k�,

0, otherwise.
(A21)

〈G|β†
0p′Hdisγ1p|G〉 =

∑
kk′

Ukk′e−iδ〈G | β
†
0p′β0k′γ

†
1kγ1p | G〉

=
∑
kk′

{
Ukk′e−iδδp′k′δpk, |k′| < k�,

0, otherwise.
=

{
Upp′e−iδ, |p′| < k�,

0, otherwise.
(A22)
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〈G|γ †
0p′Hdisβ1p|G〉 =

∑
kk′

Ukk′e−iδ〈G | γ
†
0p′γ0k′β

†
1kβ1p | G〉

=
∑
kk′

{
Ukk′e−iδδp′k′δkp, |k′| < k�,

0, otherwise.
=

{
Upp′e−iδ, |p′| < k�,

0, otherwise.
(A23)

〈G|β†
1p′Hdisγ0p|G〉 =

∑
kk′

Ukk′eiδ〈G | β
†
1p′β1k′γ

†
0kγ0p | G〉

=
∑
kk′

{
Ukk′eiδδp′k′δpk, |p| < k�,

0, otherwise.
=

{
Upp′eiδ, |p| < k�,

0, otherwise.
(A24)

In the case of short-range (δ-shaped) scatterers, the scattering matrix elements are constants (Upp′ = U0), and the momentum
relaxation rate can be written as

1

τκk
= 2π

h̄

∑
κ ′

∫
d2k′

(2π )2
ndis|〈κk|Hdis|κ ′k′〉||2δ(Eκk − Eκ ′k′ ), (A25)

where ndis is the disorder concentration, κ denotes the quasiparticle type {γ0,1, β0,1}, and Eκk is the quasiparticle excitation energy
shown in Fig. 3(c). Equation (A25) involves summation over the quasiparticle scattering channels specified by Eqs. (A17)–(A24).
The equations demonstrate that scattering is only possible between the quasiparticles of opposite type, e.g., between γ0k and γ1k
(or γ0k and β1k) but never between γ0k and β0k (or γ1k and β1k). Since γ and β quasiparticles have the same energy spectrum,
the delta function takes the same form for each scattering channel given by

δ(Eκk − Eκ ′k′ ) = δ(εk + εk′ ) = 0, εk,k′ > 0. (A26)

The later equality results in τκk = ∞.
It is instructive to calculate the momentum relaxation rate in the normal state. One can make use of Eq. (A25) assuming

that Eκk = κεk , where κ = ± is the band index. If electrons are in the normal state, then the intraband scattering channels are
allowed; hence, the integral does not vanish, and the momentum relaxation rate reads

1

τk
= ndisU 2

0 k2
0

ph̄ε0

(
k0

k

)p−2

. (A27)

One can now see the difference between electron scattering in the normal and correlated states: Intraband elastic scattering
is allowed for normal electrons but can be suppressed by electron pairing, whereas interband elastic scattering is forbidden
regardless.
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